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Conductance anomalies and the extended Anderson model for nearly perfect quantum wires
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Anomalies near the conductance threshold of nearly perfect semiconductor quantum wires are explained in
terms of singlet and triplet resonances of conduction electrons with a single weakly bound electron in the wire.
This is shown to be a universal effect for a wide range of situations in which the effective single-electron
confinement is weak. The robustness of this generic behavior is investigated numerically for a wide range of
shapes and sizes of cylindrical wires with a bulge. The dependence on gate voltage, source-drain voltage and
magnetic field is discussed within the framework of an extended Hubbard model. This model is mapped onto
an extended Anderson model, which in the limit of low temperatures is expected to lead to Kondo resonance
physics and pronounced many-body effects.
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I. INTRODUCTION as do thermopower measuremefits.
Theoretical work has attempted to explain these observa-

Semiconductor quantum wires can be fabricated with eftions in various ways, including conductance suppression in
fective wire widths down to a few nanometers; for example,a Luttinger liquid with repulsive interaction and disordér,
by heteroepitaxial growth on-groove surfacésand ridge€,  local spin-polarized density-functional thedtyand spin-
cleaved edge over-growthetched wires with gatin,and  polarized sub-bandsS.Near the conduction threshold, there
gated two-dimensional electron-gd@DEG) structures:® s a “Coulomb blockade” and we have shown that this gives
More recently, there has been considerable interest in carbaise to spin-dependent resonances, for wires of both
nanotubes for which the quantum wire cross section can apectangulat® and cylindricaf* cross section, with related
proach atomic dimensions. Such structures have potential fatnomalies in thermoelectric transport coefficiefité. simi-
optoelectronic applications, such as light-emitting diodesjar singlet-triplet scenario was presented in Ref. 23 and a
low-threshold lasers, single-electron devices, and quanturphenomenological approach is presented in Ref. 24. Recent
information processing. studies have investigated the 0.7 anomaly in quantum point

Conductance steps in various types of quantum point coreontacts within the Hartree-Fock approximatfonspin-
tacts and quantum wires were found more than a decad#uctuation backscatteridg and in the framework of the
ago>® These first experiments are broadly consistent with @Anderson model with related Kondo resonance behavior.
simple noninteracting picture However, there are certain In Refs. 20—22 we suggested that these anomalies are
anomalies, some of which are believed to be related toelated to weakly bound states and resonant bound states
electron-electron interactions and appear to be spin depemvithin the wire. These would arise, for example, from a
dent. In particular, a structure is seen in the rising edge of themall fluctuation in thickness of the wire in some region
conductance curve, starting at around 06%(R) and merg-  giving rise to a weak bulge. If this bulge is very weak then
ing with the first conductance plateau with increasingonly a single electron will be bound. We may thus regard this
energy This structure, already visible in the early system as an “open” quantum dot in which the bound elec-
experiments, can survive to temperatures of a few degreestron inhibits the transport of conduction electrons via the
and also persists under increasing source-drain bias, eveloulomb interaction. Near the conduction threshold, there
when the conductance plateau has disappeared. Under iwill be a Coulomb blockade and we show below that this
creasing in-plane magnetic field, the structure moves dowrglso gives rise to a resonance, analogous to that which occurs
eventually merging with thee?/h conductance plateau at in the single-electron transist8t. This is a generic effect
very high fields and is not a transmission effect through aarising from an electron bound in some region of the wire
ballistic channef. A structure is seen also in high-quality and such binding may arise from a number of sources, which
quantum wires? In some experiments, an anomaly is seen atve do not consider explicitly. For example, in addition to a
lower energy with conductance around 0.8%/h).%! This  weak thickness fluctuation, a smooth variation in confining
can also survive to a few degrees, though is less robust thgrotential due to remote gates, contacts, and depletion regions
the 0.7 anomaly and is more readily suppressed by a magould contribute to electron confinement along the wire or
netic field> Recently the anomaly was confirmed also ingated 2DEG. A significant contribution to the single-electron
back-gated? in shallow-etchetf point contacts and in a bal- confinement could also arise from its electronic polarization
listic quantum wire"* At low temperatures the anomaly ex- of the lattice or image charge.
hibits a puzzling similarity with Kondo resonance behavtor, In this paper, we extend our previous study of a particular
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geometry of the quantum wire with a comprehensive analy-
sis of a wide range of shapes and sizes of wire in order ta (z)
demonstrate the generic and wide applicability of the phe-
nomena. We study in particular the threshold of the conduc-
tivity of nearly perfect wires for which a single electron is N~
bound. We express the conductance in terms of the two-
electron scattering matrix. In order to extend the exact two-
electron analysis into the true many-electron domain, we
construct an extended Anderson model and analyze the in- FIG. 1. Effective one-dimensional well caused by thickness
fluence of the corresponding momentum dependent couplinfiuctuation, impurity charge, gate image charge, self-polarization
matrix elements. due to single electron or some combination of these.

The model is introduced in the following section and the
special case of a cylindrical GaAs wire is derived in Appen-gate voltage is increased, a single electron is injected into the
dix A. In Sec. A detailed analysis of the two-electron guantum wire or point contact. Coulomb repulsion prevents
problem is presented in which one electron is weakly bound@ther electrons from also entering the wire u_ntll the first elec-
other. Exact singlet and triplet scattering states are computdf€ single-electron band edge, may self-trap due to lattice
near the conductance threshold. In Sec. IV we then showolarization. A second electron can only enter the wire when
how the solutions of the scattering problem may be used t&'e gate voltage has been increased sufficiently to overcome
determine conductance by an extension of the Landauef-oulomb repulsion. This occurs when the energy of the
Biittiker formula. This gives excellent agreement with a‘Second”electron is too high for it also to be “self-trapped.”
number of experiments on different kinds of quantum wire. This picture is consistent with the indistinguishability of
The effect of finite magnetic field on the anomalies is pre-€lectrons when viewed as a scattering problem with properly
sented and it is shown how they are related to the spin-spl@ntisymmetrized wave functions, though it does at first sight
steps in perfect quantum wires. In the last section we als@Ppear not to treat all electrons on an equal footing.
examine the dependence Of the anoma”es on asymmetry in- ConSIder now the m0t|0r.] Of e|ectl’0ns |n'the wire nei?.r the
troduced by finite source-drain V0|tage and summarize. AdCOI’ldUCtanCE threshold. A Slngle eleCtron will be bound n the

ditional appendices are devoted to technical details on thBotential-well region and the remaining electrons will un-
solution of the two-electron wave function in an externaldergo scattering from the localized electron via the Coulomb

potential, and the Hartree-Fock analysis. interaction as they propagate from source to drain. At suffi-
ciently low Fermi energy, the electrons in the source contact

will be totally reflected by the bound electron due to Cou-

Il. BASIC MODEL lomb repulsion and there will be no current from source to

drain atT=0. As the Fermi energy is raised, the energy of
the electrons in the source contact will be sufficiently high
for them to overcome the Coulomb repulsion of the bound

zZ

In preceding work®~?2 we have considered a straight
guantum wire with a small fluctuation in thickness giving
rise to a weak bulge.” The precise details O.f the bl.“ge arqlectron and a current will flow. In calculating this current
largely unimportant for what follows, the main requirement

; . . o . we will make the approximation that the electrons flowin
being that the change in the width of the wire is Sumc'ently.from source to draiﬂponly interact with the bound electro%

gradual that interchannel mixing of the transverse modes 'Yia a screened Coulomb interaction. This is a reasonable ap-

Eelgllglble_and_rtr?atl ?{Ply _onel electrt?]n may l?e bound Iln theproximation provided that the electron density is not too low
Uige region. 1he fatier1s always the case Tor a weak SyMg, y,q region of interest, i.e., the rising edge to the first con-

mettnc_: bulge, \lNh'tCh h(zjas att Iegst cl)neé)oundl ;tate_}_r;]at canb(IJn uctance plateau. More precisely, the mean density of elec-
sustain one electron due to Loulomb repuision. The proble, \o i, e wire(number per unit lengbhshould be at least

re‘jl:“.:fes to eIefptrons m(Ter) n Em. effe(f:nvet Weallt< p;tentla f order the inverse effective Bohr radius of the material. We
well if we confine ourselvesby choice of gate voltageto return to this point again in the final section. Within this

the Fermi energies _for which no more than one transversg proximation, the many-electron problem is reduced to an
mode is occupied, i.e., the conductance threshold and tgge vive two-electron problem in which one electron is
first conductar_lce step. A ty_plcal effective poten_tlal well for bound and the other is a representative electron at the Fermi
suph a bulge is shown in Fig. 1. Such a poten'tlal well mfﬁ"yenergy in the leads. We show below that by solving this
arise in other ways, such as an actual potential fIUCtu""t'oﬂl\lo—electron problem exactly and summing over all electrons

due to a _nearby unscreened charged impurity, or even SOMar the Fermi energy we may compute the conductance.
self-consistent effect due to the electrons themselves through

electronic polarization and image charge in a remote gate.
We shall not consider the possible cause of this weak poten-
tial further but emphasize that because it may arise in many The Hamiltonian corresponding to interacting electrons in
ways, the weak potential well model is very general withthe wire with a small geometric or potential inhomogeneity
widespread applicability. and close to the threshold of conduction is, within the

The reason why one electron may behave differently fromeffective-mass approximation an extended Hubbard Hamil-
the others can be qualitatively understood as follows. As théonian on a finite-difference latticg,

A. Extended Hubbard and Anderson model
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FIG. 2. The geometry of the “open quantum
dot” for the parametrizationia) Eq. (2.83 and(b)
Eqg. (2.8b.

1 would give rise to states in which the localized state is un-
H=2> Hy,+ > ;J Uij”i”ﬁZ Uiiniini; . (2.1)  occupied, we arrive at an Anderson-type Hamiltorfia#f,

HereH,, is the single-particle Hamiltonian,
HZE éknk+ Gdnd‘l‘E (and;Clo'dO'_l— h.C.)‘l‘UndTndl
k ko

Hlu’:_tEi (Ci-r.+l(rci(r+citrci+l(r)+Ei eini(r, (22)

T
+ 2 MygeNaCloChr ot 2 I Su S - (2.6
wherec/ Ci, are electron creation, annihilation operators, kk' o kK’

io?

n,=c ci,, andn;==n;,. Model parameters are hopping . .

t, local potential at sité, €;, and screened electron-electron _I—|ere_l._l:u(dddd) |s_the Hubi?ardlrepulspn,/k:u(dddk)

interaction at site$ andj, U;; . This Hamiltonian is derived ![S mixing term, My =t(ddkk’) —31/(dkk’d) corresponds

and justified in Appendix A. 0 scattering c?f electr'ons and the Q|rect exchange pouplmg is
In order to study the many-electron problem, it is also‘]kk’:lzu(dlfrk d). Spin operators in quj) §r1re defined as

convenient to express the Hubbard Hamiltonian, db), in Si=2250d,055dsr  aANd Sg0 = 52()'0"Ck(r(_rmr'ck_'(r' :

a basis which distinguishes bound and unbound states expli®there the components af are the usual Pauli matrices. A

itly. Single-electron solutions corresponding to the tight-Similar model has been proposed recently in Ref. 27. Al-

binding Hamiltonian Eq.(2.2), follow from the single- though the Hamiltonian, Eq(2.7), is similar to the usual

particle Schrdinger equation Anderson Hamillt(_)nia.ﬁ‘? we stress the important difference
that thekd-hybridization term above arises solely from the
Hqle)=Eq| o), 2.3 Coulomb interaction, whereas in the usual Anderson case it

comes primarily from one-electron interactions. These have
and (with omitted spin indexr), |¢)==;¢;c/|0). For large  peen completely eliminated above by solving the one-
lj| the potentiale; is constant, therefore the solutions areelectron problem exactly. The resulting hybridization term
asymptotically plane waves. We thus diagonalize this singlecontains the factong;, and hence disappears when the lo-
electron part of the Hamiltonian using the transformationcalized orbital is unoccupied. This reflects the fact that an
ch,=3icl, 4%, where ¢%=(j|a)~exp(qj) asymptotically effective double-barrier structure and resonant bound state
for unbound states, with eigenenergigs In this basis the occurs via Coulomb repulsion only because of the presence

Hamiltonian becomes of a localized electron.
To be specific, we consider in this paper a cylindrically
_Z symmetric quantum wire with symmetry axisand lateral
H=2. €qnq coordinates and ¢.?* S
q @. uch a geometry corresponds to nar-

row v-groove z-dependent quantum wires investigated re-
cently, e.g., in Ref. 11. The diameter of the wira{g), with

1
to ot
+ = Cl JCl Cq o/Caio N . :
> U(6162950) 01030 ¥ Ag0" XA zero potential within the wire and constavig>0 outside,

0102030400"
(2.4) )
where 1
0, r<§a(z)
U(A10x0500) = > Uy (7% %2(67)* ¢, (2.5) vira)= 1 @7
ij Vo, r>§a(z).

We further denote the lowest bound state with enetgy

<0 byd,=cq,, with ng==,d’d, and, similarly, the scat- For the wire width, two generic shapes are taken, shown in
tering states with positivee, are distinguished byg—k. Fig. 2 with

There are two independent unbound states corresponding to

eachk and these are chosen to be plane waves asymptoti-

cally, i.e.,¢*—e™ asj— * o ande,=#2k?/2m* . Retaining a,
only those Coulomb matrix elements which involve both lo- a(z)=
calized and scattered electrons, omitting all terms which ag, |z|>ay,

1_§Sin277a£1>’ l2l<a, (2.83
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FIG. 4. Position of bound state€&0) and resonancesE(
>0) vs couplingy, calculated exactly and within the Hartree-Fock
approximation. Wire shape corresponds to Ex8b) with param-
eters:ag=a;=10 nm, £=0.24,V,=0.4 eV, and«=50 nm.

FIG. 3. Two-electron density for various bulge parameters.

T Z

1+écos— —|, |z<ay

28y (2.8p : o N

a Iz|>a dashed-dotted line, where the dip in the electron-density sig-

, "0 , L nals the strong interaction regime. The Hartree-Fock ap-

The region of interest is arounzi=0 and for large|z|  proximation gives too large energies here, which are, how-

>a; the diameter is constard,. Single-particle solutions gyer qualitatively correct.

corresponding to this geometry as well as the derivation and

calculation of parameters of the corresponding Hubbard

Hamiltonian are presented in Appendix A.

a(z)= %o

B. Scattering states

Here we consider the scattering of an asymptotically free
electron on a bound electron within the bulge. Such a system
may be regarded as an “open quantum dot” in which one
A. Bound states electron is bound and inhibits the transport of conduction
lectrons via Coulomb repulsion. The problem is analogous

first solve the two interacting electron problem for the o treating the collision of an electron with a hydrogen atom

. ...~ as, e.g., described in Ref. 32 and studied by J. R. Oppenhe-

present geometry using the extended Hubbard Hamiltoniaf} 3 ; . ;
Eqg. (2.1). Solutions for bound states are determined by nuimer and N. F. Mot We only con5|d<_ar here cases in wh|gh
H1e energy of the scattered electron is smaller than the bind-

merical diagonalization of the system of equations presente .
in Appendix B, Eq.(B4). In Fig. 3 the result of the two-body Ing energy of _the bOl‘!nd electron. T.h's ensures that only elas-
electron density as a function afa, for various shapes of ;E'C scattering Is p055|:ale. Asympt_otu(:jally ﬂ:je two-fbody_walve

: . : unction is a properly symmetrized product of a single-
the bulge is showriFig. 2(b)]. A general tendency is that particle bound statép>, and scattered statey(E)).

long or narrow bulges correspond to stronger interaction re - i .
g 9 P g For two electrons, the antisymmetrized wave function can

sulting in formation of a double peak in density, as known . . .
from other studies of one-dimensional quantum dbtas be_wntten as a product of a spin part and an orbital part. We
Ygrlte the orbital part as

long as the two peaks are not well separated, the approxima

Ill. TWO-ELECTRON SOLUTIONS

In order to calculate conductance though the system w

methods mentioned below are excellent, becoming gradually 4 N
less reliable with increasing separation between the peaks. I '
In Fig. 4 we present typical examples of the energy of two 5L singri)’ .+ triplet |

bound (singled electrons E<0), wherey is the electron-
electron coupling strength, defined by replacemént

—yU. Exact results are represented by the solid line, with &
other lines representing results obtained with the Hartree- &
Fock approximation, derived in Appendix C. &A>0 the fq/
lines correspond to the position of the singlet resonance, cal-
culated with different methods and discussed below. In Fig. 5

the bulge is longer and narrower, therefore both singlet and
triplet bound states exist for small while for stronger cou-

pling the triplet is first pushed into continuum and finally, for ‘60' S Y S A |
vy~0.7, both states become resonances. Here approximate v

solutions are less accurate, because the bulge is much larger

than in the previous case and therefore the problem is closer FIG. 5. As in Fig. 4 but with parametersi,=10 nm, a,
to the strong interaction limit, as is seen also in Fig. 3,=4a,, £=0.06,V,=0.4 eV, and«=50 nm.

— exact
-=-= Hartree - Fock
--- unrestricted "Hartree - Fock" |

075311-4
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~ Gyt (=13
ij _T
ensuring that this is symmetric for singletS=0) and anti-

symmetric for triplets $=1) (see Appendix B For some
largeN>1, ¢;; takes the form

(3.2

[ xi(B)ej+rOx (B)gj, i<-N
T t9xi(Ee;, i>N.
Asymptotic solutions for the unbound electron are ob-

tained from the single-electron Hamiltonian E&.2) with
the potential

(3.2

zj:€j+2k Ujk|¢k|2 (33)
for large|j|. Here| ) is the single-particle bound state in the
potentiale; . Solutions with forward and backward currents
have the following asymptotic formj ()

+

et
e=i(ki=7(k)in 2kj)

ikj K<

Xi= — oo (3.9
for finite and infinite screening lengtk, respectively(see
Appendix A). With no screening£==) x; are the Coulomb

functions®*

PHYSICAL REVIEW B67, 075311 (2003

-(a) T T T
0.5 -
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O osk -
o |
1 f } ; :
-(C) U T 1 \l/-
0.5 -
% 01 0.2 03 04
E (eV)

FIG. 6. G for a wire with shape Eq(2.89 andV,=0.4eV, ¢
=0.8,a;=3¢ and in particulaa ay;=7 nm, (b) a;=10 nm, and
(c) ap=15 nm.

interested in the rising edge of the conductance at the thresh-
old, but with Coulomb interactions between bound and scat-
tered electron included. Near threshold the one-channel ap-
proximation is excellent and therefore in the following we
neglect higher channels. In Fig(l8 is presented the influ-
ence of discretization parametér as introduced in Appen-
dix A, on the conductivity. The position of the bound state is
not strongly dependent ah (inset in enlarged energy scale
and forA <a,/5 the results obtained on the lattice agree with

of linear equations for the (2+ 1) variablesTpij and trans-
mission and reflection amplitudes.

IV. CONDUCTANCE

A. Single-electron solutions

the use of the discretized Hamiltonian, Eg.1).

B. Interacting electrons

We may extend the formula Ed4.1) to the case de-
scribed in the preceding section in which one electron is
bound in the wire and the remaining electrons are transmitted

From the solution of the scattering problem, the conducVith €nergy-dependent probability. LEY, be the probability
tance at zero temperature is calculated using the usudpat the bound electron has spin It follows directly that the

Landauer-Bttiker formalism>®

G=Gy7(E), 4.1

where Go=2€%/h, E is the Fermi energyin this caseE
=E,) and7(E) is the total transmission probability.

For an open bulge of shape Eg.83, Fig. 2a), there are
no bound states and only single-electron solufibase rel-
evant. In Fig. 6 we prese®@ as a function of electron energy
for wires with shape Eq(2.89 and three different widths.

The main effect is a change of energy scale, according to

scaling rule Eq(A7), and the magnitude of the conductance
at the resonance energ@,. In Fig. 7 the conductance
through the bulge of the shape from Eg.8b is presented.

In contrast to the previous figure, a bound state can exist

here, indicated by the dashed vertical line. Further lines (
=1,2) indicate bound states @fdividual channelsfor the
special case when channel mixing terms in Ef) are set
to zero. Dips in the conductivity in the second plate&u (

~3G) correspond to Fano resonances caused by interchan-

nel mixing terms.
In Fig. 8(@ we again show the result of Fig. 7 comparing

conductance due to all spin-up electrons in the leads is given
by the extended Landauer Bilker formula

2

e
GT:F[PTTTT(E)+PLTH(E)], (4.2
6 T T T
s
4_ ......
LDO L
2 o3t
<) L
2_
1. .
. L S—
E (V)

FIG. 7. G for wire shape Eq(2.8h andV,=0.4 eV, £=0.5,
ap=a;=10 nm. Vertical lines indicate positions of bound states for

it with the one-channel approximation. In this paper, we arehe lowest channels.
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2 ( ) T T T 1 I T T T T
a -(a .
15k — exact | 0.8 —( ) —
<1 e first channel = o b
QDO 1 QD 0.6 -]
NG = S F— i = L i
<) O 04
0.5 -1 02+
0 ] ‘ ] ‘ 1 ‘ 0
1 ~= T T 1
(b) —— continuum 0.8
e A=a /2 - L
(DO ::"-. ----- A=a /4 O 06 N
~— 0.5F E— A=a /6 - ~ 04
S O 04r
e 021
: I L | 0
8.5 0.1 0.15 0.2 0.25 1 I T I
E(eV) 0.8 .
- L J
FIG. 8. (@) Conductance from Fig. 7 in comparison with the O 0.6~ ]
result obtained in the one channel approximatidm.Conductance G 04— -
calculated with differentA for wire parameters as ife). Bound u .
states are presented in the inset with enlarged energy scale. 0.2 N £=0.06 |
| L |
0
6 8

where 7, is the transmission probability when the bound

electron is spin up7;, is the transmission probability when E (meV)

the bound electron is spin down aidis the Fermi energy.

We have a similar expression for spin-down electrons in the FIG. 9. Conductance for different shapes of the bulge. Each line

leads and hence the total conductance is is labeled with the parametex; /ay,. Other wire parametersa,
=10 nm,Vy=0.4 eV and«=50 nm.

e2
G(E)= =[P/ T,(E)+P T, (E)+ P, T (E) +P, T, (E)]. LiD+iLiT

43 t,i,]) —\/E ,

The transition probabilitied;,; and7; are different since in e get
the former case the conduction and bound electrons both

have the same spifup) before and after scattering whereas £(0)
in the latter case there are two possible final states, with or (sl ) ——=xie;, (4.7
without spin flip, i.e., V2

T (B) =1ty q P+t ]2 (4.9 . t®
<t!|vJ|l//H>_’TXi‘Pjy
where the scattering amplitudes are defined by 2
o where
<'TJl|’/’u>—’tuHNXi¢j,
0=t g +ty gy, (4.8
(LIt )=t X (4.9

, , . . =t~ by
asi—om, |¢//le} is the exact scattering wave function and
ligio'y=cl ¢’ |0). ¢;=(jl¢) is the bound-state one- Hence, Eq(4.2 become¥

t(1)

1o~ o

electron WaveJ function ang;=(j| x) is a forward propagat- 1 3
ing one-electron wave function at largeas discussed in G=G, —|t(°)|2+—|t(1)|2 ' (4.9
Sec. Il 4 4

In zero magnetic field it is clear th&thPl:% in Eq.
(4.3). We can expres&(E) in a simpler form since the C. Results of numerical analysis
7., (E) are not all independent. Transforming to singlet and , ,
triplet base state@with S,=0), In Fig. 9 we present the result of a comprehensive study

of conductance for a variety of shapes of bulge. In Fig) 9
- - the bulge is wide and so short that only a singlet resonance is
Sy i) =il (4.6  developed. The conductance therefore exhibits a structure
v J2 ’ similar to the 0.3 anomaly found in experiméhtin Figs.
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10 L . . T T energy than its corresponding triplet, in accordance with
ol \ — 2:8'82'2;%16? 1 Lieb-Mattis theorem, which however, is strictly valid only
i \ | ot et ] for ground state&®
6L \ N —-—- E=0.11, triplet i
\ AN — £=0.24, singlet

— — =024 triplet D. Magnetic field along the symmetry axis
c\\

The nature of conductance anomalies studied here can be
further illuminated with experiments done in a strong mag-
netic field®’ The effect of the magnetic field is, in our treat-

E (meV)

N “] ment, taken into account via the usual Zeeman splitting of
ok \\ ] channel energies. The incoming electron with Fermi energy
I AN ] E and spin componer,= = 3 then has kinetic energy
4 1 h 1 Mot 1
1 1.5 2 2.5 3 35 4 E,=E.=ETEg, (4.10
a,la,

whereEg=3g* ugB. g* is the effective gyromagnetic ratio
FIG. 10. Energies of singléfull lines) and triplet(dashed lines  and ug is Bohr magneton.
resonances and bound states for wire E38b as a function of Near the conductance threshold we assume that the cur-
a;/a, for different¢. Other parameters are as in Fig. 9. Full circles rent is sufficiently low that the localized electron is in its

represent the energy, where the resonance energy is above the “ioground-state with spin before each scattering event with a
ization” energy and the underlying wave function form is not valid conduction electron. Hence =1 and P,=0 in Eq. (4.2

anymore. which becomes
. . .. . 2
9(b,0 both singlet and triplet resonances are visible with a _<
tendency for the resonances to sharpen as the bulge becomes Gi(EB)= h T1,(E.B). (4.19

weaker €—0). .

In Fig. 10 the wire width is fixed at 10 nm of the wire and In this caseG, #G; but, rather,
positions of singletfull lines) and triplet(dashed linesreso- 2
nances(or the corresponding bound states #«0) are Gl(E,B)zﬁTu(E,B). (4.12
plotted for various lengths and widths of bulge, represented
by a;/ay and ¢£&. We see that the resonances survive for asjnce 7,(E,B)=7;,(E_,0) and 7} ,(E,B)=7,(E,,0),
wide range of parameters. In Fig. 11 the position of singlethen the conductance is
and triplet resonance energies vs the width of the vagg,
with fixed shape of the bulge is shown. The insets show the e?
energy dependence of singlet and triplet transmission prob- G:GT+Gizﬁ[ﬁi(Ef'0)+Tll(E+’0)]
abilities for selected special cases. Note that we have scaled
the energy by a factoaéE. This would produce identical
curves for noninteracting electroh&qg. (A7)].

After performing calculations for a wide range of param-
eters, we conclude that a singlet resonance is always lower ffhereZs and7; are the same functions as in zero magnetic

e? 1 1
y T(E. 0+ §7¥(E_,0)+ 57;(E_,0) . (413

field.
: , : , : . : i . In Fig. 12a) are plotted individual transmission probabili-
4001 ) i ties for different spin configurations. Note that the spin-flip
\ , — singlet . . . . K
ST - —— triplet term is in general dominant at higher energies. In FigbjL2
300 the corresponding results for conductance in the presence of
% : a magnetic field is shown. The full line correspondsBto
& 200 =0, and other curves tB in incrementsAB=10 T.
E L
£ 100
kg E. Results for the Anderson model
(o W=
S 0 ; As shown in Sec. Il, the Hubbard model studied above
i % 1&) 20 3qu)0 200 500 1(10—;2)0 300 400 500 100 200 35»4{30 500 ] can be mapped onto an extended Anderson mOdel(Z-?q
-100f- GE m'meV)  aF @m'meV)  qE (mmeV) o Conductance through a quantum dot described by a standard
20 30 30 30 Anderson modeI. is basically_ described by a peak or several
a, (nm) peaks and at higher energies the conductance approaches

zero® In the case of an open quantum dot, studied here, at
FIG. 11. The position of singletfull line) and triplet(dashed  higher energies the conductance tends toward unity, as a con-
line) resonances as a function of the width of the wérg, Note that ~ Sequence of additional coupling parameters in the extended
the energy of the resonances is presented in a scaled form. model. Here we analyze these terms individually and show
=50 nm, £=0.11 and other parameters are as in Fig. 9. their relative importance.
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1 T T T T T T

——
(@) ] ~
0.8 | E i d
06 | —_— tTTHTT ................. g
6F 2 e -
T S 11101 ] %
] [t 7 <
S’
021 \\\\~_-___-_—_—. >—:<
0 . ] . 1 . ] . ] g
1 T T T T T T T T T T ~
- (b
0.8 —( )
o 06F
-~ [ ~~
B 04F g 600
0.2 S
' A E 400
" [
% 2 ~ 200
E (meV) 5
0
FIG. 12. (a) Transmission probabilities for relevant spin con- ~
figurations.(b) Conductance foB=0 (full line) and other lines for -200
B in incrementsAB=10 T. Parameters of the wigg=10 nm, a,;
=2.53y, £=1.11,V,=0.4 eV, and«=50 nm. 150
The coupling parameters are momentum dependent and in = 100
Fig. 13 the couplingd/,, My, andJy, are shown. Note é
thatM s at higher energies tends to a constant, while other > 50
parameters approach zero, ensuring the correct behavior at g
high energy with unit transmission. -~ 0
The scattering solutions of the Hamiltonian Eg.7) are %
then obtained exactly for two electrons with the boundary 3 -50

condition that forz—, one electron occupies the lowest

bound state, whilst the other is in a forward propagating -100 ' ' '

plane-wave stateg,(z)~€e'*?>. From these solutions we 0 01 02 03 1 04 05 06
compute the conductance again using the Landau#ikBu k (nm )

formula.

In Figs. 14a)—14(c) we compare the results 6, 7; and FIG. 13. k-dependence of matrix elements of the extended
conductanceG for a wire with the bulge as in Fig. 4. The Anderson model. The wire is parametrized wilg=10 nm, &
thin lines are the exact scattering result for two electrons._o'zlf'" a\l/aOT_hz' Vo=04 eV, g—_sg_nm,danqg;]—l. @ M|>k<)|ng
The solid lines show the exact scattering solutions for thé;ou?tm_g k- ?erﬁgy‘sdJr:J's lec_atztah V‘{'t "’t‘L‘ a;r?:( O
Anderson-type Hamiltonian, for which the matrix elements, >c2 e nd COUPINgMiw and Jqe - L 1S e lengih of the wire,

and their energy dependence are calculated explicitly. Th\évhere the wave functions are normalized.

solution of this Anderson-type model for two electrons, in iy focys on the many-electron properties of this effective
which the localized Ievgl always contains at least one eleCHamiItonian, including “Kondo” and “mixed valence”
tron, reproduce the main features of the exact scattering S?égimes

lutions of the original model. The energy dependence of the '
matrix elements is essential to get this good agreement. Figs.
14(d)-14(f) show the corresponding results for a longer
bulge from Fig. 5. Also shown in Fig. 14, dashed lines, are It is not easy to get sufficiently accurate numerical solu-
results with the direct exchange term omitted in E27).  tions for the case of more than two electrons. Therefore it
This term can have a significant quantitative effect, but doesvould be extremely useful if an accurate approximative
not qualitatively change the conductance curves. method could be applied. The simplest approximatjore-

We have also solved a similar model in which planesented here for the case of two electnoisshe first iteration
waves, rather than exact scattering states of the noninteradts solving the Hartree-Fock equations, presented in Sec. IlI
ing problem, were used. However, this gave poor agreemerior the case of bound states.
with the exact results. We conclude that an Anderson-type We assume the two-body wave functions consist of a
model is adequate for a near-perfect quantum wire providedingle-particle statéo™)) and scattering statgy) with en-
that a suitable basis set is used and the energy-dependencesody E. The two-electron wave function has then the form
the matrix elements is accurately determined. Future worksee Appendix €

F. Approximate methods
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1 | — !
2 A Jptad - 081
L b ~.” 4 L
06 | = 061
[ od Fh B -
04 f — 041
L A
021 — 02F
I | | |(a)_ I
% 5 0 15 20 %
1 1
0.8 0.8
_ e 0.6— FIG. 15. Effective potential from Eq4.15 and for the wire
L i i with parameters as in Fig. 4.
04 0.4
02 N 0,2__ A better approximation for the singlet case starts from the
- - unrestricted Hartree-Fock approximation, where the energy
00 00 |S
1 I I I 1
- 7t (WH|p)=(e[Ha|e){x[x)+ (xIH1lx){el ¢}
0.8 = 081
. 7 1t +(=1)%(@lHal x)(xl )+ (xIHle)(¢lx))
LDO 0.6 < - 06— 1
~ B 4 T B
B 04l v’ - o4 +§; Uijleix;+ xie;l? (4.17
02 | - 021 o .
L h (c){ t and the norm is given with
| | |
% 5 0 1520 % 2
EmeV) £ meV) W) =3 b+ 2 o x (4.18

FIG. 14. Singlet(a, d and triplet(b, & transmission probabili-

ties and corresponding conductancesf). Parameters for the left The coefficientsy; are calculated from the Hartree-Fock

set are as in Fig. 13, for the right seg=10 nm, £=0.15,a,/a8,  equations based on the variation princiflfeinrestricted
=4, Vy=0.4 eV, k=100 nm, andy=0.9. Thin lines represent Hartree-Fock” approximation

exact results from Eq2.1), thick lines are results from E¢2.7).
Dashed lines show results where the exchange term ifZE®d.is

neglected. <0|CiH1|X>+; Uij|4’j|2)(i+; Uijef @ix;
— v 88T
) ; PiX;jCij |0). (4.14 +(E—E(11)); (PJ*(Pin:EXi' (4.19

The coefficientsp; are known, therefore, only coefficients
must be determined. For the singlet state the simplest ap- In Fig. 15 the effective one-dimensional potential in Eq.
proximation is obtained if we perform the first iteration of (4.19 is plotted fory=0,0.5 and 1. The shaded region rep-
the Hartree-Fock method subject to additional condition thatesents the position and the width of single-particle reso-
the electron has energ§ (“restricted Hartree-Fock” ap- nance in this effective potential. This resonance corresponds
proximation: to the singlet resonance presented in Figal&ashed ling
for wire parameters given in Fig. 4 together with exact result,
full line, and calculated from Eq4.15.
<0|CiH1|X>+Zj Uiilei>xi=Exi, (4.15 We also show in Fig. 1®) the exact result and the corre-
sponding result for an unrestricted Hartree-Fock scheme for
where, using Eq. (2.2, (O|ciHi|x)=—t(xi-1+xi+1)  which the wave functions of up and down spin electrons are
+e€x;. This is just the tight-binding results for a single- different. As expected, the unrestricted method gives a more

electron moving in an effective potential-+ U accurate result though both methods reproduce the main fea-
For the triplet state, the result is tures, the main discrepancy being an overall energy shift.
Similarly in Fig. 16b) we present the corresponding triplet
resonance curve for parameters from Fig. 5. Again, the over-
<0|CiH1|X>+§]_: Uij|<Pj|2Xi_§j: Uijei eixj=Ex;- b 9 9

all agreement with the exact result is good apart from an
(4.16 overall energy shift.
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1

1—
()" (@)
0.8F 0.8
QDO 0.6 bo 0.6
~ 1~ ! .
QD 041 : Q 04 ,,"‘ . ?;‘:ﬁree - Fock” __ E"’O
0.2 0.2 -
I F Source Drain
0 A . 0 ] ] ]
0 2 4 6 8§ 10 2 3 4 5 (b)

E (meV) E (meV)

FIG. 16. (a) Singlet resonancéarameters from Fig.)4 Exact
result and approximations of Eqgl.15 and(4.19 are shown(b) E>0
Triplet resonanceéparameters from Fig.)5 Exact result and ap-
proximation of Eq.(4.16) are shown.

V. SUMMARY AND CONCLUSIONS FIG. 17. Effective double barrier showing singlet and triplet

. . ... resonance with very small source-drain bi{as and large source-
We have shown that quantum wires with weak longitudi- y,.in bias(b). v @ g

nal confinement, or open quantum dots, can give rise to spin
dependent, Coulomb blockade resonances when a singhkgoader with increasing bias resulting in a more pronounced
electron is bound in the confined region. This is a universaktep, as observed.
effect in one-dimensional systems with very weak longitudi-  Finally, we speculate on the exciting possibility that these
nal confinement. The emergence of a specific structure anomalies in conduction are themselves a signature for a new
G(E)~(2€?/h) andG~ $(2e?/h) is a consequence of the kind of conducting state in ultra clean wires close to the
singlet and triplet nature of the resonances and the probabitonduction threshold. Indeed, there is some experimental
ity ratio 1:3 for singlet and triplet scattering and as such is aevidence for this in that the anomalies discussed above
universal effect. A comprehensive numerical investigation ofmerge into a conductance stepedth under quite moderate
open quantum dots using a wide range of parameters showsagnetic fields and in the cleanest samples this behavior is
that singlet resonances are always at lower energies than tkemetimes even seen in zero magnetic field. This suggests
triplets, in accordance with the corresponding theorem fothat there may be an underlying spin-polarized state associ-
bound state®® With increasing in-plane magnetic field, the ated with the propagating electrons in the quasi-one-
resonances shift their position and eventually merge in thelimensional region. Such a spin-polarized state would ap-
conductance plateau &~e?/h. With increasing source- pear to violate the Lieb-Mattis theoréfhand would also
drain bias we have shown why the higher triplet resonanceeed to be made consistent with our above explanation in
weakens at the expense of the singlet, with the latter survivterms of singlet and triplet resonances. In this respect we
ing to the point where the conductance steps themselves diemphasize that the above theory must break down at very
appear. low electron density in the wire such that the mean separa-
The existence of the conductance anomalies is a diredion between electrons in the wire is somewhat greater than
consequence of an effective double-barrier potential seen hipe effective Bohr radius, the so-called strong correlation re-
the conduction-electrons propagating from source to draigime. In practical situations it is very difficult to avoid some
contacts under the influence of a bound electron. For a synkind of weak potential fluctuation which traps one electron.
metric one-electron confining potential, the existence of dndeed this may ultimately be impossible since even in a
bound state is guaranteed but this is not necessarily the caseminally perfect wire, the presence of a single electron will
when the confinement is asymmetric. Such asymmetry in thpolarize its environment leading to a potential well, which
confining potential may be easily achieved under a finitewill bind the electron giving rise to a Coulomb blockade for
source drain bias and indeed, this was reported in some dfe remaining electrons, though the energy s¢tdenpera-
the experiments on gated quantum wités These experi- ture) for this may be very low making it susceptible to mask-
ments show that as the source-drain bias is increased froing the other effects.
zero, an anomaly appears @t~ 0.25(2?/h), coexisting The main question is whether or not this confinement is
with the 0.7(2%h) anomaly. Eventually, at larger bias, the sufficiently large for the electron density to exceed to the
remaining anomaly also disappears but only when the corninverse Bohr radius when the wire begins to conduct. If the
ductance steps themselves are on the point of disappearingensity remains low at this conductance threshold then we
showing that the singlet anomaly is extremely robust. Thiscannot ignore the mutual interaction between all electrons in
behavior is consistent with our model since under bias théhe wire region, or even treat them self-consistently. In this
triplet resonant bound state will eventually disappear becausstuation, a more appropriate picture would be one in which
the confining potential in the direction will only accommo- the Coulomb repulsion dominates and maintains roughly
date a single one-electron bound state, giving rise to a singletqual separation between the electrons as in a Wigner chain.
resonance only. This is shown schematically in Fig. 17,0n the other hand, if the mean electron density is of order, or
where we also indicate the surviving singlet becominggreater than the inverse Bohr radius, then an open quantum
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dot picture with effective resonance levels for the propagat- . a(z)

ing electron is more appropriate, as discussed in this paper. Ann(2)In(Kmn(2)r) e, r<—-
At low temperatures strong many-body effects are indi-

cated from the activation-like behavior of the conductdite  ®mn(r,@;2)={ [Bmn(2)B{ (kma(2)T)

and the thermopower coefficiettAs discussed in our re- , a(z)

cent thermopower analysis, Ref. 22, the anomaly at low tem- +Cmn(z)BE§)(Kmn(z)r)] e'me r>T.

peratures may well be a many-body Kondo-like effect con-
tained within our extended Anderson model, E2.7), and
studied recently in Ref. 27, but not within the two-electron "

approximation we have used here and in some of our earlier Kin(Z) = \ /—Zm €mn(2) (A3b)
papers. It may well be that the two-electron approximation mn h2 ’

breaks down at low temperatures. The model presented here
differs from the standard Anderson model in that the hybrid- \/2m*|s (2)— V|
mn
Kmn(Z)=

(A3a)

ization term contains the factar__, and hence disappears

when the localized orbital is unoccupied. This reflects the

fact that an effective double-barrier structure and resonar]_| ere B(l)_l
bound state occurs via Coulomb repulsion only because of.
the presence of a localized electron. The standard results 6t
the single impurity problefff thus cannot be applied directly
to this effective model, and are a subject of current
researc® However, a Kondo-lke resonance is
expected,*? for which many-body effects would dominate
with a breakdown of our two-electron approximation. It is
also possible that our results based on the two-electron aﬂ)'onS for imn,

proximation could be lead to significant renormalization of

the electron-electron interaction in a long wire, with Friedel ¢/ +[k?—k2 (2) + amnd2) 1¢/mnt > Do (2) -

Py (A3c)
n and B?=K, are appropriate Bessel
|genfunct|on§4 for emn=<V, with BY'=J_ andBP=Y,,,
or €mn>Vo. The coefficientA,,,, an, Cmn and energies
emn are determined from the boundary conditions and the
normalization of wave functions.
Substituting Eq(A2) into Eq.(Al) and integrating over

and ¢ leads to following coupled ordinary differential equa-

oscillations forming near the confining potenttaHowever, n#n’

the confining potential studied in this paper is very weak

because only one electron should be bound in the wire, so + > amnm (2) Y =0, (A4)
consequently the resonances are very broad and the correc- n#n’

tion could be only quantitative while the existence of the

where the coupling coefficients are
“3/4” anomaly would not be affected.

R 2
— * . .
APPENDIX A: CYLINDRICAL WIRE Aman (2)= Zﬁfo Pmn(r@32) 5 P (1, p32)r
1. Single-electron basis (A5a)

A single electron in the wire considered here is described R J
with the wave function? (r,¢,z), which is a solution of the bmnnf(2)=47TJ Prn(1,@;2) 2 P (T, 95 2)rar
Schralinger equation 0

(A5b)
72 The coefficients coupling channels with differantare zero
— ——V2U(r,0,2)+V(r,2)¥(r,0,2)=EV¥(r,¢,2), due to the orthogonality of'™¢ for different m.
2m* Note that the Schidinger equation, EqA1), is invariant
under the transformation
(A1) der th f i
where the effects of nonparabolicity are neglected and the r—Ar, (AB)
effective mass is taken constamt* =0.067Mge. With di-

electric constant 12.5, appropriate for GaAs. E,V—A 2E,A?V. (A7)

At fixed z the wave function¥ (r,¢,z) is expanded in a
two-dimensional basisb,(r,¢;z) for the corresponding
potential V(r;z), Eq. (2.7). The coefficients in such an ex-
pansion ovechannelsare i,,,(z) We consider here the case when the variation in wire

width is small, resulting in small derivatives of the coeffi-
cients in Egs(A5a,b. We consider only electrons with en-
(r ¢.2)= 2 E I (DB (1 0:2).  (A2) ergy below the second channel and hence (Bd4) reduces
n=0 m=-n to a single equation for motion im direction, with the po-
tential

2. Extended Hubbard Hamiltonian

The transverse wave function®,,,(r,¢;z), depend only , _
parametrically orz and take the form: €(2)=€g(a(z))+a 2 (2) epf@a(2)). (A8)
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03 T " 1 ) -) 5 72 P
= a)7] H= J' "(2)| - — ¢, (2)dz
s X — g,@ 1 - vol2) 2m* dz? ¥(2)
2 02 = -
°>6 i II 1 T t ’ ’
g 0.1 52 f f VoD (2)U(2.2)
@ o l‘\ o,0
0.0 —--I-’----I--‘--‘-I-‘--'--‘i-'--'-l'"““l““:‘“';“ . X (2", (z)dzdz’, (A12)
where ap;(z) creates an electron with spin at coordinatez
and
e?
g U(z,z)= —47660d(2i 2 (A13)
S with
w
. 1 :f drldr'|(D00(ri;zi)|2|(b00(rj;Zj)|2
0.00 d(z.z) L@zl
— - (A14)
% -0.02 | N N e
= The Hamiltonian is further discretized at poims=jA, new
= i creation operators are defined as
-0.04 -
l : [ . l T o_ T
. 5 ; clo=VAYL(Z). (A15)
z/a, For sufficiently smallA the difference formula is justified,
FIG. 18. () Dependence oy and ey in Eq. (A8) on wire d_2 oz = 2¢(Z) + (24 1)
diameter forVy=0.4 eV. (b) One-dimensional potential EgGA8) dz? ¥o(2) - A2 '
for the wire shape Eq2.89 and various values of. Dashed lines =7
correspond to the contributiogyy. (c) The same as iith) but for (A16)
wire shape Eq(2.8b). and Eq.(A13) becomes the discretized extended Hubbard
Hamiltonian

The first term is the energy of the first channel and the
second is related tagg(z) from Eg. (A4). a’(z) is the de- _ }
rivative of the wire diameter with respect 1 The second H_Z‘ Hist 3 2‘] Ui
term in Eq.(A8) is always positive since

nj+j; Uiinign;,, (A7)

whereH,, is single-particle contribution for spiar,

*

ﬁzﬂ'jR( P oo(r, @)

2
‘€on(@)= — o rar. (A9) Hlo:_tz (CiT+1aCia+CiTaCi+1a)+§i: €Nig,

(A18)

The potential Eq(A8) is constant for largéz| and set to zero  with n;,= cit,ci(,, n;=2,n;,, hoping parameter,
for convenience, i.e.,
ﬁZ

t=——, (A19)
€(z)— e(z) — (). (A10) 2m* A?

~ ande;=2t+ €(z). The effective distance between electrons
In Fig. 18@) ego(a) andep(a) are presented as a function of at z; andz; is after integrating Eq(A13) over angular vari-
wire diameter. Figures 1B) and 18c) show the variation of ables,
one-dimensional potential(z) along the wire.

The single-electron Hamiltonian in the single channel ap- 1 R R 2
proximation then becomes d(z,z)) =87 | ridr; o ridrj|®oq(ri;z)]
B2 2 Kkl — 4rirj
Hy=— — te(2). (A1) zi—7)%+(ri—r;)?
' 2m* dZZ X|(I)(rj ;Zj)lz ( ! J2) ( ! Jz) ,
V(zi=z)%+(ri—r))
This is readily generalized to many electrons, (A20)
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0.5 T T T The base states
G 04T ] tot ot ot
+ 03 - Ci1Cj, — Ci|Cj;
& 0.0y — 1=IL =T
Ho02F - cij10)y= N |0), (B23)
=
0.1 (a)
o ok I | | . c"MMoy=cl.cf,0), (B2b)
T 5
3: 4 C.T CT -l,-C.T CT
= 3 c-"0)= %lo» (829)
$ 2 i
(=] 1 —
8&3 0 Ci(jl' 1)T|0>:CiTLCjT¢|0>- (B2d)
¥ 0001 001 0l 1 10 form a complete set.
If |¢) is a solution of Schidinger equation
L Hly)=E[4), (B3)
(c) 1 . _ _
o) - then the coefficientg;; solve the system of linear equations
3 ~ - ~ ~ -
i ] (gt gt i1t dij0) =(et e+ U —E) iy,
(B4)
0 1 | 1 | 1 | 1 | 1
0 10 20 30 40 50 where we use compact notation
a, (nm)
~ 1
FIG. 19. (a) Lateral distance vs separation along the wit®. i :E['pij +(—1)5;]. (B5)

Electron-electron interaction as a function of longitudinal separa-

tion. In both cases iap=10 nm andV,=0.4 eV anda=const.(c)  |n the basis Eq(B1) the number of electrons on sitds
Lateral distance at fixed vs wire diameter a¥/,=0.4 eV.

where K is the complete elliptic integral of the first kind. (il gy=22% [, (B6)
d(z ,z;) can be decomposed into distance along the wire and J
effective distance in the lateral direction(z; ,z;)ay, i.e., the current for siteg andi+1 is
1 1 4tA ~ o~
(A21) I )= = M2 Yy, (B

d(z,7) ) V(z—2)?+[\ (7 z))a0?

The distance\(z;,z) is invariant under the transformation
Eqg. (A6), and hence the potential, EA13), transforms as

the energy is

<¢|H|¢>:_t% U (G Bioaj+ i ea+ Bij—)

U—A~tU. (A22)
For convenience we also take into account possible screen- ~
ing with screening length, i.e., +; (it e+Uip| ] (BY)
U U.e" |Zi;Zj‘ (A23) and the norm of the wave function E@1) is given with
ij ij .
Under the transformation EqA22) the screening length ~
o orer e =3 [ (B9)

should be multiplied byA. In Fig. 19 the parametex is
plotted for some typical cases, showing its dependence on

wire width. We consider quantum wires that are almost perfect but for
which there is a very weak effective potential, giving rise to
APPENDIX B: TWO-ELECTRON WAVE FUNCTIONS bound states. The cross sections of these wires are suffi-

. ciently small that the lowest transverse channel approxima-
_ Wave function for the case gzg TtWO el_ectrons are expres_:segjon is adequate for the energy range of interest. The smooth
in terms of a set of operatoc% "~ creating an electron pair variation in cross section also guarantees that interchannel

at sitesi andj with spin S andz-components,, i.e., mixing is negligible. We study here only wires with one
weak bulge around=0. There should exist single-particle
_ (88t bound states of the system aBf” is the energy of the state

a. The energy of two-electron states is shifted and defined to

075311-13



T. REJEC, A. RAMV$K, AND J. H. JEFFERSON PHYSICAL REVIEW B7, 075311 (2003

be zero, if one electron is bound and the other at the bottom
of the single-electron band, i.e.,

T | T
— exact
E—E-EY. ®10 | 7 Hartree-Fock
With this definition, the energy of two bound electrons is
negative whereas it is positive when only one electron is
bound.

APPENDIX C: HARTREE-FOCK APPROXIMATION

Here we neglect the Coulomb interaction between elec-
trons (y=0). In the ground state both electrons are in the
same statép) and the singlet wave function is

a,p(z)
O =~ N W R

z/at1

1

=7 > ¢ieicT0). (CD
21 FIG. 20. Electron density for singlet states with differentFull

line corresponds to exact results and dashed line to the Hartree-

For finite y the best one-electron wave functions,, are . e
Fock approximation. Parameters as in Fig. 4.

determined by minimizing the energy,

o (yH|p) where, due to double counting of the interactions in single-
. (C2)  electron energiess;y is subtracted. In Fig. 20 electron den-
dof (Ul sity for singlet states with differeny is presented for a
shorter bulge with parameters as in Fig. 4.

In the case of triplet two-electron states, the single-

9 9 electron states are differerip) and|¢). Choosing these to
(YIH|)— (E+EP)——(y|$)=0,  (C3)  be orthogonal, we get

Which leads to the equation

I} def
where we have set |l/,>:%: @igjci(,-l'mm)- (C10
(¢IH]y) .
g+, (C4  The energy is now
(l) -
taking into account the energy shift E@®10). The expecta- (PIH[)=(e[H| o) (¢l @) +(@[Ha| o) (¢|®)
tion value of energy and the norm is 1 o
+§% Uijleio;— eip;l? (C1y
<¢|H|¢>:2<<P|H1|<P><<P|€D>+Z Uijleil?l¢;|? (CH _
i and the norm is
and B
(lyy=(ele)ele). (C12
— 2
() =(ele)”. (Ce) The system of equations for the coefficiegis(and equiva-
From Eq.(C3) follows a system of equations for coefficients lent for ¢;) is
Pi
) (OlciHa| @iy + X Ujjlejl2ei— 2 Uij;rZi‘Pj:EthDi-
<0|CiH1|(P>+§J_: Uijlejl?ei=Enei, (C7) J J (13
where(0|ciH|¢)=—t(¢i_1+ ¢i.;) + € ¢ is a one-electron where
tight-binding Hamiltonian=;U;;| ¢;|? is a Hartree potential o
d H
an En=E+E{ - (elHal o) _ (C14)
E.=E-+ E(l)_M (C8 <(P|(P>
hf— 1 (¢]®) Equation(C13) is a single-particle tight-binding Sctimger

) equation with Hamiltonian
is the so-called Hartree-Fock energy. The energy of a bound

state is then given by _ _ _
Hl:_zi tij(CiTCj'f'CJTCi)'f'Z EiCiTCi (C15)

E=2E— >, Uii|ei|%ei|2—EWY, c9
hf ; |]|(P|| |‘PJ| 1 (CY with potential
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FIG. 21. Electron singleta) and triplet (b) state density for
variousy. Parameters are as in Fig. 5.

;izfi"‘; Uij|$j|2 (C10
and renormalized hoping parameters
hfij:t5j,i:1+; U@*E. (C17
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The energy of the triplet bound state is then
= 1 o —oo|2—ED
E=Ep+ Ehf_z %: Uijleie;— @ijl°—E;”. (C18

In Fig. 21 the electron density for singl&t) and for trip-
let (b) states are shown for different Other parameters are
taken as in the case of the longer bulge, Fig. 5. As discussed
in the text relating to Fig. 5, Hartree-Fock approximation for
the singlet is less reliable since the Coulomb repulsion is
stronger due to both electrons being in the same state. In-
deed, fory~0.7 the Hartree-Fock approximation does not
yield the bound-state found in the exact result.
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