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We propose a scheme to produce spin entangled states for two interacting electrons. One electron is bound
in a well in a semiconductor quantum wire and the second electron is transported along the wire, trapped in a
surface acoustic wave �SAW� potential minimum. We investigate the conditions for which the Coulomb
interaction between the two electrons induces entanglement. Detailed numerical investigation reveals that the
two electrons can be fully spin entangled depending on the confinement characteristics of the well and the
SAW potential amplitude.
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I. INTRODUCTION

In recent years it has become appreciated that entangle-
ment, one of the key fundamental features of quantum phys-
ics, lies at the heart of numerous interesting research areas.
The ability to create entanglement between qubits in a con-
trolled manner is a necessary ingredient for any candidate
quantum information processing1 system. Entanglement be-
tween quantum degrees of freedom of interest and those be-
yond our control—the environment—is responsible for deco-
herence and the degradation of pure quantum evolution.
Entanglement can exist in solids even at thermal
equilibrium2,3 and it potentially gives a new perspective for
critical phenomena.4 In solid state systems, whether from the
perspective of fundamental quantum phenomena or their as-
sessment as candidate quantum processing devices, a real
challenge is to establish and control entanglement between
chosen quantum degrees of freedom, while avoiding deco-
herence due to entanglement with the relevant environment.
In this work we study, from a theoretical and modelling per-
spective, the generation of entanglement between electrons
in semiconductor systems that are amenable to current fabri-
cation and experimental techniques.

Single electron transport �SET� in a GaAs/AlGaAs semi-
conductor heterostructure using a surface acoustic wave
�SAW� was demonstrated with a very high accuracy almost a
decade ago by Shilton et al.5 Originally, the SAW-based SET
devices were investigated in the context of metrological ap-
plications and specifically for defining a quantum standard
for the current.5–7 However, many other applications based
on this technology have been proposed aiming to manipulate
the integer number of electrons in various ways. For ex-
ample, an extension of a SAW-based SET device is a single
photon source8 a necessary tool in quantum cryptography.9,10

Barnes et al.11,12 suggested how quantum computations
can be performed and quantum gates can be constructed us-
ing the spins of single electrons, trapped in the SAW poten-
tial minima, as qubits. The high SAW frequency
��2.7 GHz� allows a high computation rate, which is re-
garded as an advantage of the SAW-based quantum com-
puter. The electrons are carried by the SAW in a series of

narrow parallel channels separated by tunnel barriers. At the
entrance of the channels a strong magnetic field is applied to
produce a well-defined initial state for the electrons. As the
electrons are driven along the channel they can interact with
electrons in adjacent channels. The degree of interaction may
be controlled by altering the height and/or the thickness of
the barriers between the channels using surface gates. Vari-
ous readout schemes that use, for example, magnetic Ohmic
contacts or the Stern-Gerlach effect were proposed and
described.11,12

This proposal of flying qubits has attracted a lot of interest
and theoretical work has supported its efficiency, though
quantum gates have yet to be demonstrated experimentally.
Specifically Gumbs and Abranyos13 calculated the entangle-
ment of spins, via the exchange interaction, for two electrons
driven by SAWs in two adjacent channels. More recently
Furuta et al.14 performed detailed calculations of the qubit
dynamics when the qubits pass through magnetic fields.

In recent theoretical work Rodriquez et al.15 and also Bor-
done et al.16 proposed an experiment to observe quantum
interference of a single electron using SAWs. The proposed
experiment may provide an estimation of the electron deco-
herence time which is an important quantity if these devices
are to be exploited in the field of quantum information and
computation. Finally, the use of single electrons trapped in
SAW potential minima for quantum computing was consid-
ered briefly in Ref. 17 where a more general scheme to in-
duce entanglement was examined in which ballistic electrons
propagate along two parallel quantum wires.

In this paper, motivated by recent work on conductance
anomalies18 and spin entanglement generation in quantum
wires,19 we propose a scheme to produce entangled states for
two electrons utilizing SAWs. A schematic illustration of the
SAW-based device is shown in Fig. 1. The SAW time-
dependent potential is used to carry a single electron through
the channel where the second electron is bound in a quantum
well. The two electrons interact via the Coulomb interaction
and it has been shown in various schemes11,13,19–21 that this
interaction is capable of inducing entanglement. We investi-
gate the conditions for which the electron in the SAW, after
passing through the region of the quantum well, will be en-
tangled with the electron remaining in the well. Considering
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the spins of the electrons as the qubits the proposed scheme
belongs to the static-flying qubit category where specifically
the qubits interact in the same channel in contrast to Ref. 11
which involves interaction between flying qubits in different
channels.

This paper is organized as follows. In Sec. II a single
electron study is presented for the bound electron in the well
and the propagating electron in the SAW. Section III intro-
duces the two-electron model and considers some typical
cases of entanglement generation. In Sec. IV a Hartree ap-
proximation is employed to explain the results of the electron
dynamics. Section V presents some general important fea-
tures of the entanglement and the main results are summa-
rized in Sec. VI.

II. SINGLE ELECTRON STUDY

A. Preliminaries

Before examining the dynamics of the two electrons and
entanglement generation, we study the two electrons sepa-
rately. The spin of the bound electron in the well constitutes
the static qubit for the proposed scheme and therefore it is
necessary to understand how this electron behaves under the
SAW propagation. In principle, the static qubit must remain
localized in the quantum well during the computation cycle
and this means that the SAW-induced time-dependent pertur-
bation must be such that this condition is satisfied. It is also
important that the electron in the SAW, whose spin consti-
tutes the flying qubit, remains bound in the same SAW po-
tential minimum at least up to the region where Coulomb
repulsion with the bound electron becomes important. Al-
though this could be achieved simply by a large SAW am-
plitude the degree of screening due to the applied gate bias
used to form the quantum wire is uncertain and it may be
necessary to form the wire by an etching technique.22 Finally,
it is interesting to note that well-defined single SAW pulses
can be generated11 which can be employed in order to mini-
mize the interaction between propagating electrons and to
allow the read-out process.

The well in the wire could be formed by surface gates,
whose geometric design and applied bias would control the

confining characteristics of the well. A single electron
turnstile23 could then be used to launch an electron towards
the region of the quantum well. While these aspects of real-
ization are experimentally feasible, details of the formation
of the quantum well or the capture process are beyond the
scope of this paper.

For all the calculations in the following sections we have
employed a one-dimensional model considering only the di-
rection of SAW propagation, that is the positive x direction.
The quantum well potential is modelled by the expression

V�x� = − Vw exp�− x2

2lw
2 � , �1�

where the parameters Vw, lw control the depth and the width
of the well, respectively. The SAW time-dependent potential
is given by24

VSAW�x,t� = Vo�cos�2��x/� − ft�� + 1	 , �2�

where the parameter Vo represents the SAW potential ampli-
tude and to be specific we have chosen the typical values f
=2.7 GHz for the SAW frequency and �=1 �m for the SAW
wavelength.24

B. The bound electron in the well

In order to study the state of the electron in the well we
solved the time-dependent Schrödinger equation, using a
Crank-Nicholson scheme25 for the Hamiltonian

Ho = −
�2

2m*

�2

�x2 + Vt�x,t� , �3�

where m*=0.067mo is the effective mass of the electron in
GaAs. The total time-dependent potential is given by the
combination of the SAW and the quantum well potential

Vt�x,t� = VSAW�x,t� + V�x� . �4�

The time evolution of the probability distribution is shown in
Fig. 2 for one SAW period T=1/ f and for the parameters
Vo=2 meV, Vw=6 meV, and lw=7.5 nm. The quantum well
parameters have been chosen such that there is only a single
bound state when Vo=0. This becomes a quasibound at spe-
cific times provided �w�2Vo, where �w is the minimum re-
quired energy to delocalize the electron from the well when
Vo=0. Although this inequality is fulfilled for the chosen
parameters, the electron still remains very well-localized in
the well for the whole SAW period as we can see from Fig.
2. This is simply because the tunnelling time to escape from
the well is much greater than the SAW period.

The instantaneous eigenvalues versus time, obtained by
solving the time-independent Schrödinger equation at each
instant in time are shown in Fig. 3 and provide insight into
the dynamics. Only the first few eigenvalues that are relevant
to the time evolution process are shown in order of increas-
ing energy �En ,n=0,1 , . . . �. Eigenvalues corresponding to an
odd �even� integer are shown with a dashed �full� line. Note
that none of the curves actually cross, though the very small
energy difference cannot be resolved in the figure. The char-
acteristic sine feature that develops from the left to the right

FIG. 1. Schematic illustration of the SAW-based device to gen-
erate spin entanglement between a static and a flying qubit. The
gates G1, G2 define a pinched-off quasi-one-dimensional channel
and the gate G3 is used to create the open quantum dot which binds
the static qubit. A SAW is generated by the transducer �T� above a
2DEG and the �negative� potential on G1 and G2 increased until a
SAW minimum contains a single electron which interacts with a
bound electron under G3.
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of the graph indicates that the state evolves via nonadiabatic
Landau-Zener transitions.26 The transition probability at an
anticrossing point, that is a point in the graph where the two
curves have minimum separation, depends on this character-
istic energy gap.26,27 Specifically, if the energy gap is large
the state cannot undergo the transition and thus it tunnels out
of the well losing its initial character, that is bound in the
quantum well. On the other hand, for small energy gaps,
which is the case here, the electron can successfully undergo
Landau-Zener transitions thus retaining the initial character
of its state as the time develops and the potential profile
changes. Strictly speaking, after very many SAW cycles the
electron will be delocalized from its initial quantum well
because the Landau-Zener transitions do not occur with
probability of exactly one. In our study the sine feature is
only shown for one SAW period and it describes how the
energy of the bound electron in the quantum well changes
with time as the SAW propagates. An important characteris-
tic is that via the Landau-Zener transitions the state retains
its initial character by changing the eigenvalue number at
each anticrossing point from n to n±1. In particular, for t
=0 and after one SAW period t=T the SAW potential is
maximum at x=0 and therefore the energy level that corre-
sponds to the bound state of the quantum well is maximum.
For t=T /2 the SAW potential is minimum at x=0 and the
energy of the quantum well is the ground state energy of the
system. For t�T /2 the state lowers its eigenvalue number at
each anticrossing point from n to n−1 in order to decrease its
energy, whereas for t�T /2 the state increases its eigenvalue
number from n to n+1 in order to increase its energy, via
successfully accomplishing Landau-Zener transitions. For t
�T this pattern of transitions is repeated. Increasing the

SAW potential amplitude and keeping the characteristics of
the well fixed the energy gaps become larger and eventually
the sine feature will disappear. In this case the electron es-
capes from the quantum well tunnelling partly in the SAW
potential minimum and in the continuum. Decreasing the
SAW amplitude there will be a value such that the state of
the well will be a true-bound state at all times. In this case
the state evolves adiabatically, its energy changes sinusoi-
dally and the electron remains localized in the well without
any effect from the SAW propagation.

To summarize for a particular quantum well there is a
regime of a small SAW potential amplitude �that satisfies
�w�Vo� where the bound electron evolves adiabatically, fol-
lowed by a regime of stronger SAW amplitude for which the
electron evolves via nonadiabatic Landau-Zener transitions.
Finally, for an even stronger SAW amplitude the electron
escapes from the quantum well. The SAW potential ampli-
tude must be restricted to the first two regimes for a particu-
lar well depth. Here we consider the most interesting inter-
mediate case and although we only consider a quantum well
with a single bound state, it is straightforward to generalize
the results to cases with more bound states in the well.

C. The propagating electron in the SAW

In this section we study how the electron in the SAW
potential minimum propagates along the quantum wire far
from the quantum well for which we may restrict the poten-
tial of the Hamiltonian �3� to the SAW potential only. The set
of coefficients Cm, m=0,1 , . . ., which satisfy

Ċm = − Cm
um�u̇m�

+ 
n�m

Cn

�	mn
�um� �Ho

�t
�un�exp�i�

o

t

	mn�t��dt�� ,

�5�

determines the evolution of the wave function 
�x , t�, via the
expansion28

FIG. 2. �Color online� Time evolution of the probability distri-
bution �dashed line in arbitrary units� of the bound state of the
quantum well and the total time-dependent potential �full line�. The
time sequence is from top to bottom and specifically t /T
=0,0.2,0.4,0.5,0.6,0.8,1.

FIG. 3. �Color online� The first few bound instantaneous
eigenenergies �En ,n=0,1 , . . . � as a function of time for the total
time-dependent potential Vt�x , t� described in the text. Eigenener-
gies which correspond to an odd �even� integer are shown with a
dashed �full� line.
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�x,t� = 
n

Cn�t�un�x,t�exp�−
i

�
�

o

t

En�t��dt�� , �6�

in the basis states of the instantaneous solutions
Ho�x , t�un�x , t�=En�t�un�x , t�, with 	mn= �Em−En� /� the
Bohr angular frequency. The wave function 
�x , t� describes
the electron in the SAW potential minimum and satisfies the
time-dependent Schrödinger equation. The system of Eqs.
�5� is solved using a fourth-order Runge-Kutta method,29 al-
though for the calculations we have dropped the first term of
Eqs. �5�, since it only induces an unimportant phase differ-
ence in the final coefficients. Figure 4 shows the variation of
the squared modulus of the coefficients, when the initial state
is the ground, the first and the second excited state of the
SAW potential minimum, ��Cn

j �2, j=n=0,1 ,2 where the su-
perscript j indicates the corresponding initial state� as a func-
tion of time for two SAW periods and for a SAW amplitude
of Vo=4 meV. As we can see, the electron remains to a very
good approximation in the initially populated state of the
SAW minimum throughout the time evolution and further-
more the corresponding moduli of the expansion coefficients
present an oscillating behavior.

This behavior may be explained within the adiabatic
approximation.28 Starting with Cn

j �t=0�=�nj �initial state uj�
and assuming that all the coefficients in �5� remain constant
with time Cn

j �t�0���nj, we obtain the approximate formula
for all m� j,

Ċm
j �

	�mj

�	mj
exp�i�

o

t

	mj�t��dt�� , �7�

where we have set �mj =
um� �Ho

�t �uj
� /	, with 	=2�f the

SAW cyclic frequency. The matrix elements �mj and the fre-
quencies 	mj are time-independent and hence the final ex-
pression for the squared modulus of the coefficients for m
� j becomes

�Cm
j �t��2 �

	2��mj�2

�2	mj
4 4 sin2�	mjt

2
� . �8�

For the SAW potential given by �2� the matrix elements are
real for bound states and therefore �mj =� jm. Also, the tran-
sitions are allowed when �mj�0 which occurs when m+ j is
odd. If 	��mj�	mj

2 � then �Cm
j ��0 and the electron remains

at all times in the initial state uj. This limit corresponds to the
adiabatic approximation and is satisfied when the system
changes very slowly compared to the transition frequency
	mj associated with the states. In general, the higher the
states the smaller the transition frequency between them and
as a result the less valid the adiabatic approximation. This
can be seen directly from Fig. 4 by observing the minimum
magnitude of the oscillations which gives the maximum de-
viation from the initial state and hence the deviation from the
adiabatic approximation. On the other hand, the lower the
SAW frequency the better the adiabatic approximation. In the
extreme limit of a frozen wave, 	=0, the states become sta-
tionary acquiring only a phase.

For the ground state, in the time interval of interest, the
adiabatic approximation is excellent. During the time evolu-
tion there is a very small contribution from excited states and
�C0

0�2�1− �C1
0�2 with �C1

0�2 given by Eq. �8� with m=1 and j
=0. Hence, the frequency of the oscillations is equal to 	10
and the amplitude depends on the quantity 	2��10�2 / ��2	10

4 �.
In the evolution of the first excited state there is some con-
tribution not only from the ground but also from the second
excited state. We may approximate the numerical results by
�C1

1�2�1− �C0
1�2− �C2

1�2 and using Eq. �8�,

�C1
1�t��2 � 1 − D01 sin2�	01t

2
� − D21 sin2�	21t

2
� , �9�

where the auxiliary constant is Dm,j =4	2��mj�2 / ��2	mj
4 �. De-

fining the quantities �= �	10−	21� /2,�o= �	10+	21� /2 and
D= �D21−D10� /2, Do= �D21+D10� /2 we may further write

�C1
1�t��2 � 1 − Do + Do cos��ot�cos��t� + D sin��ot�sin��t� ,

�10�

which explains the sinusoidal variation of the amplitude in
the oscillations with a period equal to 2� /�. This peculiar
form is due to the very small difference between the Bohr
frequencies which define the frequency of the oscillations
and the small difference between the matrix elements which
control the amplitude of the oscillations. A similar situation
occurs for the evolution of the second excited state as shown
in the bottom frame of Fig. 4. All the relevant quantities can
be defined similarly, considering that the small deviation
from this state is mainly due to transitions to the first and the
third excited state.

To summarize, the electron in the SAW propagates adia-
batically along the quantum wire even for a relatively low
SAW amplitude. In other words, it remains well localized in
the particular SAW potential minimum as it is driven towards
the bound electron in the well, which is the main requirement
for the entanglement generation described in the next sec-
tion.

FIG. 4. �Color online� From top to bottom the initial electron
state �for t=0� is the ground, the first, and the second excited state
of a SAW potential minimum, respectively. The plots show how the
corresponding probability for each initial state evolves with time for
two SAW periods.
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III. ELECTRON DYNAMICS AND ENTANGLEMENT

A. The two-electron model

The dynamics of the two-electron system is governed by
the time-dependent Schrödinger equation, with the Hamil-
tonian

H = 
i=1,2

�−
�2

2m*

�2

�xi
2 + Vt�xi,t�� + Vc�x1,x2� . �11�

The single electron term Vt�x , t� was described in Sec. II B
and the Coulomb term Vc�x1 ,x2� is modelled by the quasi-
one-dimensional form

Vc�x1,x2� =
q2

4��r�o
��x1 − x2�2 + �c

2
, �12�

where �r=13 is the relative permittivity of GaAs. This sim-
plified form of the Coulomb interaction assumes that all ex-
citations take place in the x direction, whereas in the other
two directions the electrons occupy at all times the corre-
sponding ground states �transverse modes�. This is a good
approximation provided that the parameter �c that models
the confinement lengths in the y and z directions is relatively
smaller than the confinement length scales in the x direction.
For all the calculations we choose �c=20 nm, for which the
restriction to lowest transverse modes is an excellent ap-
proximation.

The resulting two-electron time-dependent Schrödinger
equation is solved numerically with an explicit scheme based
on a finite difference method, which is described in detail for
the case of a single electron by Visscher.30 The extension for
two electrons is straightforward.

For the initial state at t=0 we choose one electron to have
spin up in the ground state of the SAW potential minimum,
��x�, and the other electron to have spin down in the ground
state of the quantum well, ��x�. It is important to note that
��x� and ��x� are exactly orthogonal, with no spatial region
of overlap, i.e., � peaks around the region where the particu-
lar SAW potential minimum is located �far from the quantum
well� and � peaks around x�0 where the quantum well is
located. To study the dynamics of the electrons, at time t
�0 it is necessary to take into account the fact that the
electrons are fermions and thus indistinguishable. This is im-
portant when the electron carried by the SAW interacts with
the electron in the quantum well, giving rise to a spin ex-
change interaction. The initial state is thus represented by the
Slater determinant

�↑↓�x1,x2,0� =
1
�2
���x1��↑�1� ��x1��↓�1�

��x2��↑�2� ��x2��↓�2�
� . �13�

This state is unentangled according to the criteria of Ref. 31.
Note that �↑↓�x1 ,x2 ,0� can also be expressed as a combina-
tion of a singlet and a Sz=0 triplet state,

�↑↓�x1,x2,t� =
1
�2

��↑↓
S �x1,x2,t� + �↑↓

T �x1,x2,t�� , �14�

which is also the general form of the total two-electron wave
function at all times, due to the fact that the Hamiltonian Eq.

�11� contains no spin-dependent terms. Furthermore, for
the case of two electrons, the orbital and spin parts factorize,
i.e., �↑↓

S �x1 ,x2 , t�=�S�x1 ,x2 , t��↑↓
S �1,2� and similarly

�↑↓
T �x1 ,x2 , t�=�T�x1 ,x2 , t��↑↓

T �1,2�. With this notation
the spin components are given by �↑↓

S/T�1,2�
= ��↑�1��↓�2���↓�1��↑�2�� /�2 �with the negative sign for
the singlet� and the corresponding orbital components at t
=0, by �S/T�x1 ,x2 ,0�= ���x1���x2�±��x1���x2�� /�2 �with
the positive sign for the singlet�. For t�0, the spin eigen-
states are unchanged whereas the orbital states are given di-
rectly by the solution of the time-dependent Schrödinger
equation. The form of the orbital components at t=0 implies
that the two electrons do not interact, i.e., they are well sepa-
rated with negligible Coulomb interaction, and therefore are
written as symmetric and antisymmetric products of nonin-
teracting single-electron states. Finally, in this work we con-
sider only cases where the electron in the quantum well is
well localized before �t=0� and after the scattering event �t
= tf�, when the electrons are well separated. The energy pa-
rameters �SAW amplitude and quantum well characteristics�
are thus chosen such that the final electron probability distri-
bution in the well is to a good approximation the same as
before interaction. However, this restriction is not imposed
on the propagating electron in the SAW, which can gain en-
ergy due to a combination of the effect of the time depen-
dence of the SAW potential and Coulomb repulsion.

B. Entanglement measure

In this paper, concurrence will be used as a measure of
spin entanglement. An expression for concurrence may be
obtained using the form suggested by Wooters,32 starting
with the total density matrix for the pure scattering state and
integrating over the orbital degrees of freedom. For the axi-
ally symmetric problems considered here, for which total
spin projection along the quantization axis is conserved, con-
currence is physically related to spin-spin correlation func-
tions for the two domains A and B and takes the form33 C
=2�
SA

+SB
−��, where S± are the usual spin-flip operators.

Equivalently in terms of the symmetric �singlet� and anti-
symmetric �triplet� orbital states concurrence is given by the
formula33

C�t� =
1

N�t���A,B
dx1dx2�−

*�x1,x2,t��+�x1,x2,t�� , �15�

where �±�x1 ,x2 , t�=�S�x1 ,x2 , t�±�T�x1 ,x2 , t� and the nor-
malization constant N equals

N�t� = �
A,B

dx1dx2���S�x1,x2,t��2 + ��T�x1,x2,t��2� . �16�

In these expressions the regions of integration A, B are cho-
sen to be regions which the electrons are expected to occupy
before and after scattering with A being the domain of one
electron and B the domain of the other. Physically, the re-
gions A and B can be viewed as �position� measurement
domains. For example, sensing of the presence of an electron
charge34–36 with sufficient positional information only to
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identify it as being located in some region could correspond
to such a “fuzzy” position measurement. Since the quantum
well always contains at least one electron, we choose A to be
this region, i.e., A= �xl ,xr�, where xl and xr denote the points
where the bound state of the electron in the quantum well has
decayed to zero at the left and right, respectively. For the
numerical calculations, these points were chosen to corre-
spond to a value of approximately 10−4 of the probability
density at the peak. The region B is chosen to correspond to
the region of occupation of the propagating electron. For the
two-electron scattering problem under study, we may choose
this to be the total domain excluding the well, i.e., B= �
−L ,xl�� �xr ,L�, where �−L ,L� defines the total region of
space within which the electron dynamics is studied. Note
that the corresponding concurrence is really only meaningful
when the electrons are well separated, before and after scat-
tering, i.e., at sufficiently small or large t, though it may be
calculated at any time. We refer to this concurrence as the
total concurrence, C�t�. We may also define �the potentially
more useful� reflected or transmitted concurrence, for which
the measurement domains are restricted to either the left or
the right of the quantum well, respectively, i.e., B= �−L ,xl�,
or B= �xr ,L�, with corresponding concurrences Cr and Ct. A
“fuzzy” position measurement �charge sensing� which gives
sufficient information to resolve the outgoing electron as re-
flected or transmitted could project the two electrons into a
state with the associated concurrence Cr or Ct. It is also
useful to define the quantities Pt

S/T and Pr
S/T as the transmitted

and reflected probabilities for singlet and triplet states. The
maximum probability in the whole space of either state
equals 0.5 due to the general form �14� of the wave function.
The transmitted and reflected concurrence are considered
only when the corresponding singlet or triplet probabilities
are not negligible. For the numerical calculations the mini-
mum limit was taken to be approximately 10−2. We should
also mention that by definition33 0�C�1, where the limit
C=0 corresponds to an unentangled state and C=1 to a fully
entangled state. For the time dependent problem under study,
the concurrence is also time dependent and it is easily veri-
fied that for the initial state, C�t=0�=0.

C. Entanglement generation

In this section we present some typical scattering results
that take place when the two electrons interact via the Cou-
lomb interaction and demonstrate how the entanglement de-
velops with time due to this interaction.

Figure 5 shows the initial and final electron density
�S/T�x , t�=2�dx���S/T�x ,x� , t��2, and Fig. 6 shows how the
concurrence and the relative probabilities develop with time
for the parameters Vw=6 meV, lw=7.5 nm, and Vo=2 meV.
For these parameters the quantum well can accommodate
only a single bound electron, a second electron being delo-
calized due to the Coulomb interaction. From the figure we
see that there is a very high transmission for the singlet state
and high reflection for the triplet state after scattering. The
concurrence �C ,Ct ,Cr� varies with time, due to the interac-
tions of the wave packets mediated by the Coulomb interac-
tion, and eventually saturate to a constant value when the

overlap is once again negligible. The transient time interval
is not of main interest since the degree of entanglement is
important after the scattering process when the two electrons
are well separated. Note that the reflected concurrence is
close to unity since at the left-hand side the reflection prob-
ability of the singlet state is very small compared with that of
the triplet, and a pure Sz=0 triplet is fully spin entangled. In
this case, the reflection process may be regarded as a filtering
process in which the singlet part of the initial wave function
is essentially removed by transmission to the right. One the
other hand, if we look in transmission, although the singlet
part is almost fully transmitted, the transmission of the triplet
is not negligible and interference results in an asymptotic
concurrence which is somewhat less than unity. We also see

FIG. 5. �Color online� Initial �dashed� and final electron distri-
bution �full� in arbitrary units when the singlet state �top� is mostly
transmitted and the triplet state �bottom� is mostly reflected.

FIG. 6. �Color online� Concurrence and relative probabilities as
a function of time when the singlet state is mostly transmitted and
the triplet state is mostly reflected.
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that the maximum concurrence is also significantly reduced
when the measurement domain includes both transmitted and
reflected parts after scattering.

In Fig. 7 we present results for a smaller SAW amplitude
�Vo=0.5 meV� for which the initial and final electron density
of both singlet and triplet states are almost totally reflected,
the electron carried by the SAW being almost completely
reflected by the Coulomb repulsion with the bound electron.
Figure 8 illustrates how the concurrence develops in time,
the concurrence of the reflected part and that over the whole
domain being approximately the same due to the high reflec-
tion. We can see again that the concurrence builds up with
time due to the Coulomb interaction and saturates to a con-
stant value after reflection. Note however, that this
asymptotic value is much smaller, due essentially to the Cou-
lomb repulsion inhibiting significant overlap of the wave
packets.

A third regime of interest is when both singlet and triplet
are almost fully transmitted. Figure 9 shows the initial and
final electron density for such a case with parameters Vw
=70.5 meV, lw=10 nm, and Vo=10 meV. Although for this
choice of parameters the quantum well can bind two elec-

trons in the absence of the SAW, the second electron does not
in fact become bound when it is carried by the SAW and
after scattering the probability of finding both electrons in
the well is negligible. This is because the SAW period is too
short for the second electron to become trapped in the well.
We thus see that both singlet and triplet states are almost
perfectly transmitted, while the electron in the quantum well
remains very well localized. However, the electron in the
SAW potential minimum, after passing through the region of
the bound electron in the well, gains energy from the inter-
action, resulting in a superposition state which includes ex-
cited states of the SAW. It is easily verified that for this
special case the concurrence takes the form33 C= �Im
T �S��,
where �T� and �S� are the single electron states of the trans-
mitted electron in a SAW minimum which result from triplet
and singlet states respectively. We see from this formula that
C=1 only when �T� and �S� differ by a phase factor of � /2.
This is not the case in general, for which not only the phases
but also the amplitudes of �T� and �S� are different. Limits
which give zero concurrence are when �S�= �T� �such as the
trivial case of no interaction between the electrons� and when
�S� and �T� are orthogonal. As explained in the next section
the latter can occur, or approximately so, when an electron in
the well resonantly tunnels out of the well into an excited
state of a SAW minima for singlet but not triplet or visa
versa. More generally, the overlap �and hence C� may be
small but not precisely zero due again to different tunnelling
rates for singlet and triplet. Figure 10 shows how the con-
currence and the relative probabilities develop in time. Simi-
larly with the previous cases the concurrence increases and
saturates to a constant value, while for intermediate times it
oscillates. Since the reflected part is very small, we get the
expected result that the asymptotic value of the transmitted
concurrence approximately equals the total concurrence C
�Ct�0.53.

Finally, we consider the possibility of choosing param-
eters such that by changing the confining characteristics of
the well the singlet and triplet orbital components, after the

FIG. 7. �Color online� Initial �dashed� and final electron distri-
bution �full� in arbitrary units when both singlet �top� and triplet
�bottom� are almost totally reflected.

FIG. 8. Concurrence as a function of time when both singlet and
triplet are almost totally reflected.

FIG. 9. �Color online� Initial �dashed� and final electron distri-
bution �full� in arbitrary units for a typical case when both singlet
�top� and triplet �bottom� are almost fully transmitted.
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scattering event, may be chosen to differ only by a phase
factor ei��, with ��=�S−�T. This may be done, at least ap-
proximately, for parameters which give almost perfect
transmission for both singlet and triplet states. This occurs,
for example, when the SAW amplitude is sufficiently large.
For this regime the concurrence takes the form33

C= �sin ���, as can be seen directly from Eq. �15�, using
the form �S�x1 ,x2 , tf�=ei�S�� f�x1���x2�+��x1�� f�x2�� /�2,
�T�x1 ,x2 , tf�=ei�T�� f�x1���x2�−��x1�� f�x2�� /�2, for the sin-
glet and triplet orbital components, respectively. Note that � f
describes the electron in the SAW potential after scattering
and � describes the electron in the well. We see immediately
from this form that the concurrence may be controlled by
changing the relative phase of singlet and triplet while main-
taining approximately full transmission, giving full entangle-
ment when the magnitude of this phase difference is � /2.
However the value of the phase difference cannot be easily
controlled and, indeed, the phase difference picture is itself
only an approximate since the singlet and triplet probabilities
distributions in the SAW minimum after scattering are never
precisely identical. However for some special cases this
model is an excellent approximation as shown for example in
Fig. 11 for the parameters Vw=66 meV, lw=10 nm for which
the well can bind at least two electrons and Vo=20 meV. We
see that the electron in the SAW after the scattering event is
well bound in the SAW potential minimum occupying the
characteristic ground state both for singlet and triplet. In Fig.
12 we show the concurrence as a function of time. In this
case the concurrence increases relatively smoothly compared
to the previous cases because we are in a regime where the
one electron orbital states in the scattering process are the
same for singlet and triplet, apart from a phase factor. Note
that in order to even have the possibility of achieving high
concurrence the electrons must have sufficient time to inter-
act as the SAW propagates. The time scale to give spin en-
tanglement is of order � / �J�, with J=ET−ES the exchange

energy and ET, ES the triplet and singlet energies when we fix
the SAW with both electrons in the proximity of the well.
Hence the SAW period must be at least as long as this for
high concurrence to be possible and this is indeed the case
for typical SAWs which used to give high accuracy single
electron quantization,5–7 as we demonstrate in next section.
Finally, it is worth mentioning that to a good approximation
a phase difference may be present even when both states are
reflected backwards, as described earlier. However in this
case the phase difference is expected very small due to the
weak effect of the Coulomb interaction. Furthermore, the
regime of near perfect transmission also has the advantage
that the electron in the SAW, after the scattering event is very

FIG. 10. �Color online� Concurrence and relative probabilities
as a function of time for a typical case when both singlet and triplet
are almost fully transmitted.

FIG. 11. �Color online� Initial �dashed� and final electron distri-
bution �full� in arbitrary units when both singlet �top� and triplet
�bottom� are fully transmitted with a phase difference as it is de-
fined in the text.

FIG. 12. �Color online� Concurrence and relative probabilities
as a function of time when both singlet and triplet are fully trans-
mitted with a phase difference as it is defined in the text.
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well localized in a particular SAW minimum driven along
the wire.

For all the cases we have described so far the induced
entanglement between the two-electron spins is subjected to
quantum decoherence which is an undesirable factor present
to all solid state systems. The spin lifetime in GaAs, within
which the process of generation detection needs to take
place, is estimated to be �100 ns �Ref. 37� arising primarily
from phonon scattering. Typical times to generate entangle-
ment in the SAW-based system are almost two orders of
magnitude shorter while methods to read the final spin states
have been described theoretically in Refs. 11 and 14 for the
SAW qubit and already demonstrated experimentally for the
static qubit.38 Other important sources of decoherence that
can affect the entanglement generation are coupling of elec-
tron spins to nuclear spins,39,40 noise on surface gates and
temperature effects. These are discussed in the original pro-
posal for SAW-based quantum computation.11,14

IV. A HARTREE APPROXIMATION

The mechanism that controls the different scattering of
singlet and triplet may be understood with an approximate
treatment which also gives insight into the origin of the dif-
ferences in transmission and reflection probabilities and con-
currence. In a mean-field approximation, the electron which
is carried by the SAW potential feels an effective time-
dependent potential of the form VSAW

e �x , t��Vt�x , t�
+VH�x , t�, where the second term represents the Hartree po-
tential due to the Coulomb repulsion of the trapped electron
in the well: VH�x , t�=����x� , t��2Vc�x ,x��dx�. This assumes
that the trapped electron in the quantum well remains well
localized and is described at a specific time t by the state
��x , t�. Below we explain the different scattering results of
Sec. III C by employing the effective potential form VSAW

e

for the propagating electron.

A. The single bound energy level regime

First we consider the cases for which the quantum well
has a single bound energy level, i.e., the first two cases of
Sec. III C. Figure 13�a� illustrates the effective potential
VSAW

e �x , t� when t is such that VSAW�x , t� is minimum at x
�0 and for parameters that result in high transmission for
the singlet state and high reflection for the triplet �that is the
first case that we described in Sec. III C�. The effective po-
tential may be described as a triple well structure that
changes with time due to the time-dependent nature of the
SAW potential. Specifically, due to the SAW propagation, the
right well becomes deeper than the left well with increasing
time, with the middle well shifting upwards and downwards
in energy at x�0. Initially, the electron that is carried by the
SAW resides in the left well and has a tendency to tunnel
through the middle well into the right well, in order to re-
main bound in the SAW potential. The tunnelling mechanism
is more efficient when there are resonance conditions for the
electron to first tunnel from the left well into the middle well
and then from the middle well to the right-hand well, i.e., in
the time interval when resonant bound state energy widths of

the left-hand, middle, and right-hand wells overlap. Of
course the SAW potential amplitude, the width of the wire
and the characteristic width and depth of the well should be
chosen in such a way that the resulting effective potential
guarantees at least one resonance energy level for the middle
well, that will lie above the bottom of the right-hand and
left-hand wells. A sufficiently large SAW amplitude is also
necessary to ensure that the barrier between the resonance
condition between left-hand and middle wells is satisfied,
otherwise the electron in the SAW will be reflected. Finally,
a necessary criterion for high transmission is that there must
be sufficient time for the whole process to take place, i.e., the
tunnelling time into and out of the middle well must be much
smaller than the period of the SAW, a condition that is ful-
filled in the simulations.

To explain qualitatively the difference in the evolution
between the singlet and the triplet states, we also need to
consider explicitly the symmetry of the orbital states and
take into account the fact that only for the singlet state can
both electrons occupy the same one electron orbital state.
More specifically, if �o�x , t� is the lowest resonant bound
state of the combined well and SAW potential that peaks in
the region of the well x�0, then the instantaneous energy of
the two-electron singlet state on resonance is ES�t���o�t�
+Uo�t� where Uo�t�=���o�x1 , t��2Vc�x1 ,x2���o�x2 , t��2dx1dx2

is the Coulomb energy when both electrons occupy the
single electron state �o�x , t�. This is analogous to resonant
tunnelling in the Anderson impurity model. A similar ap-
proach could be applied to the triplet state but in this case the
two electrons must occupy different one electron resonance
levels, �o�x , t� and �1�x , t� due to the Pauli principle. If the
quantum well had a second resonant state then the two-
electron resonance would occur at the generally higher, trip-
let resonance energy ET�t���1�t�+U1,0�t�−J1,0�t��ES�t�,
where U1,0�t� and J1,0�t� are the Coulomb and the exchange
integrals, respectively.

FIG. 13. �Color online� �a� The effective potential, and its con-
stituent parts, that a SAW electron feels at a time for which the
SAW potential is minimum at x=0 and for a SAW amplitude Vo

=2 meV. �b� The effective potential close to the resonant tunnelling
regime for the singlet state for a SAW potential amplitude Vo

=2 meV �solid line�. For Vo=0.5 meV �dotted line� the resonance
condition cannot be fulfilled �see text�.
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From the above description it is clear that the electron
which is carried by the SAW feels an effective potential
which is independent of the character of the two-electron
orbital state �symmetric or antisymmetric�, however this is
not the case for the energy levels of the tunnelling process.
For the first regime described in Sec. III C the singlet reso-
nance level gives high resonance transmission only for the
singlet state, as expected. The transmission of the triplet state
is much weaker and is in fact due to nonresonant tunnelling,
since with the chosen parameters the energy of the electron
in the effective potential VSAW

e is always below the barriers
which define the middle well. Note that for this case the
SAW potential amplitude is strong enough to drive the
propagating electron to the resonance level. On the other
hand, in the second regime described in Sec. III C the SAW
potential well is so shallow that, for both singlet and triplet,
the propagating electron is reflected before it reaches the
resonance energy for tunnelling into the middle well. Figure
13�b� shows the effective potential profile close to the reso-
nant tunnelling regime for the singlet state for both SAW
potential amplitudes. Note that the resonance level lies above
the bottom of the left- and right-hand wells, ensuring that
tunnelling may occur. For these two regimes an effective
antiferromagnetic exchange interaction controls the scatter-
ing process since the singlet scattering involves lower energy
levels than the triplet.

B. Beyond the single bound energy level regime

For the last two cases of Sec. III C the quantum well has
more than a single bound energy level and can bind at least
two electrons. One effect of making the quantum well deeper
is to reduce the barriers to the SAW wells to the left and
right, as can be seen by comparing Figs. 13�a� and 14�c� for
the effective one electron potential. This results in almost
perfect transmission for both singlet and triplet states pro-
vided the SAW amplitude is much larger than the small re-
sidual barriers when the quantum well is at a SAW potential
minimum �Fig. 14�c��. However, the different positions of
the singlet and triplet resonances still affect the final orbital
states of the transmitted electron in the SAW, depending on
the magnitude of the tunnel barrier when the SAW potential
minimum energy is close to the resonance level in the quan-
tum well �e.g., Fig. 14�b��.

Specifically, when this barrier is large the propagating
electron emerges in the lowest state of the SAW potential
minimum. This is illustrated in Fig. 14, where we plot some
of the instantaneous eigenenergies of the effective one elec-
tron potential VSAW

e for the parameters that result in a phase
difference between singlet and triplet �this is the last case
that we considered in Sec. III C�. Note that the quasibound
state levels within the well include the effect of Coulomb
repulsion due to the bound electron which shifts the potential
well up in energy by VH and also gives rise to the very small
peaks in the effective potential. At t=0 �Fig. 14�a�� the
propagating electron is in the lowest energy of the VSAW

e

potential minimum to the left of the quantum well. This is
actually the first excited state of the system since the lowest
state is in the well. Between t=0 and t=0.3T �Figs. 14�a� and

14�b�� the energy levels corresponding to the electron in the
VSAW

e minimum and in the second state of well are almost the
same �anticrossing region� but there is insufficient time for
the electron to tunnel into the well and therefore it remains in
the VSAW

e potential minimum. It therefore makes a �nonadia-
batic Landau-Zener� transition from the first to the second
excited state of the system. At t�0.3T there is a further
anticrossing region and transition to the third excited state of
the system with the electron remaining in the SAW. Between
t=0.5T and t=T �Figs. 14�d� and 14�e�� there are further
transitions back to the initial state. This is the reason that the
propagating electron emerges in the lowest state of the VSAW

e

potential minimum which actually coincides with the origi-
nal SAW potential minimum when the electrons are well
separated at t=T �Fig. 14�e�� when the SAW cycle is com-
pleted. It is clear from Fig. 14�c� that the highest resonance
level of the well, in this case the fourth level, gives rise to the
largest interaction with the propagating electron as long as
tunnelling to lower excited states is blocked due to the large
barrier. Of course lower excited resonances are involved for
shallower quantum wells.

Although the scattering process does not excite the elec-
tron in the SAW, it does affect its wave function by inducing

FIG. 14. Propagation of an electron in the VSAW
e minimum pass-

ing through the well region. The dashed line indicates the energy of
the propagating electron at each particular time, if after the SAW
cycle it exits the well region in the lowest state of the SAW mini-
mum. The full lines indicate the energy levels of the quantum well.
In the anticrossing regions �b� and �d� the electron makes a nona-
diabatic Landau-Zener transition and always remains in the VSAW

e

minimum when the tunnel barrier is large and as a result after the
SAW cycle the electron emerges in the lowest state of the SAW
potential minimum �e�. When the tunnelling probability into and out
of the quantum well is not negligible, the electron emerges in a
superposition state of the low-lying states of the SAW. The time
sequence is from �a� to �e� and specifically t /T=0,0.3,0.5,0.7,1.
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a phase shift and this phase shift is different for singlet and
triplet cases due to Coulomb interaction. In particular, the
evolution of singlet and triplet states will be different but,
unlike the lowest singlet-triplet pair, the higher-lying levels
will generally have the triplet lower in energy than the sin-
glet, due essentially to Hund’s rule.41,42 This results in a fer-
romagnetic exchange interaction, rather than the antiferro-
magnetic exchange of the lowest singlet-triplet pair. It is the
small energy difference between the relevant singlet and trip-
let energy levels which induces the relative phase between
singlet and triplet states as a consequence of the interaction
time for the two electrons which is set by the SAW period.
We show in the next section how the phase difference may
be directly related to a ferromagnetic exchange interaction
between the spins of the two electrons as they interact,
changing their entanglement.

Finally, when the parameters are such that the probability
to tunnel from the SAW potential minimum to the well is not
negligible in the anticrossing region �e.g., the third case con-
sidered in Sec. III C� then the electron will emerge in a su-
perposition state of the low-lying states of the SAW. This can
be understood qualitatively again by referring to Fig. 14.
Since the tunnelling probability is no longer negligible at the
point where the VSAW

e minimum crosses a resonance level,
then the electron in the region of the well �e.g., Fig. 14�c��
will emerge in a superposition state of the third and fourth
energy levels. Similarly, at later times when the energy level
corresponding to the electron in the well sweeps through
higher excited levels in the VSAW

e potential minimum the
electron will eventually leave the well and emerge in an
asymptotic state that is a superposition of the low-lying
states of the SAW. In this regime the different orbital states
for singlet and triplet are due to different tunnel barriers for
the highest-lying singlet-triplet pair due to different positions
of the resonances. Note, however, that if the highest-lying
resonant level is very close to the top of the well, such that
there is strong tunneling into and out of the well, then the
propagating electron will emerge in the SAW ground state
for both singlet and triplet, though their phases will in gen-
eral be different.

To conclude, an effective antiferromagnetic exchange in-
teraction controls the scattering events when the quantum
well has only one bound state, due to the singlet resonance
channel. However, by increasing the depth of the well the
ground singlet resonance level becomes inactive simply be-
cause it lies much lower than the energy of the propagating
electron at all times. In this regime the scattering is con-
trolled by an effective ferromagnetic exchange interaction
involving excited states for singlet and triplet in which the
triplet is lower. It is interesting to note that in the flying qubit
scheme11,13 it is always an antiferromagnetic exchange inter-
action that generates the entanglement, whereas in the
scheme that we propose both ferromagnetic and antiferro-
magnetic type interactions can generate entanglement de-
pending on SAW and well parameters.

V. SOME GENERAL FEATURES OF THE
ENTANGLEMENT

In this section we generalize some of the above results
and demonstrate quantitatively the sensitivity of the system

to changes in the well and the SAW characteristics.
Figure 15�a� illustrates the variation of the concurrence

versus the SAW potential amplitude for a quantum well with
Vw=6 meV and lw=7.5 nm, which can accommodate only a
single bound electron. This plot shows the total, transmitted
and reflected concurrence at the final time for which the
overlap of propagating and bound electron wave packets is
negligible. Figure 15�b� presents the corresponding prob-
abilities. Note that the SAW potential amplitude is restricted
to the specific regime for which the electron in the quantum
well remains well-localized, as described in Sec. II B. We see
that the very small transmission of singlet and triplet �which
we include here for completeness�, corresponding to the
minimum value of the SAW amplitude, gives rise to a con-
currence, Ct�0.5. With increasing SAW amplitude there is
then a regime in which the transmitted concurrence increases
to Ct�1, for which the singlet state is on resonance and
simultaneously there is minimum transmission for the triplet
state. We may regard this as a two-electron spin filter for
which the initial unentangled state, that is an equal superpo-
sition of singlet and Sz=0 triplet states, has its triplet com-
ponent filtered out �reflected� with resonant transmission of
the fully entangled singlet component. For this SAW ampli-
tude, a “fuzzy” position measurement applied to the outgoing
electron �say through charge sensing34–36�, which merely re-
solves whether it is transmitted or reflected, could be used to
probabilistically prepare a highly entangled state. The form
of the state prepared is heralded by the measurement out-
come. Further increase of the SAW potential amplitude from
this point causes the transmitted concurrence to gradually
decrease due simply to the higher transmission of the triplet
state. The reflected concurrence is very small for low SAW
potential amplitude and approximately equals the total con-
currence due to the very high reflection for both states. It

FIG. 15. �Color online� Variation of asymptotic �final time� con-
currence �a� and relative probabilities �b�, as defined in the text,
versus the SAW potential amplitude when the quantum well is such
that only a single electron can be bound.
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then increases smoothly as the singlet transmitted part in-
creases and remains almost constant and close to unity with
further increase of the SAW amplitude, since the reflected
component is mainly triplet. Finally, the total concurrence
has a relatively more complicated behavior, although it is
clear that it has a maximum value C�0.4 when Pr

S= Pt
S

�0.25, namely when the singlet is equally transmitted and
reflected. Also it is always lower than the transmitted and
reflected concurrence except when Pt�0 and then C�Cr.
We may conclude from Fig. 15 that the degree of entangle-
ment for the two electrons can be changed significantly with
SAW amplitude in the regime that scans through the singlet
resonance and that there exists a point where in principle,
through “fuzzy” position measurement, highly entangled
states could be prepared.

A more relevant case for simpler experiments, which do
not require position measurement to project into the trans-
mitted or reflected outcomes for the outgoing electron, is
when the SAW potential amplitude and the quantum well are
such that the electron in the SAW is always fully transmitted,
or approximately so, leaving the partner electron bound in
the quantum well. The backward reflection, which is more
likely to occur for a low potential amplitude, may cause un-
desirable effects, since the reflected electron will occupy
multiple wells and involves highly excited components. This
case of a reflected nonbound electron is more efficiently
studied using kinetic injection without the presence of the
SAW potential, as it is described, for example, in Refs. 19
and 21. In addition, a strong SAW potential amplitude has
the advantage of preventing the trapped electron from leak-
ing into adjacent minima, thus minimizing possible errors.
We have calculated the concurrence as a function of the well
depth for two different, though relatively strong, SAW po-
tential amplitudes of Vo=20 meV and Vo=10 meV, and for
fixed lw=10 nm. The SAW potential amplitude that is used in
the experiments for SAW-based SET applications can be
even stronger than this �Vo�40 meV�,24 though along the
channel there is likely to be some screening due to the gate
bias. The chosen parameters guarantee that there is very high
transmission both for singlet and triplet states �Pt

S/T�0.5�. In
this study the range of the well depth ensures high localiza-
tion of the trapped electron resulting in a truly bound singlet
ground state, as calculated within a Hartree approximation
and therefore, a ferromagnetic type exchange interaction
generates the entanglement as described in the preceding sec-
tion.

The results for the total concurrence, which almost equals
the transmitted concurrence, are shown in Fig. 16, while Fig.
17 illustrates the singlet and triplet components of the elec-
tron in the SAW �after scattering� for various well depths and
for the SAW amplitude of Vo=10 meV. Figure 16 presents
two distinct maxima for each of the two amplitudes consid-
ered with an intermediate region of relatively low concur-
rence �which is shown in detail in the inset of Fig. 16�.
Analysis of the data shows that in the rise up to the first
maximum, the asymptotic state is approximated well by the
simple phase difference picture described in Sec. III C, i.e.,
with the electron in the SAW potential minimum being in its
ground state, to a good approximation, but with a phase dif-
ference between singlet and triplet components. This concur-

rence of almost unity at the maximum then corresponds to a
phase difference of ���� /2. As the well depth is increased
from this point the electron in the SAW occupies additional
excited states which are different for singlet and triplet �the
phase difference picture is no longer valid� and this is why
the concurrence decreases. Figure 17 helps us understand
how the singlet and triplet components of the electron in the
SAW change with well depth and specifically how we pass
from a region of different probability distribution to a region
where the phase difference picture is valid. This behavior is
clear, for example, by considering Figs. 17�a�–17�c�. Similar
behavior is valid for a SAW amplitude of Vo=20 meV.
Within the intermediate region for both SAW amplitudes the
concurrence fluctuates due to spin-dependent scattering
events which involve excited states of the SAW potential
minimum. Figure 17�c� shows an example within this region.
Note that zero concurrence corresponds to cases where the
orbital states in the SAW for singlet and triplet components

FIG. 16. �Color online� Variation of asymptotic �final time� con-
currence for a fixed SAW potential amplitude �Vo=10 meV, Vo

=20 meV� as a function of the well depth.

FIG. 17. �Color online� Final electron distribution for singlet
and triplet states in the SAW potential minimum, for a SAW ampli-
tude of Vo=10 meV and a well depth from �a� to �f� of Vw

=26,36,47,62,75,85 meV.
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are exactly orthogonal. Further increase of the well depth
gives rise to a second concurrence maximum, due to the fact
that the final states of the SAW electron for singlet and triplet
components are approximated by the ground state of the
SAW potential minimum. Similar to the first concurrence
maximum, the phase difference picture is again valid as
shown, for example, in Fig. 17�d�. Excited states with high
probability however are involved in the scattering process,
different for singlet and triplet as we demonstrate in Fig.
17�e� �reflecting spin-dependent scattering� lowering the
concurrence. This occurs up to the regime of the very deep
quantum well �at the right-hand side of Fig. 16 and for each
SAW amplitude� where the phase difference picture becomes
valid as Fig. 17�f� demonstrates. This is because the Cou-
lomb interaction is effectively reduced due to the high con-
finement of the trapped electron. Singlet and triplet compo-
nents are scattered mainly due to the presence of the
potential well in the same final states with only a small effect
from the Coulomb interaction, which will become negligible
for extremely deep wells. When this extreme limit is reached
the two-electron states will be approximated at all times by
single electron states.

As in the preceding sections, the asymptotic value of the
concurrence �at the final time� which emerges when a rela-
tive phase difference is present between singlet and triplet
states, depends on the magnitude of the so-called exchange
energy J�t�=ET�t�−ES�t� and the SAW period which sets the
interaction time. In the phase difference regime an approxi-
mate Heisenberg Hamiltonian43 H�t�=J�t�S1 ·S2, with Sı the
spin operator of the ıth electron can provide insight into the
spin entanglement generation. This is because in this regime
the two electrons at all times occupy different and well-
defined orbital states and as we have described in Sec. IV B
these states are the same for singlet and triplet apart from a
phase factor. The exchange energy as a function of time can
be determined by solving the instantaneous �time-
independent� two-electron Schrödinger equation for singlet
and triplet states treating time as a parameter, i.e.,
H�t��n

S/T�t�=En
S/T�t��n

S/T�t�, with the Hamiltonian given by
Eq. �11�. A common diagonalization procedure is described
in Refs. 13, 41, and 42. The instantaneous solutions provide
the sets En

S�t� and En
T�t� with n the eigenvalue index. By

following the nonadiabatic Landau-Zener transitions which
successfully take place in the phase difference regime, we
can extract the energy of the two electrons during the scat-
tering event, i.e., ET�t�, ES�t� and from these the J�t�=ET�t�
−ES�t� curve.44 In Fig. 18 we show the exchange energy as a
function of time for two different well depths Vw=36 meV,
Vw=62 meV and a SAW potential amplitude Vo=10 meV
which result in a phase difference as shown in Figs. 17�b�
and 17�d�. As we have analyzed in Sec. IV B and we see in
Fig. 18, the exchange energy J is negative in the phase dif-
ference regime. The lower J for the case of the Vw
=62 meV well depth is because a higher excited energy level
for the singlet-triplet pair is involved in the scattering pro-
cess, compared to the Vw=36 meV case and in general
higher excited energy levels have a smaller separation.41,42

For the phase difference regime and within the Heisenberg
model we can calculate the asymptotic concurrence C

= �sin ��� by extracting the relative phase difference �� di-
rectly from the J�t� curve as ��=�0

TJ�t� /�dt. Note that the
time interval of the integration is set by the SAW period T
which is fixed in the experiments. The values that we take by
this approximate treatment are in excellent agreement with
the values that we take by solving the two-electron
Schrödinger equation and by calculating the concurrence by
the original formula �15�.

VI. SUMMARY

In summary, we have presented and investigated a scheme
to produce entangled states for two electrons utilizing a
SAW. One electron is carried by the time-dependent SAW
potential along a semiconductor quantum wire where a sec-
ond electron is bound in a quantum well. The Coulomb in-
teraction induces entanglement between the two electrons
that can cover the full range from zero to full entanglement,
depending on SAW potential amplitude and the shape of the
confining potential. There are two regimes of interest, de-
pending on the SAW and well parameters.

The first is when there is a significant difference between
transmission probabilities for singlet and triplet states. In this
regime, entanglement generation may be interpreted as a
spin-filtering effect in which the singlet component of an
initially unentangled state has a higher transmission prob-
ability than the triplet due to spin-dependent scattering. This
gives maximal entanglement �C�1� for resonant singlet tun-
nelling with full transmission for the singlet case and almost
full reflection for the triplet case. “Fuzzy” position measure-
ment �possibly through charge sensing34–36�, just resolving
whether the outgoing electron is transmitted or reflected,
would be needed to make this useful entanglement. The mea-
surement result would identify and herald the form of en-
tangled state produced in each run of an experiment.

The second regime occurs for the parameters chosen such
that there is approximately full transmission for both singlet
and triplet cases. Within this regime the transmitted electron
in a SAW minimum can be left in an excited state which in

FIG. 18. Exchange energy as a function of time, for two differ-
ent well depths �Vw=36 meV, Vw=62 meV� and a SAW potential
amplitude of Vo=10 meV.
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some cases is different for singlet and triplet and in some
cases the same �or approximately so�. In the latter cases,
concurrence is given by a simple expression involving the
relative phase difference between the transmitted SAW po-
tential minimum wave functions arising from singlet and
triplet. This demonstrates maximal entanglement when the
phase difference is � /2 and we have identified a physically
reasonable set of parameters for which this occurs. For other
cases, the concurrence cannot reach the unitary limit and can
fluctuate significantly due to spin-dependent resonance ef-
fects when the electrons interact. In this regime of near full
transmission, the concurrence is low when the transmitted
SAW minima wave functions are significantly different from
each other for singlet and triplet cases, becoming zero in the
limiting cases when these wave functions are orthogonal.

The physical system we have considered and the param-
eter ranges we have investigated suggest that it should be
experimentally possible to produce useful entanglement be-
tween a travelling and a trapped electron, using a SAW. This
could be achieved either by sensing whether the outgoing
electron is transmitted or reflected, or by working in a regime
where there is essentially complete transmission.
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