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Conductance anomalies and the extended Anderson model for nearly perfect quantum wires
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Anomalies near the conductance threshold of nearly perfect semiconductor quantum wires are explained in
terms of singlet and triplet resonances of conduction electrons with a single weakly bound electron in the wire.
This is shown to be a universal effect for a wide range of situations in which the effective single-electron
confinement is weak. The robustness of this generic behavior is investigated numerically for a wide range of
shapes and sizes of cylindrical wires with a bulge. The dependence on gate voltage, source-drain voltage and
magnetic field is discussed within the framework of an extended Hubbard model. This model is mapped onto
an extended Anderson model, which in the limit of low temperatures is expected to lead to Kondo resonance
physics and pronounced many-body effects.
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I. INTRODUCTION

Semiconductor quantum wires can be fabricated with
fective wire widths down to a few nanometers; for examp
by heteroepitaxial growth onv-groove surfaces1 and ridges,2

cleaved edge over-growth,3 etched wires with gating,4 and
gated two-dimensional electron-gas~2DEG! structures.5,6

More recently, there has been considerable interest in ca
nanotubes for which the quantum wire cross section can
proach atomic dimensions. Such structures have potentia
optoelectronic applications, such as light-emitting diod
low-threshold lasers, single-electron devices, and quan
information processing.

Conductance steps in various types of quantum point c
tacts and quantum wires were found more than a dec
ago.5,6 These first experiments are broadly consistent wit
simple noninteracting picture.7 However, there are certai
anomalies, some of which are believed to be related
electron-electron interactions and appear to be spin de
dent. In particular, a structure is seen in the rising edge of
conductance curve, starting at around 0.7(2e2/h) and merg-
ing with the first conductance plateau with increasi
energy.8 This structure, already visible in the ear
experiments,5 can survive to temperatures of a few degre
and also persists under increasing source-drain bias,
when the conductance plateau has disappeared. Unde
creasing in-plane magnetic field, the structure moves do
eventually merging with thee2/h conductance plateau a
very high fields and is not a transmission effect through
ballistic channel.9 A structure is seen also in high-qualit
quantum wires.10 In some experiments, an anomaly is seen
lower energy with conductance around 0.3(2e2/h).2,11 This
can also survive to a few degrees, though is less robust
the 0.7 anomaly and is more readily suppressed by a m
netic field.2 Recently the anomaly was confirmed also
back-gated,12 in shallow-etched13 point contacts and in a bal
listic quantum wire.14 At low temperatures the anomaly ex
hibits a puzzling similarity with Kondo resonance behavior15
0163-1829/2003/67~7!/075311~16!/$20.00 67 0753
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as do thermopower measurements.16

Theoretical work has attempted to explain these obse
tions in various ways, including conductance suppression
a Luttinger liquid with repulsive interaction and disorder17

local spin-polarized density-functional theory18 and spin-
polarized sub-bands.19 Near the conduction threshold, the
is a ‘‘Coulomb blockade’’ and we have shown that this giv
rise to spin-dependent resonances, for wires of b
rectangular20 and cylindrical21 cross section, with related
anomalies in thermoelectric transport coefficients.22 A simi-
lar singlet-triplet scenario was presented in Ref. 23 an
phenomenological approach is presented in Ref. 24. Re
studies have investigated the 0.7 anomaly in quantum p
contacts within the Hartree-Fock approximation,25 spin-
fluctuation backscattering26 and in the framework of the
Anderson model with related Kondo resonance behavior27

In Refs. 20–22 we suggested that these anomalies
related to weakly bound states and resonant bound s
within the wire. These would arise, for example, from
small fluctuation in thickness of the wire in some regi
giving rise to a weak bulge. If this bulge is very weak th
only a single electron will be bound. We may thus regard t
system as an ‘‘open’’ quantum dot in which the bound ele
tron inhibits the transport of conduction electrons via t
Coulomb interaction. Near the conduction threshold, th
will be a Coulomb blockade and we show below that th
also gives rise to a resonance, analogous to that which oc
in the single-electron transistor.28 This is a generic effect
arising from an electron bound in some region of the w
and such binding may arise from a number of sources, wh
we do not consider explicitly. For example, in addition to
weak thickness fluctuation, a smooth variation in confini
potential due to remote gates, contacts, and depletion reg
could contribute to electron confinement along the wire
gated 2DEG. A significant contribution to the single-electr
confinement could also arise from its electronic polarizat
of the lattice or image charge.

In this paper, we extend our previous study of a particu
©2003 The American Physical Society11-1
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geometry of the quantum wire with a comprehensive ana
sis of a wide range of shapes and sizes of wire in orde
demonstrate the generic and wide applicability of the p
nomena. We study in particular the threshold of the cond
tivity of nearly perfect wires for which a single electron
bound. We express the conductance in terms of the t
electron scattering matrix. In order to extend the exact tw
electron analysis into the true many-electron domain,
construct an extended Anderson model and analyze the
fluence of the corresponding momentum dependent coup
matrix elements.

The model is introduced in the following section and t
special case of a cylindrical GaAs wire is derived in Appe
dix A. In Sec. III A detailed analysis of the two-electro
problem is presented in which one electron is weakly bou
in the wire, giving rise to spin-dependent scattering of
other. Exact singlet and triplet scattering states are comp
near the conductance threshold. In Sec. IV we then sh
how the solutions of the scattering problem may be use
determine conductance by an extension of the Landa
Büttiker formula. This gives excellent agreement with
number of experiments on different kinds of quantum wi
The effect of finite magnetic field on the anomalies is p
sented and it is shown how they are related to the spin-s
steps in perfect quantum wires. In the last section we a
examine the dependence of the anomalies on asymmetr
troduced by finite source-drain voltage and summarize.
ditional appendices are devoted to technical details on
solution of the two-electron wave function in an extern
potential, and the Hartree-Fock analysis.

II. BASIC MODEL

In preceding work,20–22 we have considered a straig
quantum wire with a small fluctuation in thickness givin
rise to a weak ‘‘bulge.’’ The precise details of the bulge a
largely unimportant for what follows, the main requireme
being that the change in the width of the wire is sufficien
gradual that interchannel mixing of the transverse mode
negligible and that only one electron may be bound in
bulge region. The latter is always the case for a weak s
metric bulge, which has at least one bound state that can
sustain one electron due to Coulomb repulsion. The prob
reduces to electrons moving in an effective weak poten
well if we confine ourselves~by choice of gate voltage! to
the Fermi energies for which no more than one transve
mode is occupied, i.e., the conductance threshold and
first conductance step. A typical effective potential well f
such a bulge is shown in Fig. 1. Such a potential well m
arise in other ways, such as an actual potential fluctua
due to a nearby unscreened charged impurity, or even s
self-consistent effect due to the electrons themselves thro
electronic polarization and image charge in a remote g
We shall not consider the possible cause of this weak po
tial further but emphasize that because it may arise in m
ways, the weak potential well model is very general w
widespread applicability.

The reason why one electron may behave differently fr
the others can be qualitatively understood as follows. As
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gate voltage is increased, a single electron is injected into
quantum wire or point contact. Coulomb repulsion preve
other electrons from also entering the wire until the first el
tron has left. However, this first electron, being very close
the single-electron band edge, may self-trap due to lat
polarization. A second electron can only enter the wire wh
the gate voltage has been increased sufficiently to overc
Coulomb repulsion. This occurs when the energy of
‘‘second’’ electron is too high for it also to be ‘‘self-trapped.
This picture is consistent with the indistinguishability
electrons when viewed as a scattering problem with prop
antisymmetrized wave functions, though it does at first si
appear not to treat all electrons on an equal footing.

Consider now the motion of electrons in the wire near
conductance threshold. A single electron will be bound in
potential-well region and the remaining electrons will u
dergo scattering from the localized electron via the Coulo
interaction as they propagate from source to drain. At su
ciently low Fermi energy, the electrons in the source cont
will be totally reflected by the bound electron due to Co
lomb repulsion and there will be no current from source
drain atT50. As the Fermi energy is raised, the energy
the electrons in the source contact will be sufficiently hi
for them to overcome the Coulomb repulsion of the bou
electron and a current will flow. In calculating this curre
we will make the approximation that the electrons flowi
from source to drain only interact with the bound electr
via a screened Coulomb interaction. This is a reasonable
proximation provided that the electron density is not too lo
in the region of interest, i.e., the rising edge to the first co
ductance plateau. More precisely, the mean density of e
trons in the wire~number per unit length! should be at leas
of order the inverse effective Bohr radius of the material. W
return to this point again in the final section. Within th
approximation, the many-electron problem is reduced to
effective two-electron problem in which one electron
bound and the other is a representative electron at the F
energy in the leads. We show below that by solving t
two-electron problem exactly and summing over all electro
near the Fermi energy we may compute the conductanc

A. Extended Hubbard and Anderson model

The Hamiltonian corresponding to interacting electrons
the wire with a small geometric or potential inhomogene
and close to the threshold of conduction is, within t
effective-mass approximation an extended Hubbard Ham
tonian on a finite-difference lattice,29

FIG. 1. Effective one-dimensional well caused by thickne
fluctuation, impurity charge, gate image charge, self-polarizat
due to single electron or some combination of these.
1-2
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FIG. 2. The geometry of the ‘‘open quantum
dot’’ for the parametrization~a! Eq. ~2.8a! and~b!
Eq. ~2.8b!.
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H1s1
1

2 (
iÞ j

Ui j ninj1(
i

Uii ni↑ni↓ . ~2.1!

HereH1s is the single-particle Hamiltonian,

H1s52t(
i

~ci 11s
† cis1cis

† ci 11s!1(
i

e inis, ~2.2!

wherecis
† ,cis are electron creation, annihilation operato

nis5cis
† cis , andni5(snis . Model parameters are hoppin

t, local potential at sitei, e i , and screened electron-electro
interaction at sitesi and j, Ui j . This Hamiltonian is derived
and justified in Appendix A.

In order to study the many-electron problem, it is al
convenient to express the Hubbard Hamiltonian, Eq.~2.1!, in
a basis which distinguishes bound and unbound states ex
itly. Single-electron solutions corresponding to the tig
binding Hamiltonian Eq.~2.2!, follow from the single-
particle Schro¨dinger equation

H1uw&5E1uw&, ~2.3!

and~with omitted spin indexs), uw&5( jw j cj
†u0&. For large

u j u the potentiale j is constant, therefore the solutions a
asymptotically plane waves. We thus diagonalize this sing
electron part of the Hamiltonian using the transformat
cqs

† 5( j cj s
† f j

q , where f j
q5^ j uq&;exp(iqj) asymptotically

for unbound states, with eigenenergies«q . In this basis the
Hamiltonian becomes

H5(
q

eqnq

1
1

2 (
q1q2q3q4ss8

U~q1q2q3q4!cq1s
† cq3s8

† cq4s8cq2s ,

~2.4!

where

U~q1q2q3q4!5(
i j

Ui j ~f i
q1!* f i

q2~f j
q3!* f j

q4 . ~2.5!

We further denote the lowest bound state with energyeq

,0 by ds[cqs , with nd5(sds
†ds and, similarly, the scat-

tering states with positiveeq are distinguished byq→k.
There are two independent unbound states correspondin
eachk and these are chosen to be plane waves asymp
cally, i.e.,f j

k→eik j as j→6` andek5\2k2/2m* . Retaining
only those Coulomb matrix elements which involve both
calized and scattered electrons, omitting all terms wh
07531
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would give rise to states in which the localized state is u
occupied, we arrive at an Anderson-type Hamiltonian,29,30

H5(
k

eknk1ednd1(
ks

~Vknds̄cks
† ds1h.c.!1Und↑nd↓

1 (
kk8s

Mkk8ndcks
† ck8s1(

kk8
Jkk8Sd•skk8 . ~2.6!

HereU5U(dddd) is the Hubbard repulsion,Vk5U(dddk)
is mixing term,Mkk85U(ddkk8)2 1

2 U(dkk8d) corresponds
to scattering of electrons and the direct exchange couplin
Jkk852 U(dkk8d). Spin operators in Eq.~2.7! are defined as
Sd5 1

2 (ss8ds
†sss8ds8 and skk85

1
2 (ss8cks

† sss8ck8s8 ,
where the components ofs are the usual Pauli matrices.
similar model has been proposed recently in Ref. 27.
though the Hamiltonian, Eq.~2.7!, is similar to the usual
Anderson Hamiltonian,30 we stress the important differenc
that thekd-hybridization term above arises solely from th
Coulomb interaction, whereas in the usual Anderson cas
comes primarily from one-electron interactions. These h
been completely eliminated above by solving the on
electron problem exactly. The resulting hybridization te
contains the factornds̄ , and hence disappears when the
calized orbital is unoccupied. This reflects the fact that
effective double-barrier structure and resonant bound s
occurs via Coulomb repulsion only because of the prese
of a localized electron.

To be specific, we consider in this paper a cylindrica
symmetric quantum wire with symmetry axisz and lateral
coordinatesr andw.21 Such a geometry corresponds to na
row v-groove z-dependent quantum wires investigated
cently, e.g., in Ref. 11. The diameter of the wire isa(z), with
zero potential within the wire and constantV0.0 outside,
i.e.,

V~r ,z!5H 0, r ,
1

2
a~z!

V0 , r .
1

2
a~z!.

~2.7!

For the wire width, two generic shapes are taken, shown
Fig. 2 with

a~z!5H a0S 12j sin2p
z

a1
D , uzu,a1

a0 , uzu.a1 ,

~2.8a!
1-3
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a~z!5H a0S 11j cos2
p

2

z

a1
D , uzu,a1

a0 , uzu.a1 .

~2.8b!

The region of interest is aroundz50 and for largeuzu
.a1 the diameter is constanta0. Single-particle solutions
corresponding to this geometry as well as the derivation
calculation of parameters of the corresponding Hubb
Hamiltonian are presented in Appendix A.

III. TWO-ELECTRON SOLUTIONS

A. Bound states

In order to calculate conductance though the system
first solve the two interacting electron problem for t
present geometry using the extended Hubbard Hamilton
Eq. ~2.1!. Solutions for bound states are determined by
merical diagonalization of the system of equations presen
in Appendix B, Eq.~B4!. In Fig. 3 the result of the two-body
electron density as a function ofz/a0 for various shapes o
the bulge is shown@Fig. 2~b!#. A general tendency is tha
long or narrow bulges correspond to stronger interaction
sulting in formation of a double peak in density, as know
from other studies of one-dimensional quantum dots.31 As
long as the two peaks are not well separated, the approxim
methods mentioned below are excellent, becoming gradu
less reliable with increasing separation between the pea

In Fig. 4 we present typical examples of the energy of t
bound ~singlet! electrons (E,0), whereg is the electron-
electron coupling strength, defined by replacementU
→gU. Exact results are represented by the solid line, w
other lines representing results obtained with the Hartr
Fock approximation, derived in Appendix C. AtE.0 the
lines correspond to the position of the singlet resonance,
culated with different methods and discussed below. In Fig
the bulge is longer and narrower, therefore both singlet
triplet bound states exist for smallg, while for stronger cou-
pling the triplet is first pushed into continuum and finally, f
g;0.7, both states become resonances. Here approxi
solutions are less accurate, because the bulge is much l
than in the previous case and therefore the problem is cl
to the strong interaction limit, as is seen also in Fig.

FIG. 3. Two-electron density for various bulge parameters.
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dashed-dotted line, where the dip in the electron-density
nals the strong interaction regime. The Hartree-Fock
proximation gives too large energies here, which are, ho
ever, qualitatively correct.

B. Scattering states

Here we consider the scattering of an asymptotically f
electron on a bound electron within the bulge. Such a sys
may be regarded as an ‘‘open quantum dot’’ in which o
electron is bound and inhibits the transport of conduct
electrons via Coulomb repulsion. The problem is analog
to treating the collision of an electron with a hydrogen ato
as, e.g., described in Ref. 32 and studied by J. R. Oppe
imer and N. F. Mott.33 We only consider here cases in whic
the energy of the scattered electron is smaller than the b
ing energy of the bound electron. This ensures that only e
tic scattering is possible. Asymptotically the two-body wa
function is a properly symmetrized product of a sing
particle bound state,uw., and scattered state,ux(E)&.

For two electrons, the antisymmetrized wave function c
be written as a product of a spin part and an orbital part.
write the orbital part as

FIG. 4. Position of bound states (E,0) and resonances (E
.0) vs couplingg, calculated exactly and within the Hartree-Foc
approximation. Wire shape corresponds to Eq.~2.8b! with param-
eters:a05a1510 nm, j50.24, V050.4 eV, andk550 nm.

FIG. 5. As in Fig. 4 but with parameters:a0510 nm, a1

54a0 , j50.06, V050.4 eV, andk550 nm.
1-4
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c̃ i j 5
c i j 1~21!Sc j i

A2
~3.1!

ensuring that this is symmetric for singlets (S50) and anti-
symmetric for triplets (S51) ~see Appendix B!. For some
largeN@1, c i j takes the form

c i j 5H x i~E!w j1r (S)x i* ~E!w j , i ,2N

t (S)x i~E!w j , i .N.
~3.2!

Asymptotic solutions for the unbound electron are o
tained from the single-electron Hamiltonian Eq.~2.2! with
the potential

ẽ j5e j1(
k

U jkuwku2 ~3.3!

for largeu j u. Hereuw& is the single-particle bound state in th
potentiale j . Solutions with forward and backward curren
have the following asymptotic form (j→`)

x j5H e6 ik j , k,`

e6 i (k j2h(k)ln 2k j), k5`,
~3.4!

for finite and infinite screening lengthk, respectively~see
Appendix A!. With no screening (k5`) x j are the Coulomb
functions.34

Numerically exact solutions are obtained by solving a
of linear equations for the (2N11)2 variablesc̃ i j and trans-
mission and reflection amplitudes.

IV. CONDUCTANCE

A. Single-electron solutions

From the solution of the scattering problem, the cond
tance at zero temperature is calculated using the u
Landauer-Bu¨ttiker formalism,35

G5G0T~E!, ~4.1!

where G052e2/h, E is the Fermi energy~in this caseE
5E1) andT(E) is the total transmission probability.

For an open bulge of shape Eq.~2.8a!, Fig. 2~a!, there are
no bound states and only single-electron solutions36 are rel-
evant. In Fig. 6 we presentG as a function of electron energ
for wires with shape Eq.~2.8a! and three different widths
The main effect is a change of energy scale, according
scaling rule Eq.~A7!, and the magnitude of the conductan
at the resonance energy,G0. In Fig. 7 the conductance
through the bulge of the shape from Eq.~2.8b! is presented.
In contrast to the previous figure, a bound state can e
here, indicated by the dashed vertical line. Further linesn
51,2) indicate bound states ofindividual channelsfor the
special case when channel mixing terms in Eq.~A4! are set
to zero. Dips in the conductivity in the second plateauG
;3G0) correspond to Fano resonances caused by interc
nel mixing terms.

In Fig. 8~a! we again show the result of Fig. 7 comparin
it with the one-channel approximation. In this paper, we
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e

interested in the rising edge of the conductance at the thr
old, but with Coulomb interactions between bound and sc
tered electron included. Near threshold the one-channel
proximation is excellent and therefore in the following w
neglect higher channels. In Fig. 8~b! is presented the influ-
ence of discretization parameterD, as introduced in Appen-
dix A, on the conductivity. The position of the bound state
not strongly dependent onD ~inset in enlarged energy scale!
and forD,a1/5 the results obtained on the lattice agree w
the continuum calculation within a percent, which justifi
the use of the discretized Hamiltonian, Eq.~2.1!.

B. Interacting electrons

We may extend the formula Eq.~4.1! to the case de-
scribed in the preceding section in which one electron
bound in the wire and the remaining electrons are transmi
with energy-dependent probability. LetPs be the probability
that the bound electron has spins. It follows directly that the
conductance due to all spin-up electrons in the leads is g
by the extended Landauer Bu¨ttiker formula

G↑5
e2

h
@P↑T↑↑~E!1P↓T↑↓~E!#, ~4.2!

FIG. 6. G for a wire with shape Eq.~2.8a! and V050.4eV, j
50.8, a15a0 and in particular~a! a057 nm, ~b! a0510 nm, and
~c! a0515 nm.

FIG. 7. G for wire shape Eq.~2.8b! and V050.4 eV, j50.5,
a05a1510 nm. Vertical lines indicate positions of bound states
the lowest channels.
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where T↑↑ is the transmission probability when the bou
electron is spin up,T↑↓ is the transmission probability whe
the bound electron is spin down andE is the Fermi energy.
We have a similar expression for spin-down electrons in
leads and hence the total conductance is

G~E!5
e2

h
@P↑T↑↑~E!1P↓T↑↓~E!1P↑T↓↑~E!1P↓T↓↓~E!#.

~4.3!

The transition probabilitiesT↑↑ andT↑↓ are different since in
the former case the conduction and bound electrons b
have the same spin~up! before and after scattering where
in the latter case there are two possible final states, with
without spin flip, i.e.,

T↑↓~E!5ut↑↓→↑↓u21ut↑↓→↓↑u2, ~4.4!

where the scattering amplitudes are defined by

^ i↑ j↓uc↑↓&→t↑↓→↑↓x iw j ,

^ i↓ j↑uc↑↓&→t↑↓→↓↑x iw j ~4.5!

as i→`. uc↑↓& is the exact scattering wave function an
u is j s8&5cis

† cj s8
† u0&. w j5^ j uw& is the bound-state one

electron wave function andx j5^ j ux& is a forward propagat-
ing one-electron wave function at largej, as discussed in
Sec. III.

In zero magnetic field it is clear thatP↑5P↓5 1
2 in Eq.

~4.3!. We can expressG(E) in a simpler form since the
Tss8(E) are not all independent. Transforming to singlet a
triplet base states~with Sz50),

us,i , j &5
u i↑, j↓&2u i↓, j↑&

A2
, ~4.6!

FIG. 8. ~a! Conductance from Fig. 7 in comparison with th
result obtained in the one channel approximation.~b! Conductance
calculated with differentD for wire parameters as in~a!. Bound
states are presented in the inset with enlarged energy scale.
07531
e
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ut,i , j &5
u i↑, j↓&1u i↓, j↑&

A2
,

we get

^s,i , j uc↑↓&→
t (0)

A2
x iw j , ~4.7!

^t,i , j uc↑↓&→
t (1)

A2
x iw j ,

where

t (0)5t↑↓→↑↓1t↑↓→↓↑ , ~4.8!

t (1)5t↑↓→↑↓2t↑↓→↓↑ .

Hence, Eq.~4.2! becomes32

G5G0S 1

4
ut (0)u21

3

4
ut (1)u2D . ~4.9!

C. Results of numerical analysis

In Fig. 9 we present the result of a comprehensive stu
of conductance for a variety of shapes of bulge. In Fig. 9~a!
the bulge is wide and so short that only a singlet resonanc
developed. The conductance therefore exhibits a struc
similar to the 0.3 anomaly found in experiment.37 In Figs.

FIG. 9. Conductance for different shapes of the bulge. Each
is labeled with the parametera1 /a0. Other wire parameters:a0

510 nm, V050.4 eV andk550 nm.
1-6
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9~b,c! both singlet and triplet resonances are visible with
tendency for the resonances to sharpen as the bulge bec
weaker (j→0).

In Fig. 10 the wire width is fixed at 10 nm of the wire an
positions of singlet~full lines! and triplet~dashed lines! reso-
nances~or the corresponding bound states forE,0) are
plotted for various lengths and widths of bulge, represen
by a1 /a0 and j. We see that the resonances survive fo
wide range of parameters. In Fig. 11 the position of sing
and triplet resonance energies vs the width of the wire,a0,
with fixed shape of the bulge is shown. The insets show
energy dependence of singlet and triplet transmission p
abilities for selected special cases. Note that we have sc
the energy by a factora0

2E. This would produce identica
curves for noninteracting electrons@Eq. ~A7!#.

After performing calculations for a wide range of param
eters, we conclude that a singlet resonance is always low

FIG. 10. Energies of singlet~full lines! and triplet~dashed lines!
resonances and bound states for wire Eq.~2.8b! as a function of
a1 /a0 for differentj. Other parameters are as in Fig. 9. Full circl
represent the energy, where the resonance energy is above the
ization’’ energy and the underlying wave function form is not va
anymore.

FIG. 11. The position of singlet~full line! and triplet ~dashed
line! resonances as a function of the width of the wire,a0. Note that
the energy of the resonances is presented in a scaled forma1

550 nm, j50.11 and other parameters are as in Fig. 9.
07531
a
es

d
a
t

e
b-
led

in

energy than its corresponding triplet, in accordance w
Lieb-Mattis theorem, which however, is strictly valid on
for ground states.38

D. Magnetic field along the symmetry axis

The nature of conductance anomalies studied here ca
further illuminated with experiments done in a strong ma
netic field.37 The effect of the magnetic field is, in our trea
ment, taken into account via the usual Zeeman splitting
channel energies. The incoming electron with Fermi ene
E and spin componentSz56 1

2 then has kinetic energy

Ek[E75E7EB , ~4.10!

whereEB5 1
2 g* mBB. g* is the effective gyromagnetic ratio

andmB is Bohr magneton.
Near the conductance threshold we assume that the

rent is sufficiently low that the localized electron is in i
ground-state with spin↓ before each scattering event with
conduction electron. HenceP↓51 and P↑50 in Eq. ~4.2!
which becomes

G↑~E,B!5
e2

h
T↑↓~E,B!. ~4.11!

In this caseG↓ÞG↑ but, rather,

G↓~E,B!5
e2

h
T↓↓~E,B!. ~4.12!

Since T↑↓(E,B)5T↑↓(E2,0) and T↓↓(E,B)5T↓↓(E1,0),
then the conductance is

G5G↑1G↓5
e2

h
@T↑↓~E2,0!1T↓↓~E1,0!#

5
e2

h FTt~E1,0!1
1

2
Tt~E2,0!1

1

2
Ts~E2,0!G , ~4.13!

whereTs andTt are the same functions as in zero magne
field.

In Fig. 12~a! are plotted individual transmission probabil
ties for different spin configurations. Note that the spin-fl
term is in general dominant at higher energies. In Fig. 12~b!
the corresponding results for conductance in the presenc
a magnetic field is shown. The full line corresponds toB
50, and other curves toB in incrementsDB510 T.

E. Results for the Anderson model

As shown in Sec. II, the Hubbard model studied abo
can be mapped onto an extended Anderson model, Eq.~2.7!.
Conductance through a quantum dot described by a stan
Anderson model is basically described by a peak or sev
peaks and at higher energies the conductance approa
zero.39 In the case of an open quantum dot, studied here
higher energies the conductance tends toward unity, as a
sequence of additional coupling parameters in the exten
model. Here we analyze these terms individually and sh
their relative importance.

on-
1-7
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The coupling parameters are momentum dependent an
Fig. 13 the couplingsVk , Mkk8, and Jkk8 are shown. Note
that Mkk8 at higher energies tends to a constant, while ot
parameters approach zero, ensuring the correct behavi
high energy with unit transmission.

The scattering solutions of the Hamiltonian Eq.~2.7! are
then obtained exactly for two electrons with the bound
condition that forz→`, one electron occupies the lowe
bound state, whilst the other is in a forward propagat
plane-wave state,fk(z);eikz. From these solutions we
compute the conductance again using the Landauer-Bu¨ttiker
formula.

In Figs. 14~a!–14~c! we compare the results ofTs, Tt and
conductanceG for a wire with the bulge as in Fig. 4. Th
thin lines are the exact scattering result for two electro
The solid lines show the exact scattering solutions for
Anderson-type Hamiltonian, for which the matrix elemen
and their energy dependence are calculated explicitly.
solution of this Anderson-type model for two electrons,
which the localized level always contains at least one e
tron, reproduce the main features of the exact scattering
lutions of the original model. The energy dependence of
matrix elements is essential to get this good agreement. F
14~d!–14~f! show the corresponding results for a long
bulge from Fig. 5. Also shown in Fig. 14, dashed lines, a
results with the direct exchange term omitted in Eq.~2.7!.
This term can have a significant quantitative effect, but d
not qualitatively change the conductance curves.

We have also solved a similar model in which pla
waves, rather than exact scattering states of the noninte
ing problem, were used. However, this gave poor agreem
with the exact results. We conclude that an Anderson-t
model is adequate for a near-perfect quantum wire provi
that a suitable basis set is used and the energy-dependen
the matrix elements is accurately determined. Future w

FIG. 12. ~a! Transmission probabilities for relevant spin co
figurations.~b! Conductance forB50 ~full line! and other lines for
B in incrementsDB510 T. Parameters of the wire:a0510 nm, a1

52.5a0 , j51.11, V050.4 eV, andk550 nm.
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will focus on the many-electron properties of this effecti
Hamiltonian, including ‘‘Kondo’’ and ‘‘mixed valence’’
regimes.

F. Approximate methods

It is not easy to get sufficiently accurate numerical so
tions for the case of more than two electrons. Therefor
would be extremely useful if an accurate approximat
method could be applied. The simplest approximation~pre-
sented here for the case of two electrons! is the first iteration
in solving the Hartree-Fock equations, presented in Sec
for the case of bound states.

We assume the two-body wave functions consist o
single-particle stateuw (1)& and scattering stateux& with en-
ergy E. The two-electron wave function has then the for
~see Appendix C!

FIG. 13. k-dependence of matrix elements of the extend
Anderson model. The wire is parametrized witha0510 nm, j
50.24, a1 /a052, V050.4 eV, k550 nm, andg51. ~a! Mixing
couplingVk . The energyed1U is indicated with an arrow.~b, c!
Scattering couplingsMkk8 and Jkk8 . L is the length of the wire,
where the wave functions are normalized.
1-8
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uc&5(
i j

w ix j ci j
(S,Sz)†u0&. ~4.14!

The coefficientsw i are known, therefore, only coefficientsx i
must be determined. For the singlet state the simplest
proximation is obtained if we perform the first iteration
the Hartree-Fock method subject to additional condition t
the electron has energyE ~‘‘restricted Hartree-Fock’’ ap-
proximation!:

^0uciH1ux&1(
j

Ui j uw j u2x i5Ex i , ~4.15!

where, using Eq. ~2.2!, ^0uciH1ux&52t(x i 211x i 11)
1e ix i . This is just the tight-binding results for a single
electron moving in an effective potentiale i1( jUi j uw j u2.

For the triplet state, the result is

^0uciH1ux&1(
j

Ui j uw j u2x i2(
j

Ui j w j* w ix j5Ex j .

~4.16!

FIG. 14. Singlet~a, d! and triplet~b, e! transmission probabili-
ties and corresponding conductances~c, f!. Parameters for the lef
set are as in Fig. 13, for the right set:a0510 nm, j50.15, a1 /a0

54, V050.4 eV, k5100 nm, andg50.9. Thin lines represen
exact results from Eq.~2.1!, thick lines are results from Eq.~2.7!.
Dashed lines show results where the exchange term in Eq.~2.7! is
neglected.
07531
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A better approximation for the singlet case starts from
unrestricted Hartree-Fock approximation, where the ene
is

^cuHuc&5^wuH1uw&^xux&1^xuH1ux&^wuw&

1~21!S~^wuH1ux&^xuw&1^xuH1uw&^wux&!

1
1

2 (
i j

Ui j uw ix j1x iw j u2, ~4.17!

and the norm is given with

^cuc&5(
i

ux i u21U(
i

w i
(1)* x iU2

. ~4.18!

The coefficientsx i are calculated from the Hartree-Foc
equations based on the variation principle~‘‘unrestricted
Hartree-Fock’’ approximation!

^0uciH1ux&1(
j

Ui j uw j u2x i1(
j

Ui j w j* w ix j

1~E2E1
(1)!(

j
w j* w ix j5Ex i . ~4.19!

In Fig. 15 the effective one-dimensional potential in E
~4.15! is plotted forg50,0.5 and 1. The shaded region re
resents the position and the width of single-particle re
nance in this effective potential. This resonance correspo
to the singlet resonance presented in Fig. 16~a! ~dashed line!,
for wire parameters given in Fig. 4 together with exact res
full line, and calculated from Eq.~4.15!.

We also show in Fig. 16~a! the exact result and the corre
sponding result for an unrestricted Hartree-Fock scheme
which the wave functions of up and down spin electrons
different. As expected, the unrestricted method gives a m
accurate result though both methods reproduce the main
tures, the main discrepancy being an overall energy s
Similarly in Fig. 16~b! we present the corresponding tripl
resonance curve for parameters from Fig. 5. Again, the o
all agreement with the exact result is good apart from
overall energy shift.

FIG. 15. Effective potential from Eq.~4.15! and for the wire
with parameters as in Fig. 4.
1-9
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V. SUMMARY AND CONCLUSIONS

We have shown that quantum wires with weak longitu
nal confinement, or open quantum dots, can give rise to
dependent, Coulomb blockade resonances when a s
electron is bound in the confined region. This is a univer
effect in one-dimensional systems with very weak longitu
nal confinement. The emergence of a specific structur
G(E); 1

4 (2e2/h) andG; 3
4 (2e2/h) is a consequence of th

singlet and triplet nature of the resonances and the prob
ity ratio 1:3 for singlet and triplet scattering and as such i
universal effect. A comprehensive numerical investigation
open quantum dots using a wide range of parameters sh
that singlet resonances are always at lower energies tha
triplets, in accordance with the corresponding theorem
bound states.38 With increasing in-plane magnetic field, th
resonances shift their position and eventually merge in
conductance plateau atG;e2/h. With increasing source
drain bias we have shown why the higher triplet resona
weakens at the expense of the singlet, with the latter sur
ing to the point where the conductance steps themselves
appear.

The existence of the conductance anomalies is a di
consequence of an effective double-barrier potential see
the conduction-electrons propagating from source to d
contacts under the influence of a bound electron. For a s
metric one-electron confining potential, the existence o
bound state is guaranteed but this is not necessarily the
when the confinement is asymmetric. Such asymmetry in
confining potential may be easily achieved under a fin
source drain bias and indeed, this was reported in som
the experiments on gated quantum wires.8,37 These experi-
ments show that as the source-drain bias is increased
zero, an anomaly appears atG;0.25(2e2/h), coexisting
with the 0.7(2e2/h) anomaly. Eventually, at larger bias, th
remaining anomaly also disappears but only when the c
ductance steps themselves are on the point of disappea
showing that the singlet anomaly is extremely robust. T
behavior is consistent with our model since under bias
triplet resonant bound state will eventually disappear beca
the confining potential in thex direction will only accommo-
date a single one-electron bound state, giving rise to a sin
resonance only. This is shown schematically in Fig.
where we also indicate the surviving singlet becom

FIG. 16. ~a! Singlet resonance~parameters from Fig. 4!. Exact
result and approximations of Eqs.~4.15! and ~4.19! are shown.~b!
Triplet resonance~parameters from Fig. 5!. Exact result and ap-
proximation of Eq.~4.16! are shown.
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broader with increasing bias resulting in a more pronoun
step, as observed.

Finally, we speculate on the exciting possibility that the
anomalies in conduction are themselves a signature for a
kind of conducting state in ultra clean wires close to t
conduction threshold. Indeed, there is some experime
evidence for this in that the anomalies discussed ab
merge into a conductance step ate2/h under quite moderate
magnetic fields and in the cleanest samples this behavio
sometimes even seen in zero magnetic field. This sugg
that there may be an underlying spin-polarized state ass
ated with the propagating electrons in the quasi-o
dimensional region. Such a spin-polarized state would
pear to violate the Lieb-Mattis theorem38 and would also
need to be made consistent with our above explanation
terms of singlet and triplet resonances. In this respect
emphasize that the above theory must break down at v
low electron density in the wire such that the mean sepa
tion between electrons in the wire is somewhat greater t
the effective Bohr radius, the so-called strong correlation
gime. In practical situations it is very difficult to avoid som
kind of weak potential fluctuation which traps one electro
Indeed this may ultimately be impossible since even in
nominally perfect wire, the presence of a single electron w
polarize its environment leading to a potential well, whi
will bind the electron giving rise to a Coulomb blockade f
the remaining electrons, though the energy scale~tempera-
ture! for this may be very low making it susceptible to mas
ing the other effects.

The main question is whether or not this confinemen
sufficiently large for the electron density to exceed to t
inverse Bohr radius when the wire begins to conduct. If
density remains low at this conductance threshold then
cannot ignore the mutual interaction between all electron
the wire region, or even treat them self-consistently. In t
situation, a more appropriate picture would be one in wh
the Coulomb repulsion dominates and maintains roug
equal separation between the electrons as in a Wigner ch
On the other hand, if the mean electron density is of order
greater than the inverse Bohr radius, then an open quan

FIG. 17. Effective double barrier showing singlet and trip
resonance with very small source-drain bias~a! and large source-
drain bias~b!.
1-10
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CONDUCTANCE ANOMALIES AND THE EXTENDED . . . PHYSICAL REVIEW B67, 075311 ~2003!
dot picture with effective resonance levels for the propag
ing electron is more appropriate, as discussed in this pa

At low temperatures strong many-body effects are in
cated from the activation-like behavior of the conductance8,15

and the thermopower coefficient.16 As discussed in our re
cent thermopower analysis, Ref. 22, the anomaly at low te
peratures may well be a many-body Kondo-like effect co
tained within our extended Anderson model, Eq.~2.7!, and
studied recently in Ref. 27, but not within the two-electr
approximation we have used here and in some of our ea
papers. It may well be that the two-electron approximat
breaks down at low temperatures. The model presented
differs from the standard Anderson model in that the hybr
ization term contains the factorn2s , and hence disappear
when the localized orbital is unoccupied. This reflects
fact that an effective double-barrier structure and reson
bound state occurs via Coulomb repulsion only becaus
the presence of a localized electron. The standard result
the single impurity problem40 thus cannot be applied directl
to this effective model, and are a subject of curre
research.41 However, a Kondo-like resonance
expected,27,42 for which many-body effects would dominat
with a breakdown of our two-electron approximation. It
also possible that our results based on the two-electron
proximation could be lead to significant renormalization
the electron-electron interaction in a long wire, with Fried
oscillations forming near the confining potential.43 However,
the confining potential studied in this paper is very we
because only one electron should be bound in the wire
consequently the resonances are very broad and the co
tion could be only quantitative while the existence of t
‘‘3/4’’ anomaly would not be affected.

APPENDIX A: CYLINDRICAL WIRE

1. Single-electron basis

A single electron in the wire considered here is describ
with the wave functionC(r ,w,z), which is a solution of the
Schrödinger equation

2
\2

2m*
¹2C~r ,w,z!1V~r ,z!C~r ,w,z!5EC~r ,w,z!,

~A1!

where the effects of nonparabolicity are neglected and
effective mass is taken constant,m* 50.067melec with di-
electric constant 12.5, appropriate for GaAs.36

At fixed z the wave functionC(r ,w,z) is expanded in a
two-dimensional basisFmn(r ,w;z) for the corresponding
potentialV(r ;z), Eq. ~2.7!. The coefficients in such an ex
pansion overchannelsarecmn(z)

C~r ,w,z!5 (
n50

`

(
m52n

n

cmn~z!Fmn~r ,w;z!. ~A2!

The transverse wave functions,Fmn(r ,w;z), depend only
parametrically onz and take the form:
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Fmn~r ,w;z!55
Amn(z)Jm(kmn(z)r )eimw, r ,

a~z!

2

@Bmn~z!Bm
(1)
„kmn(z)r …

1Cmn(z)Bm
(2)
„kmn(z)r …]eimw r .

a(z)

2
,

~A3a!

kmn~z!5A2m* emn~z!

\2
, ~A3b!

kmn~z!5A2m* uemn~z!2V0u

\2
. ~A3c!

Here Bm
(1)5I m and Bm

(2)5Km are appropriate Besse
eigenfunctions34 for emn<V0 with Bm

(1)5Jm andBm
(2)5Ym ,

for emn.V0. The coefficientsAmn , Bmn , Cmn and energies
emn are determined from the boundary conditions and
normalization of wave functions.

Substituting Eq.~A2! into Eq.~A1! and integrating overr
andw leads to following coupled ordinary differential equ
tions for cmn ,

cmn9 1@k22kmn
2 ~z!1amnn~z!#cmn1 (

nÞn8
bmnn8~z!cmn8

8

1 (
nÞn8

amnn8~z!cmn850, ~A4!

where the coupling coefficients are

amnn8~z!52pE
0

R

Fmn* ~r ,w;z!
]2

]z2
Fmn8~r ,w;z!rdr ,

~A5a!

bmnn8~z!54pE
0

R

Fmn* ~r ,w;z!
]

]z
Fmn8~r ,w;z!rdr .

~A5b!

The coefficients coupling channels with differentm are zero
due to the orthogonality ofeimw for different m.

Note that the Schro¨dinger equation, Eq.~A1!, is invariant
under the transformation

r→Lr , ~A6!

E,V→L22E,L22V. ~A7!

2. Extended Hubbard Hamiltonian

We consider here the case when the variation in w
width is small, resulting in small derivatives of the coef
cients in Eqs.~A5a,b!. We consider only electrons with en
ergy below the second channel and hence Eq.~A4! reduces
to a single equation for motion inz direction, with the po-
tential

e~z!5e00„a~z!…1a82 ~z!ẽ00„a~z!…. ~A8!
1-11
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The first term is the energy of the first channel and
second is related toa000(z) from Eq. ~A4!. a8(z) is the de-
rivative of the wire diameter with respect toz. The second
term in Eq.~A8! is always positive since

ẽ00~a!5
\2p

m*
E

0

RS ]F00~r ,w!

]a D 2

rdr . ~A9!

The potential Eq.~A8! is constant for largeuzu and set to zero
for convenience, i.e.,

e~z!→e~z!2e~`!. ~A10!

In Fig. 18~a! e00(a) andẽ00(a) are presented as a function
wire diameter. Figures 18~b! and 18~c! show the variation of
one-dimensional potentiale(z) along the wire.

The single-electron Hamiltonian in the single channel
proximation then becomes

H152
\2

2m*

d2

dz2
1e~z!. ~A11!

This is readily generalized to many electrons,

FIG. 18. ~a! Dependence ofe00 and ẽ00 in Eq. ~A8! on wire
diameter forV050.4 eV. ~b! One-dimensional potential Eq.~A8!
for the wire shape Eq.~2.8a! and various values ofj. Dashed lines
correspond to the contributione00. ~c! The same as in~b! but for
wire shape Eq.~2.8b!.
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H5(
s

E cs
†~z!F2

\2

2m*

d2

dz2Gcs~z!dz

1
1

2 (
s,s8

E E cs
†~z!cs8

†
~z8!U~z,z8!

3cs8~z8!cs~z!dzdz8, ~A12!

wherecs
†(z) creates an electron with spins at coordinatez

and

U~zi ,zj !5
e2

4pee0d~zi ,zj !
~A13!

with

1

d~zi ,zj !
5E dr idr j

uF00~r i ;zi !u2uF00~r j ;zj !u2

A@~zi2zj !
21ur i2r j u2

.

~A14!

The Hamiltonian is further discretized at pointszj5 j D, new
creation operators are defined as

cj s
† 5ADcs

†~zj !. ~A15!

For sufficiently smallD the difference formula is justified,

F d2

dz2
cs~z!G

z5zi

'
cs~zi 21!22cs~zi !1cs~zi 11!

2D2
,

~A16!

and Eq.~A13! becomes the discretized extended Hubb
Hamiltonian

H5(
s

H1s1
1

2 (
iÞ j

Ui j ninj1(
i

Ui j ni↑nj↓ , ~A17!

whereH1s is single-particle contribution for spins,

H1s52t(
i

~ci 11s
† cis1cis

† ci 11s!1(
i

e inis,

~A18!

with nis5cis
† cis , ni5(snis , hoping parameter,

t5
\2

2m* D2
, ~A19!

ande i52t1e(zi). The effective distance between electro
at zi andzj is after integrating Eq.~A13! over angular vari-
ables,

1

d~zi ,zj !
58pE

0

R

r idr iE
0

R

r jdr j uF00~r i ;zi !u2

3uF~r j ;zj !u2
KS 2

4r i r j

~zi2zj !
21~r i2r j !

2D
A~zi2zj !

21~r i2r j !
2

,

~A20!
1-12
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CONDUCTANCE ANOMALIES AND THE EXTENDED . . . PHYSICAL REVIEW B67, 075311 ~2003!
where K is the complete elliptic integral of the first kin
d(zi ,zj ) can be decomposed into distance along the wire
effective distance in the lateral direction,l(zi ,zj )a0, i.e.,

1

d~zi ,zj !
5

1

A~zi2zj !
21@l~zi ,zj !a0#2

. ~A21!

The distancel(zi ,zj ) is invariant under the transformatio
Eq. ~A6!, and hence the potential, Eq.~A13!, transforms as

U→L21U. ~A22!

For convenience we also take into account possible scr
ing with screening lengthk, i.e.,

Ui j →Ui j e
2

uzi2zj u
k . ~A23!

Under the transformation Eq.~A22! the screening length
should be multiplied byL. In Fig. 19 the parameterl is
plotted for some typical cases, showing its dependence
wire width.

APPENDIX B: TWO-ELECTRON WAVE FUNCTIONS

Wave function for the case of two electrons are expres
in terms of a set of operatorsci j

(S,Sz)† creating an electron pai
at sitesi and j with spin S andz-componentSz , i.e.,

uc&5(
i j

c i j ci j
(S,Sz)†u0&. ~B1!

FIG. 19. ~a! Lateral distance vs separation along the wire.~b!
Electron-electron interaction as a function of longitudinal sepa
tion. In both cases isa0510 nm andV050.4 eV anda5const.~c!
Lateral distance at fixedz vs wire diameter atV050.4 eV.
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The base states

ci j
(0,0)†u0&5

ci↑
† cj↓

† 2ci↓
† cj↑

†

A2
u0&, ~B2a!

ci j
(1,1)†u0&5ci↑

† cj↑
† u0&, ~B2b!

ci j
(1,0)†u0&5

ci↑
† cj↓

† 1ci↓
† cj↑

†

A2
u0&, ~B2c!

ci j
(1,21)†u0&5ci↓

† cj↓
† u0&. ~B2d!

form a complete set.
If uc& is a solution of Schro¨dinger equation

Huc&5Euc&, ~B3!

then the coefficientsc̃ i j solve the system of linear equation

t~ c̃ i 21 j1c̃ i 11 j1c̃ i j 211c̃ i j 11!5~e i1e j1Ui j 2E!c̃ i j ,
~B4!

where we use compact notation

c̃ i j 5
1

A2
@c i j 1~21!Sc j i #. ~B5!

In the basis Eq.~B1! the number of electrons on sitei is

^cuni uc&52(
j

uc̃ i j u2, ~B6!

the current for sitesi and i 11 is

^cu j i ,i 11uc&52
4tD

\
Im(

j
c̃ i j* c̃ i 11 j , ~B7!

the energy is

^cuHuc&52t(
i j

c̃ i j* ~ c̃ i 11 j1c̃ i 21 j1c̃ i j 111c̃ i j 21!

1(
i j

~e i1e j1Ui j !uc̃ i j u2 ~B8!

and the norm of the wave function Eq.~B1! is given with

^cuc&5(
i j

uc̃ i j u2. ~B9!

We consider quantum wires that are almost perfect but
which there is a very weak effective potential, giving rise
bound states. The cross sections of these wires are s
ciently small that the lowest transverse channel approxim
tion is adequate for the energy range of interest. The smo
variation in cross section also guarantees that intercha
mixing is negligible. We study here only wires with on
weak bulge aroundz50. There should exist single-particl
bound states of the system andE1

(a) is the energy of the state
a. The energy of two-electron states is shifted and define

-
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be zero, if one electron is bound and the other at the bot
of the single-electron band, i.e.,

E→E2E1
(1) . ~B10!

With this definition, the energy of two bound electrons
negative whereas it is positive when only one electron
bound.

APPENDIX C: HARTREE-FOCK APPROXIMATION

Here we neglect the Coulomb interaction between e
trons (g50). In the ground state both electrons are in t
same stateuw& and the singlet wave function is

uc&5
1

A2
(
i j

w iw j ci j
(0,0)†u0&. ~C1!

For finite g the best one-electron wave functions,w i , are
determined by minimizing the energy,

]

]w i*

^cuHuc&

^cuc&
50. ~C2!

Which leads to the equation

]

]w i*
^cuHuc&2~E1E1

(1)!
]

]w i*
^cuc&50, ~C3!

where we have set

^cuHuc&

^cuc&
5E1E1

(1) , ~C4!

taking into account the energy shift Eq.~B10!. The expecta-
tion value of energy and the norm is

^cuHuc&52^wuH1uw&^wuw&1(
i j

Ui j uw i u2uw j u2 ~C5!

and

^cuc&5^wuw&2. ~C6!

From Eq.~C3! follows a system of equations for coefficien
w i

^0uciH1uw&1(
j

Ui j uw j u2w i5Ehfw i , ~C7!

where^0uciH1uw&52t(w i 211w i 1 i)1e iw is a one-electron
tight-binding Hamiltonian,( jUi j uw j u2 is a Hartree potentia
and

Ehf5E1E1
(1)2

^wuH1uw&

^wuw&
~C8!

is the so-called Hartree-Fock energy. The energy of a bo
state is then given by

E52Ehf2(
i j

Ui j uw i u2uw j u22E1
(1) , ~C9!
07531
m

s

-
e

d

where, due to double counting of the interactions in sing
electron energies,Ehf is subtracted. In Fig. 20 electron den
sity for singlet states with differentg is presented for a
shorter bulge with parameters as in Fig. 4.

In the case of triplet two-electron states, the sing
electron states are different,uw& and uw̄&. Choosing these to
be orthogonal, we get

uc&5(
i j

w i w̄ j ci j
(1,1)†u0&. ~C10!

The energy is now

^cuHuc&5^wuH1uw&^w̄uw̄&1^w̄uH1uw̄&^wuw&

1
1

2 (
i j

Ui j uw i w̄ j2w̄ iw j u2 ~C11!

and the norm is

^cuc&5^wuw&^w̄uw̄&. ~C12!

The system of equations for the coefficientsw i ~and equiva-
lent for w̄ i) is

^0uciH1uw i&1(
j

Ui j uw̄ j u2w i2(
j

Ui j w̄ j* w̄ iw j5Ehfw i ,

~C13!

where

Ehf5E1E1
(1)2

^w̄uH1uw̄&

^w̄uw̄&
. ~C14!

Equation~C13! is a single-particle tight-binding Scho¨dinger
equation with Hamiltonian

H̃152(
i

t̃ i j ~ci
†cj1cj

†ci !1(
i

ẽ ici
†ci ~C15!

with potential

FIG. 20. Electron density for singlet states with differentg. Full
line corresponds to exact results and dashed line to the Har
Fock approximation. Parameters as in Fig. 4.
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ẽ i5e i1(
j

Ui j uw̄ j u2 ~C16!

and renormalized hoping parameters

t̃ i j 5td j ,i 611(
j

Ui j w̄ j* w̄ i . ~C17!

FIG. 21. Electron singlet~a! and triplet ~b! state density for
variousg. Parameters are as in Fig. 5.
s

m

at
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The energy of the triplet bound state is then

E5Ehf1Ēhf2
1

2 (
i j

Ui j uw i w̄ j2w̄ iw j u22E1
(1) . ~C18!

In Fig. 21 the electron density for singlet~a! and for trip-
let ~b! states are shown for differentg. Other parameters ar
taken as in the case of the longer bulge, Fig. 5. As discus
in the text relating to Fig. 5, Hartree-Fock approximation f
the singlet is less reliable since the Coulomb repulsion
stronger due to both electrons being in the same state
deed, forg;0.7 the Hartree-Fock approximation does n
yield the bound-state found in the exact result.
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