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A theory of superconductivity within the extended t-J model, as relevant for cuprates, is developed. It is
based on the equations of motion for projected fermionic operators and the mode-coupling approximation for
the self-energy matrix. The dynamical spin susceptibility at various doping is considered as an input, extracted
from experiments. The analysis shows that the superconductivity onset is dominated by the spin-fluctuation
contribution. The coupling to spin fluctuations directly involves the next-nearest-neighbor hopping t�, hence Tc

shows a pronounced dependence on t�. The latter can offer an explanation for the variation of Tc among
different families of hole-doped cuprates.
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Since the discovery of high-temperature superconductiv-
ity �SC� in cuprates, the mechanism of SC in these com-
pounds represents one of the central open questions in the
solid state theory. The role of strong correlations and the
antiferromagnetic �AFM� state of the reference insulating un-
doped compound has been recognized very early.1 Still, up to
date there is no general consensus whether ingredients as
embodied within the prototype single-band models of
strongly correlated electrons are sufficient to explain the on-
set of high Tc, or, in addition, other degrees of freedom, as,
e.g., phonons, should be invoked. As the basis of our study,
we assume the extended t-J model,2 allowing for the next-
nearest-neighbor �NNN� hopping t� term. The latter model,
as well as the Hubbard model,4 both closely related in the
strong correlation limit U� t, have been considered by nu-
merous authors to address the existence of SC due to strong
correlations alone. Within the parent resonating-valence-
bond �RVB� theory1–3 and slave-boson approaches to the t
-J model,5 the SC emerges due to the condensation of singlet
pairs, induced by the exchange interaction J. An alternative
view on strong correlations has been that AFM spin fluctua-
tions, becoming particularly longer ranged and soft at low
hole doping, represent the relevant low-energy bosonic exci-
tations mediating the attractive interaction between quasipar-
ticles �QP� and induce the d-wave SC pairing. The latter
scenario has been mainly followed in the planar Hubbard
model4 and in the phenomenological spin-fermion model.6

Recent numerical studies of the planar t-J model using the
variational quantum Monte Carlo approach,7 as well as of the
Hubbard model using cluster dynamical mean-field
approximation,8 seem to confirm the stability of the d-wave
SC as the ground state at intermediate hole doping. The rel-
evance of t� for Tc has been already recognized.9 Recently,
there are some numerical studies of the influence of t� on
pairing within prototype models,10,11 although with conflict-
ing conclusions.

The t-J model is nonperturbative by construction, so it is
hard to design for it a trustworthy analytical method. One
approach is to use the method of equations of motion �EQM�
to derive an effective coupling between fermionic QP and
spin fluctuations.12 The latter method has been employed to
evaluate the self-energy and anomalous properties of the
spectral function,12–14 in particular the appearance of the

pseudogap and the effective truncation of the Fermi surface
�FS� at low hole doping.14 The analysis has been extended to
the study of the SC pairing,13 while an analogous approach
has been also applied to the Hubbard model.15

In the following we adopt the formalism of the EQM and
the resulting Eliashberg equations within the simplest mode-
coupling approximation.13,14 Equations involve the dynami-
cal spin susceptibility that we consider as an phenomenologi-
cal input taken from the inelastic-neutron-scattering �INS�
and NMR-relaxation experiments in cuprates. The analysis
of these experiments16 reveals that in the metallic state the
AFM staggered susceptibility is strongly enhanced at the
crossover from the overdoped �OD� regime to optimum �OP�
doping and is increasing further in underdoped �UD� cu-
prates, while at the same time the corresponding spin-
fluctuation energy scale is becoming very soft. Direct evi-
dence for the latter is the appearance of the resonant
magnetic mode17,18 within the SC phase, indicating that the
AFM paramagnon mode can become even lower than the SC
gap. These facts give a support to the scenario that spin
fluctuations in cuprates represent the lowest bosonic mode
relevant for the d-wave SC pairing.

One of the central results of our EQM approach is that the
relevant coupling to AFM paramagnons involves directly t�,
but not t. The evident consequence is the sensitivity of Tc on
t�, consistent with the experimental evidence for different
families of cuprates.19

We consider the extended t-J model
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including both the NN hopping tij = t and the NNN hopping
tij = t�. The projection in fermionic operators, c̃is= �1
−ni,−s�cis leads to a nontrivial EQM, which can be in the k
basis represented as
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where ch is the hole concentration and mkq is the effective
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spin-fermion coupling mkq=2J�q+�k−q
0 , while �k

0 =−4t�k
−4t���k is the bare band dispersion on a square lattice. We
use the symmetrized coupling as derived in Ref. 14 to keep a
similarity with the spin-fermion phenomenology,6

m̃kq = 2J�q +
1

2
��k−q

0 + �k
0� . �3�

The EQM, Eq. �2�, are used to derive the approximation for
the Green’s function �GF� matrix Gks���= ���ks�ks

† ��� for
the spinor �ks= �c̃k,s , c̃−k,−s

† �. We follow the method, as ap-
plied to the normal state �NS� GF by present authors,12,14 and
generalized to the SC pairing in Ref. 13. In general, we can
represent the GF matrix in the form

Gks���−1 =
1

	
��
0 − �̂ks + �
3 − ks���	 , �4�

where 	=�i��c̃is , c̃is
† �+� /N= �1+ch� /2 is the normalization

factor, � is the chemical potential, and the frequency matrix,

�̂ks= �1/	�����ks ,H	 ,�ks
† �+�, which generates a renormal-

ized band �̃k=�ks
11= �̄−4�1t�k−4�2t���k and the mean-field

�MF� SC gap,

�k
0 = �ks

12 = −
4J

N	
�
q

�k−q�c̃−q,−sc̃q,s� . �5�

To evaluate ks���, we use the lowest-order mode-
coupling approximation, analogous to the treatment of the
SC in the spin-fermion model,6 introduced in the t-J model
for the NS GF12,14 and extended to the analysis of the SC
state.13 Taking into account EQM, Eq. �2�, and by decoupling
fermionic and bosonic degrees of freedom, one gets

ks
11�12��i�n� =

− 3

N	�
�
q,m

m̃kq
2 Gk−q,s

11�12��i�m��q�i�n − i�m� �6�

where i�n= i��2n+1� /� and �q��� the dynamical spin sus-
ceptibility, whereby we have neglected the charge-fluctuation
contribution.

In order to analyze the low-energy behavior in the NS and
in the SC state, we use the QP approximation for the spectral
function matrix,

Aks��� �
	Zk

2Ek
��
0 − �k
3 − �ks
1����� − Ek� − ��� + Ek�	 ,

�7�

where Ek= ��k
2 +�ks

2 �1/2, while NS parameters, i.e., the QP
weight Zk and the QP energy �k, are determined from
Gks���0�, Eq. �4�. The renormalized SC gap is

�ks = Zk��k
0 + ks

12�0�	 . �8�

It follows from Eq. �4� that Gks
12�i�n��−	Zk�ks / ��n

2+Ek
2�.

By defining the normalized frequency dependence Fq�i�l�
=�q�i�l� /�q

0, and rewriting the MF gap, Eq. �5�, in terms of
the spectral function, Eq. �7�, we can display the gap equa-
tion in a more familiar form,

�ks =
1

N
�
q

�4J�k−q − 3m̃k,k−q
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where Ckq= Ikq�i�n�0� / Ik
0 plays the role of the cutoff func-

tion with

Ikq�i�n� =
1

�
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m
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2 , �10�

and Ik
0 =tanh��Ek /2� / �2Ek�. Equation �9� represents the

BCS-like expression that we use further on to evaluate Tc, as
well to discuss the SC gap �q�T=0�. To proceed, we need
the input of two kinds: �a� the dynamical spin susceptibility
�q���, and �b� the NS QP properties Zk ,�k.

The INS experiments show that within the NS the low-�
spin dynamics at q�Q is generally overdamped in the
whole doping �but paramagnetic� regime.18 Hence we as-
sume �q��� of the form

��q��� =
Bq�

�2 + �q
2 , Fq�i�l� =

�q

�l + �q
. �11�

Following the recent memory-function analysis,20 Bq=�q
0�q

should be quite independent of q̃=q−Q. We choose the
variation as �q��Q�1+wq̃2 /�2�2, consistent with the INS
observation of faster than Lorentzian falloff of ��q��� vs q̃.18

Here w�0.42 in order that � represents the usual inverse
AFM correlation length.

Consequently, we end up with parameters �Q
0 ,�Q ,�,

which are dependent on ch, but in general as well vary with
T. Although one can attempt to calculate them using the
analogous framework,20 we use here the experimental input
for cuprates. We refer to results of the recent analysis,16

where NMR T2G relaxation and INS data were used to ex-
tract � ,�Q

0 �T�, and �Q�T� for various cuprates, ranging from
the UD to the OD regime. For comparison with the t-J
model, we use usual parameters t=400 meV, J=0.3t. At
least for UD cuprates, quite consistent estimates for �Q

0 ,�Q
can be obtained also directly from the INS spectra.18 For the
UD, OP, and OD regime, i.e., ch=0.12, 0.17, 0.22, respec-
tively, we use further on the following values: �Q

0 t=15.0, 4.0,
1.0, �Q

0 / t=0.03, 0.1, 0.18 �appropriate at low T�, and �
=0.5, 1.0, 1.2. It is evident that in the UD regime the energy
scale �Q

0 becomes very small �and consequently �Q
0 �1/�Q

0

large, in spite of modest �16�, supported by a pronounced
resonance mode.18 We take into account also the T depen-
dence, i.e., �Q�T���Q

0 +T,16 being significant only in the
UD regime.

For the NS Ak��� and corresponding Zk ,�k we solve Eq.
�6� for k

11=k as in Ref. 14, with the input for �q��� as
described above. Since our present aim is on the mechanism
of the SC, we do not perform the full self-consistent calcu-
lation of k���, but rather simplify it, as done in the previous
study.14 Large incoherent k���0� leads to an overall de-

crease of the QP weight Z̄�1 and the QP dispersion with
renormalized �1 ,�2�1, which we assume here as follows:14

as �1=�2=0.5, Z̄=0.7. Soft AFM fluctuations with q�Q
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lead through Eq. �6� to an additional reduction of Zk, which
is k-dependent. A pseudogap appears along the AFM zone
boundary and the FS is effectively truncated in the UD re-
gime with ZkF

�1 near the saddle points �� ,0� �in the anti-
nodal part of the FS�.14 We fix � with the FS volume corre-
sponding to band filling 1−ch.

We first comment general properties of the gap equation,
Eq. �9�. Close to half-filling and for �q

0 peaked at q�Q, both
terms favor the dx2−y2 SC. The MF part �k

0, Eq. �5�, involves
only J, which induces a nonretarded local attraction, playing
the major role in the RVB theories.1,2 In contrast, the spin-
fluctuation part represents a retarded interaction due to the
cutoff function Ckq determined by �k−q. The largest contri-
bution to the SC pairing naturally arises from the antinodal
part of the FS. Meanwhile, in the same region of the FS also
Zk is smallest, reducing the pairing strength, in particular, in
the UD regime. Our analysis is also based on the lowest-
order mode-coupling treatment of the SC pairing as well as
of the QP properties near the FS. Taking this into account,
one can question the relative role of the hopping parameters
t , t� and the exchange J in the coupling, Eq. �3�. While our
derivation within the t-J model is straightforward, an analo-
gous analysis within the Hubbard model using the projec-
tions to the lower and the upper Hubbard band, respectively,
would not yield the J term within the lowest order since J
� t2. This stimulates us to investigate in the following also
separately the role of the J term in Eq. �9�, both through the
MF term, Eq. �5�, and the coupling m̃kq, Eq. �3�.

Let us turn to results for the NS spectral properties and
consequently Tc. The coupling to low-energy AFM fluctua-
tions, Eq. �6�, leads to an additional QP renormalization. For
fixed t� / t=−0.3, we present in Fig. 1 results for the variation
of the Zk in the Brillouin zone for two sets of parameters,
representing the UD and the OD regime, respectively. The
location of the renormalized FS is also presented in Fig. 1.
While the coupling to AFM fluctuations partly changes the
shape of the FS, a more pronounced effect is on the QP
weight. It is evident from Fig. 1 that Zk is reduced along the
AFM zone boundary away from the nodal points. Particu-
larly strong renormalization Zk�1 happens in the UD case,
leading to an effective truncation of the FS away from nodal
points.14

NS results for Zk ,�k are used as an input for the solution
of the gap equation, Eq. �9�, as presented in Fig. 2. For the
same t� / t=−0.3 we calculate Tc / t for ch=0.12, 0.17, 0.22.
Besides the result �a� of Eq. �9� �the full line in Fig. 2� we
present also two alternatives: �b� the solution of Eq. �9� with-

out the MF term, and �c� the result with m̃kq without the J
term and the omitted MF term. In the latter case, we used as
input NS QP parameters, recalculated with correspondingly
modified m̃kq.

From Fig. 2 it is evident that the spin-fluctuation contri-
bution is dominant over the MF term. When discussing the
role of the J term in the coupling, Eq. �3�, we note that in the
most relevant region, i.e., along the AFM zone boundary
m̃kQ=2J−4t� cos2 kx. Thus, for hole doped cuprates, t��0
and J terms enhance each other in the coupling, and neglect-
ing J in m̃kq reduces Tc, although at the same time relevant
Zk is enhanced.

Finally, in Fig. 3 we present results, as obtained for fixed
OP ch=0.17, but different t� / t�0, as relevant for hole-doped
cuprates.19 As expected, the dependence on t� is pronounced,
since the latter enters directly the coupling m̃kQ. It is instruc-
tive to find an approximate BCS-like formula that simulates
our results. The latter involves the characteristic cutoff en-
ergy �Q, while other relevant quantities are the electron den-
sity of states N0 and Zm being the minimum Zk on the FS �in
the antinodal point�. Then, we get a reasonable fit to our
numerical results with the expression

Tc � 0.5�Qe−2/�N0Vef f�, �12�

where the effective interaction is given by Veff=3Zm�2J
−4t��2�Q. Our numerical analysis suggests that the main t�
dependence of Tc originates in the coupling m̃kq, not in

FIG. 1. �Color online� QP weight Zk evaluated for t� / t=−0.3 for
parameters corresponding to ch=0.12 and ch=0.22, respectively.
The white line represents the location of the FS.

FIG. 2. Tc / t versus doping ch for t� / t=−0.3, calculated for vari-
ous versions of Eq. �9�: �a� full result �full line�, �b� with a ne-
glected MF term �dashed line�, and �c� in addition to �b� modified
m̃kq without the J term �dotted line�.

FIG. 3. Tc / t vs − t� / t for fixed “optimum” doping ch=0.17 and
different versions of Eq. �9�, as in Fig. 2.
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N0Zm, while the main ch dependence comes from �Q and �Q.
Then, Eq. �12� implies that optimum doping, where Tc is
maximum, increases with −t� / t. For parameters used in Fig.
1, e.g., copt=0.13+0.12�−t� / t�.

In this analysis we do not extend our input data outside
the doping range 0.12�ch�0.22. Nevertheless, we can dis-
cuss on the basis of Eq. �12� the variation Tc�ch� elsewhere.
Toward the undoped AFM, also the spin fluctuation scale
should vanish �Q→0 and consequently Tc�ch→0�→0. On
the OD side, �Q and Vef f should decrease with doping, lead-
ing again to fast reduction of Tc�ch�.

In conclusion, let us comment on the relevance of the
present method and results to cuprates. Our starting point is
the model, Eq. �1�, where strong correlations are explicitly
taken into account via the projected fermionic operators. In
this respect the derivation crucially differs from the analysis
of the phenomenological spin-fermion model.6 Nevertheless,
in the latter approach the resulting gap equation, Eq. �9�,
looks similar but involves a constant effective coupling. In
contrast, our m̃kq, Eq. �3�, is evidently k ,q dependent. In
particular, in the most relevant region, i.e., along the AFM
zone boundary, m̃kQ depends only on t� and J, but not on t.
This explains our central result novel within the spin-
fluctuation scenario, i.e., a pronounced dependence of Tc on
t� which emerges directly via t� in the effective interaction in
Eq. �12�, and is consistent with the evidence from different
families of cuprates.19 A similar trend is obtained within the
same model by the variational approach.11 One can give a
plausible explanation of this effect. In contrast to NN hop-
ping t, the NNN t� represents the hopping within the same
AFM sublattice, consequently in a double unit cell fermions
couple directly to low-frequency AFM paramagnons, analo-
gous to the case of FM fluctuations generating superfluidity
in 3He.21

It is evident from our analysis that actual values of Tc are
quite sensitive on input parameters and NS properties. Since
we employ the lowest-order mode-coupling approximation

in a regime without a small parameter, one can expect only a
qualitatively correct behavior. Still, calculated Tc are in a
reasonable range of values in cuprates. We also note that
rather modest “optimum” Tc values within presented spin-
fluctuation scenario emerge due to two competing effects in
Eqs. �9� and �12�: large m̃kq and �Q enhance pairing, while at
the same time through a reduced Zk and cutoff �Q they limit
Tc.

We do not discuss in detail results for �k in the SC phase,
where we obtain the expected dx2−y2 form with �k
��0�cos kx−cos ky� /2, with �0�T=0���Tc and ��2.5.
However, we observe that in the UD regime the effective
coherence length ��vF /�0�T=0� becomes very short. That
is, with vF taken as the average velocity over the region � at
the antinodal part of the FS we get � ranging from �=4.4 in
the OD case, to �=1.3 in the UD example. In the latter case,
SC pairs are quite local and the BCS-like approximation
without phase fluctuations, Eqs. �9� and �12�, overestimates
Tc. Starting from this side, a more local approach would be
desirable.

It should also be noted that in the UD regime we are
dealing with the strong coupling SC. Namely, we observe
that N0Vef f shows a pronounced increase at low doping
mainly due to large �Q. Then it follows from Eq. �12� that Tc
is limited and determined by �Q. At the same time, INS
experiments18 reveal that in the UD cuprates the resonant
peak at ���r takes the dominant part of intensity of q
�Q mode that becomes underdamped possibly even for T
�Tc. Thus it is tempting to relate �Q to �r �for a more
extensive discussion see Ref. 20� and in the UD regime to
claim Tc�a�r, indeed observed in cuprates18 with a�0.26.
However, additional work is needed to accommodate prop-
erly an underdamped mode in our analysis.
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