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We show that temperature and magnetic-field properties of the entanglement between spins on the two-
dimensional Shastry-Sutherland lattice can be qualitatively described by analytical results for a qubit tetramer.
Exact diagonalization of clusters with up to 20 sites reveals that the regime of fully entangled neighboring pairs
coincides with the regime of finite spin gap in the spectrum. Additionally, the results for the regime of
vanishing spin gap are discussed and related to the Heisenberg limit of the model.
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I. INTRODUCTION

In any physical system with subsystems in interaction,
individual parts of the system are to some extent entangled,
even if they are far apart, as realized already at the beginning
of modern quantum mechanics 70 years ago. Today, it has
become appreciated that the ability to establish entanglement
between quantum particles in a controlled manner is a crucial
ingredient of any quantum information processing system.1

On the other hand, it turned out that the analysis of appro-
priately quantified entanglement between parts of the system
can also be a very useful tool in the study of many-body
phenomena, as is, e.g., the behavior of correlated systems in
the vicinity of crossovers between various regimes or even
points of quantum phase transition.2

Quantum entanglement of two distinguishable particles in
a pure state can be quantified through von Neumann
entropy.3–5 Entanglement between two spin-1

2 particles—
qubit pair—can be considered a physical resource, an essen-
tial ingredient of algorithms suitable for quantum computa-
tion. For a pair of subsystems A and B, each occupied by a
single electron, an appropriate entanglement measure is the
entanglement of formation, which can be quantified from the
Wootters formula.6 In general, electron qubits have the po-
tential for even richer variety of entanglement measure
choices due to both their charge and spin degrees of freedom.
When entanglement is quantified in systems of indistinguish-
able particles, the measure must account for the effect of
exchange and it must adequately deal with multiple occu-
pancy states.7–12 A typical example is the analysis of en-
tanglement in lattice fermion models �the Hubbard model,
for example� where double occupancy plays an essential
role.11

In realistic hardware designed for quantum information
processing, several criteria for qubits must be fulfilled:13 the
existence of multiple identifiable qubits, the ability to initial-
ize and manipulate qubits, small decoherence, and the ability
to measure qubits, i.e., to determine the outcome of compu-
tation. It seems that among several proposals for experimen-
tal realizations of such quantum information processing sys-
tems, the criteria for scalable qubits can be met in solid-state

structures consisting of coupled quantum dots.14,15 Due to the
ability to precisely control the number of electrons in such
structures,16 the entanglement has become experimentally
accessible quantity. In particular, recent experiments on
semiconductor double quantum dot devices have shown the
evidence of spin entangled states in GaAs based
heterostuctures17 and it was shown that vertical-lateral
double quantum dots may be useful for achieving two-
electron spin entanglement.18 It was also demonstrated re-
cently that in double quantum dot systems, coherent qubit
manipulation and projective readout are possible.19

Qubit pairs to be used for quantum information process-
ing must be to a high degree isolated from their environment;
otherwise, small decoherence requirement from the DiVin-
cenzo’s checklist cannot be fulfilled. The entanglement, e.g.,
between two antiferromagnetically coupled spins in contact
with thermal bath, is decreased at elevated temperatures and
external magnetic field,20–22 and will inevitably vanish at
some finite temperature.23 Entanglement of a pair of elec-
trons that are confined in a double quantum dot is collapsed
due to the Kondo effect at low temperatures and for a very
weak tunneling to the leads. At temperatures below the
Kondo temperature, a spin-singlet state is formed between a
confined electron and conduction electrons in the leads.24 For
other open systems, there are many possible sources of de-
coherence or phase breaking, for example, coupling to pho-
non degrees of freedom.25

The main purpose of the present paper is to analyze the
robustness of the entanglement of spin qubit pairs in a planar
lattice of spins �qubits� with respect to frustration in mag-
netic couplings, elevated temperatures as well as due to in-
creasing external magnetic field. The paper is organized as
follows. Section II introduces the model for two coupled
qubit pairs—qubit tetramer—and presents exact results for
temperature and magnetic-field dependence of the entangle-
ment between nearest- and next-nearest-neighboring spins in
a tetrahedron topology. In Sec. III, the model is extended to
infinite lattice of qubit pairs described by the Shastry-
Sutherland model.26 This model is convenient firstly, because
of the existence of stable spin-singlet pairs in the ground
state in the limit of weak coupling between the qubit pairs,
and secondly, due to a relatively good understanding of the
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physics of the model in the thermodynamic limit. Entangle-
ment properties of the Shastry-Sutherland model were so far
not considered quantitatively. Nevertheless, several results
concerning the role of entanglement at a phase transition in
other low-dimensional spin-lattice systems,2,27–33 as well as
in fermionic systems,34–37 have been reported recently. Near
a quantum phase transition in some cases, entanglement even
proves to be more efficient precursor of the transition com-
pared to standard spin-spin correlations.38,36,39 In Sec. IV, we
discuss entanglement between nearest neighbors in the
Heisenberg model, representing a limiting case of the
Shastry-Sutherland model. Results are summarized in Sec. V
and some technical details are given in the Appendix.

II. THERMAL ENTANGLEMENT OF A QUBIT TETRAMER
IN MAGNETIC FIELD

Consider first a double quantum dot composed of two
adjacent quantum dots weakly coupled via a controllable
electron-hopping integral. By adjusting a global backgate
voltage, precisely two electrons can be confined to the dots.
The interdot tunneling matrix element t determines the effec-
tive antiferromagnetic �AFM� superexchange interaction J
�4t2 /U, where U is the scale of Coulomb interaction be-
tween two electrons confined on the same dot. There are
several possible configurations of coupling between such
double quantum dots. One of the simplest specific designs is
shown schematically in Fig. 1�a�: four qubits at vertices of a
tetrahedron. In addition to the coupling A-B, by appropriate
arrangements of gate electrodes, the tunneling between A-C
and A-D can as well be switched on.

We consider here the case where J /U�1, thus double
occupancy of individual dot is negligible and appropriate

Hilbert space is spanned by two dimers �qubit pairs�: spins at
sites A-B and C-D are coupled by effective AFM Heisenberg
magnetic exchange J and at sites A-C, B-C, A-D, and B-D by
J�. The corresponding Hamiltonian of such a pair of dimers
is given as

H4 = J�SA · SB + SC · SD� + 2J��SA · SC + SB · SC + SA · SD

+ SB · SD� − B�SA
z + SB

z + SC
z + SD

z � , �1�

where Si=
1
2�i is the spin operator corresponding to the site i

and B is the external homogeneous magnetic field in the
direction of the z axis. Factor 2 in Eq. �1� is introduced for
convenience—such a parametrization represents the simplest
case of finite Shastry-Sutherland lattice with periodic bound-
ary conditions studied in Sec. III.

A. Concurrence

We focus here on the entanglement properties of two
coupled qubit dimers. The entanglement of a pair of spin
qubits A and B may be defined through concurrence,3 C
=2��↑↑�↓↓−�↑↓�↓↑�, if the system is in a pure state ��AB�
=�ss��ss��s�A�s��B, where �s�i corresponds to the basis �↑ �i,
�↓ �i. Concurrence varies from C=0 for an unentangled state
�for example, �↑ �A�↑ �B� to C=1 for completely entangled
Bell states3 1

�2
��↑ �A�↑ �B± �↓ �A�↓ �B� or 1

�2
��↑ �A�↓ �B

± �↓ �A�↑ �B�.
For finite interpair coupling J��0 or at elevated tempera-

tures, the A-B pair cannot be described by a pure state. In the
case of mixed states describing the subsystem A-B, the con-
currence may be calculated from the reduced density matrix
�AB given in the standard basis �s�i�s�� j.

6 Concurrence can be
further expressed in terms of spin-spin correlation
functions,2,27 where for systems that are axially symmetric in
the spin space, the concurrence may conveniently be given in
a simple closed form,40 which for the thermal equilibrium
case simplifies further,

CAB = 2 max�0, ��SA
+ SB

−�� − ��PA
↑ PB

↑ ��PA
↓ PB

↓ �� . �2�

Here, Si
+= �Si

−�†=Si
x+ ıSi

y is the spin raising operator for dot i
and Pi

↑= 1
2 �1+2Si

z�, Pi
↓= 1

2 �1−2Si
z� are the projection opera-

tors onto the state �↑ �i or �↓ �i, respectively. We consider the
concurrence at fixed temperature; therefore, the expectation
values in the concurrence formula 	Eq. �2�
 are evaluated as

�O� =
1

Z
�

n

�n�O�n�e−�En, �3�

where Z=�ne−�En is the partition function, �=1/T, and ��n��
is a complete set of states of the system. Note that due to the
equilibrium and symmetries of the system, several spin-spin
correlation functions vanish, �SA

+ SB
+�=0, for example.

In vanishing magnetic field, where the SU�2� symmetry is
restored, the concurrence formula 	Eq. �2�
 simplifies further
and is completely determined by only one41 spin invariant
�SA·SB�,

FIG. 1. �Color online� �a� Two coupled qubit pairs �dimers� in
tetrahedral topology. �b� Shastry-Sutherland lattice as realized, e.g.,
in the SrCu2�BO3�2 compound.
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CAB = max0,− 2�SA · SB� −
1

2
� . �4�

The concurrence may be expected to be significant whenever
enhanced spin-spin correlations indicate A-B singlet forma-
tion.

B. Analytical results

There are several known results related to the model 	Eq.
�1�
. In the special case of J�=0, for example, the tetramer
consists of two decoupled spin dimers with concurrence CAB
�or the corresponding thermal entanglement� as derived in
Refs. 20 and 21. Entanglement of a qubit pair described by
the related XXZ Heisenberg model with Dzyaloshinskii-
Moriya anisotropic interaction can also be obtained
analytically.22 Hamiltonian H4 with additional four-spin ex-
change interaction but in the absence of magnetic field was
considered recently in the various limiting cases.42

Tetramer model 	Eq. �1�
 considered here is exactly solv-
able and in the Appendix, we present the corresponding
eigenvectors and eigenenergies. The concurrence CAB is for
this case determined from Eq. �2� with

�SA
+ SB

−� =
1

Z
	− e3j/2/2 − ej/2�eb + e−b�/2 + e−j/2+4j�/6

+ e−j/2+2j��eb + e−b�/4 + e−j/2−2j��eb/4 + 1/3 + e−b/4�
 ,

�5�

where j=�J, j�=�J�, b=�B, and with

�PA
↑↓PB

↑↓� =
1

Z
	ej/2�e±b� + e−j/2+4j�/3 + e−j/2+2j��1 + e±b�/2

+ e−j/2−2j��1/6 + e±b/2 + e±2b�
 . �6�

Here,

Z = e3j/2 + 2ej/2�eb + 1 + e−b� + e−j/2+4j� + e−j/2+2j��eb + 1

+ e−b� + e−j/2−2j��e2b + eb + 1 + e−b + e−2b� �7�

is the partition function.
Alternatively, one can also define and analyze the en-

tanglement between spins at sites A and C and the corre-
sponding concurrence CAC can be expressed from Eq. �2� by
applying additional correlators with replaced B→C,

�SA
+ SC

−� =
1

Z
	− e−j/2+4j�/3 − e−j/2+2j��eb + e−b�/4

+ e−j/2−2j��eb/4 + 1/3 + e−b/4�
 , �8�

and

�PA
↑↓PC

↑↓� =
1

Z
	e3j/2/4 + ej/2�1/2 + e±b� + e−j/2+4j�/12

+ e−j/2+2j�e±b/2 + e−j/2−2j��1/6 + e±b/2 + e±2b�
 .

�9�

The line 2J�=J represents a particularly interesting spe-
cial case where two dimers are coupled symmetrically form-

ing a regular tetrahedron. An important property of this sys-
tem is the �geometrical� frustration of, e.g., qubits C-A-B.
Such a frustration is the driving force of the quantum phase
transition found in the Shastry-Sutherland model and is the
reason for similarity of the results for two coupled dimers
and a large planar lattice studied in the next section.

C. Examples

In the low-temperature limit, the concurrence is deter-
mined by the ground-state properties while transitions be-
tween various regimes are determined solely by crossings of
eigenenergies, which depend on two parameters �J� /J ,B /J�.
There are five distinct regimes for CAB shown in Fig. 2�a�: �i�
completely entangled dimers �singlets A-B and C-D, state
��1� from the Appendix�, CAB=1; �ii� for B�J and smaller
J� /J, the concurrence is zero because the energy of the state
consisted of a product of fully polarized A-B and C-D trip-
lets, ��12�, is the lowest energy in this regime; �iii� concur-
rence is also zero for J��J /2 and low B /J, with the ground
state ��2�. There are two regimes corresponding to 1

2 step in
CAB where the ground state is either �iv� any linear combi-
nation of degenerate states ��6,7�, i.e., simultaneous A-B sin-
glet �triplet� and C-D triplet �singlet� for J�	J /2, or �v� state
��5� at J��J /2 and larger B. Qubits A-C are due to special
topology never fully entangled, and the corresponding CAC is
presented in Fig. 2�c�. In the limit of J�
J, the tetramer
corresponds to a Heisenberg model ring consisted of four
spins and in this case, qubit A is due to tetramer symmetry
equally entangled to both neighbors �C and D�, thus CAC

= 1
2 .
At elevated temperatures, the concurrence is smeared out

as shown in Figs. 2�b� and 2�d�. Note the dip separating the
two different regimes with CAB= 1

2 , also seen in the CAC= 1
2

case. This dip clearly separates different regimes discussed in
the previous T=0 limit and signals a proximity of a disen-
tangled excited state. For sufficiently high temperatures, van-
ishing concurrence is expected.23 The critical temperature Tc
denoted by a dashed line is set by the magnetic exchange
scale J, since at higher temperatures, local singlets are bro-
ken irrespectively of the magnetic field.

A rather unexpected result is shown in Fig. 3�a� where at
B�2J and low temperatures, the concurrence slightly in-
creases with increasing temperature due to the contribution
of excited A-B singlet components that are absent in the
ground state. Similar behavior is found for J��0 around B
�J, which is equivalent to the case of a single qubit
dimer20,21 �not shown here�. There is no distinctive feature in
temperature and magnetic-field dependence of CAB when
J��J /2 and a typical results is shown in Fig. 3�b� for J�
=J.

III. PLANAR ARRAY OF QUBIT PAIRS: THE SHASTRY-
SUTHERLAND LATTICE

A. Preliminaries

The central point of this paper is the analysis of pair en-
tanglement for the case of a larger number of coupled qubit
pairs. In the following, it will be shown that the results cor-
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responding to tetramers considered in the previous section
can be very helpful for better understanding pair entangle-
ment of N�4 qubits. There are several possible generaliza-
tions of coupled dimers and one of the simplest in two di-
mensions is the Shastry-Sutherland lattice shown in Fig.
1�b�. Neighboring sites A-B are connected with exchange
interaction J and next neighbors with J�. The corresponding
Hamiltonian for N /2 dimers �N sites� is given by

HN = J �
�AB�

Si · S j + J� �
�AC�

Si · S j − B�
i=1

N

Si
z. �10�

Periodic boundary conditions are used. For the special case
N=4, the model reduces to Eq. �1� where due to periodic
boundary conditions, sites A-C �and other equivalent pairs�
are doubly connected, therefore a factor of 2 in Eq. �1�, as
mentioned in Sec. II.

The Shastry-Sutherland model �SSM� was initially pro-
posed as a toy model possessing an exact dimerized eigen-
state known as a valence bond crystal.26 Recently, the model
has experienced a sudden revival of interest by the discovery
of the two-dimensional spin-liquid compound SrCu2�BO3�2

�Refs. 43 and 44� since it is believed that magnetic properties
of this compound are reasonably well described by the
SSM.45 In fact, several generalizations of the SSM have been
introduced to better account for recent high-resolution mea-
surements revealing the magnetic fine structure of
SrCu2�BO3�2.45–48 Soon after the discovery of the

(a)

(d)

(c)

(b)

FIG. 2. �Color online� �a� Zero-temperature concurrence CAB as
a function of J� /J and B /J. Different regimes are characterized by
particular ground-state functions ��n� defined in the Appendix. �b�
T /J=0.1 results for CAB. �c� Next-nearest concurrence CAC for T
=0, and �d� for T /J=0.1. Dashed lines separate CAB�C��0 from
CAB�C�=0.

(a)

(b)

FIG. 3. �Color online� �a� Temperature and magnetic-field de-
pendence of CAB for J� /J=0.4 and �b� J�=J. Dashed lines separate
CAB�0 from CAB=0.
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SrCu2�BO3�2 system, the SSM thus became a focal point of
theoretical investigations in the field of frustrated AFM spin
systems, particularly low-dimensional quantum spin systems
where quantum fluctuations lead to magnetically disordered
ground states �spin liquids� with a spin gap in the excitation
spectrum.

The SSM is a two-dimensional frustrated antiferromagnet
with a unique spin-rotation invariant exchange topology that
leads in the limit J
J� to an exact gapped dimerized ground
state with localized spin singlets on the dimer bonds �dimer
phase�. In the opposite limit, J�J�, the model becomes or-
dinary AFM Heisenberg model with a long-range Néel order
and a gapless spectrum �Néel phase�. While two of the
phases are known, there are still open questions regarding
the existence and the nature of the intermediate phases. Sev-
eral possible scenarios have been proposed, e.g., either a di-
rect transition between the two states occurs at the quantum
critical point near J� /J�0.7 �Refs. 49 and 50� or a transition
via an intermediate phase that exists somewhere in the range
of J� /J�0.6 and J� /J	0.9.51 Although different theoretical
approaches have been applied, a true nature of the interme-
diate phase �if any� has still not been settled. As will be
evident later on, our exact-diagonalization results support the
first scenario.

The SSM phase diagram also reveals interesting behavior
for varying external magnetic field. In particular, experi-
ments on SrCu2�BO3�2 in strong magnetic fields show for-
mation of magnetization plateaus,44,52 which are believed to
be a consequence of repulsive interaction between almost
localized spin triplets. Several theoretical approaches support
the idea that most of these plateaus are readily explained
within the �bare� SSM.49,53,54 Recent variational treatment
based on entangled spin pairs revealed new insight into vari-
ous phases of the SSM.51

Although extensively studied, the zero-temperature phase
diagram of the SSM remains elusive. This lack of reliable
solutions is even more pronounced when considering thermal
fluctuations in SSM as only few methods allow for the in-
clusion of finite temperatures in frustrated spin systems. In
this respect, the calculation of thermal entanglement between
the spin pairs would also provide a new insight into the
complexity of the SSM.

B. Numerical method

We use the low-temperature Lanczos method55 �LTLM�,
an extension of the finite-temperature Lanczos method56

�FTLM�, for the calculation of static correlation functions at
low temperatures. Both methods are nonperturbative, based
on the Lanczos procedure of exact diagonalization and ran-
dom sampling over different initial wave functions. The main
advantage of LTLM is that it accurately connects zero- and
finite-temperature regimes with rather small numerical effort
in comparison with FTLM. On the other hand, while FTLM
is limited in reaching arbitrary low temperatures on finite
systems, it proves to be computationally more efficient at
higher temperatures. A combination of both methods there-
fore provides reliable results in a wide temperature regime
with moderate computational effort. We note that FTLM was

in the past successfully used in obtaining thermodynamic as
well as dynamic properties of different models with corre-
lated electrons as follows: the t-J model,56 the Hubbard
model,57 as well as the SSM model.46,48

In comparison with the conventional quantum Monte
Carlo �QMC� methods, LTLM possesses the following ad-
vantages: �i� it does not suffer from the minus-sign problem
that usually hampers QMC calculations of many-electron as
well as frustrated spin systems, �ii� the method continuously
connects the zero- and finite-temperature regimes, �iii� it in-
corporates as well as takes the advantage of the symmetries
of the problem, and �iv� it yields results of dynamic proper-
ties in the real time in contrast to QMC calculations where
imaginary-time Green’s function is obtained. The LTLM
�FTLM� is on the other hand limited to small lattices which
usually leads to sizable finite-size effects. To account for
these, we applied LTLM to different square lattices with N
=8, 16, and 20 sites using periodic boundary conditions �we
note that next-larger system, N=32, was too large to be
handled numerically�. Another drawback of the LTLM
�FTLM� is the difficulty of the Lanczos procedure to resolve
degenerate eigenstates that also emerge in the SSM. In prac-
tice, this manifests itself in severe statistical fluctuations of
the calculated amplitude for T→0 since in this regime, only
a few �degenerate� eigenstates contribute to thermal average.
The simplest way to overcome this is to take a larger number
of random samples R
1, which, however, requires a longer
CPU time. We have, in this regard, also included a small
portion of anisotropy in the SSM 	in the form of the aniso-
tropic interdimer Dzyaloshinskii-Moriya interaction Dz��AC�
��SA

x SC
y −SA

y SC
x �, Dz /J�0.01
, which slightly splits the dou-

bly degenerate single-triplet levels. In this way, R�30 per Sz

sector was enough for all calculated curves to converge
within �1% for T /J	1. Here, the number of Lanczos itera-
tions M =100 was used along with the full reorthogonaliza-
tion of Lanczos vectors at each step.

C. Entanglement

Entanglement in the absence of magnetic field is most
prominently reflected in spin-spin correlation functions, e.g.,
�SA·SB� and �SA·SC�. In zero-temperature limit due to quan-
tum phase transition at Jc�, these correlations change sign. In
Fig. 4 are presented renormalized spin-spin correlation func-
tions �for positive values identical to concurrence� as a func-
tion of J� /J: �i� CAB�0 in dimer phase and �ii� CAC�0 in
the Néel phase. Critical Jc� is indicated by asterisk. The re-
sults for N=16 are qualitatively and quantitatively similar to
the N=20 case presented here. At finite temperatures, spin
correlations are smeared out, as shown in Fig. 4 for various
T. Limiting Heisenberg case, J�→, is discussed in more
detail in the next section. J�=0 case corresponds to the single
dimer limit21 and Sec. II.

Complete phase diagram of the SSM at T=0 but with
finite magnetic field can be classified in terms of concurrence
instead of spin correlations. In Fig. 5�a�, CAB is presented as
a function of �J� /J ,B /J� as in the case of a single tetramer,
Fig. 2�a�. Presented results correspond to the N=20 case,
while N=16 system exhibits a very similar structure �not
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shown here�. N=8 and N=4 cases are qualitatively similar,
the main difference being the value of critical Jc� which in-
creases with N. Remarkable similarity between all these
cases can be interpreted by local physics in the regime of
finite spin gap, J�	Jc�. Qubit pairs are there completely en-
tangled, CAB=1, and CAB� 1

2 for magnetic field larger than
the spin gap, but B	J+2J�. For even larger B, concurrence
approaches zero, similar to the N=4 case. Concurrence is
also zero for J��Jc�, except along the B�4J� line where
weak finite concurrence could be the finite-size effect. Simi-
lar results are also found for N=16,8 cases and are most
pronounced in the N=4 case. At finite temperature, the struc-
ture of concurrence is smeared out 	Fig. 5�b�
 similar to Fig.
2�b�.

Concurrence CAC corresponding to next-nearest neighbors
is, complementary to CAB, increased in the Néel phase of the
diagram, Fig. 5�c�. The similarity with N=4, Fig. 2�c�, is
somewhat surprising because in this regime, long-range cor-
relations corresponding to the gapless spectrum of AFM-like
physics are also expected to change short-range correlations.
The only quantitative difference compared to N=4 is the
maximum value of CAC�0.3 instead of 0.5 �beside the criti-
cal value Jc� discussed in the previous paragraph�. Concur-
rence is very small for B�J+2J�. At finite temperatures,
fine fluctuations in the concurrence structure are smeared
out, Fig. 5�d�.

Temperature and magnetic-field dependence of CAB in the
dimer phase is presented in Fig. 6 for fixed J� /J=0.4. Simi-
larity with the corresponding N=4 tetramer case, Fig. 3�a�, is
astonishing and is again the consequence of local physics in
the presence of a finite spin gap. Finite-size effects �in com-
parison with N=16 and N=8 cases� are very small �not
shown�. Dashed line represents the borderline of the CAB
=0 region: critical Tc�0.75J valid for B /J�3, that is in this
regime nearly independent of B, is slightly larger than in the
single tetramer case where its insensitivity to B is even more
pronounced.

IV. HEISENBERG LIMIT

The concurrence corresponding to next-nearest neighbors
in SSM, CAC, is nonzero in the Néel phase for J��Jc�. Typi-
cal result for concurrence in this regime �for fixed J� /J=1�
in terms of temperature and magnetic field is presented in
Fig. 7�a�. At zero temperature, the concurrence is zero for
B�4J� 	compare with Figs. 2�c� and 5�c�
.

In the limit J=0, the model simplifies to the AFM Heisen-
berg model on a square lattice of N sites,

HAC = J� �
�AC�

Si · S j − B�
i=1

N

Si
z. �11�

Several results for this model have already been presented
for very small clusters;58–60 however, the temperature and
magnetic-field dependence of the concurrence for systems
with sufficiently large number of states and approaching
thermodynamic limit has not been presented so far.

In Fig. 7�b�, we further present temperature and magnetic-
field dependence of concurrence for the Heisenberg model
for N=20 �results for N=16 are quantitatively similar but not
shown here�. Temperature and magnetic-field dependence of
CAC exhibits a peculiar semi-island shape where at fixed
value of B, the concurrence increases with increasing tem-
perature. This effect is to some extent seen in all cases and is
the consequence of exciting local singlet states, which do not
appear in the ground state. At T→0, finite steps with increas-
ing B correspond to gradual transition from the singlet
ground state to totally polarized state with total spin S=10
and vanishing concurrence. This is in more detail presented
in Fig. 8�a� for various N=4,8 ,16,20. At B=0 and for N
=20, we get CAC=0.19. It is interesting to compare these
results with the known finite-size analysis scaling for the
ground-state energy of the Heisenberg model.61 The same
scaling gives CAC� 1

6 +2N−3/2. Our finite-size scaling, Fig.
8�b�, is in perfect agreement with this result for N→ at T
=0 and B=0.

In the opposite limit of high magnetic fields, the vanishing
concurrence, CAC=0, is observed for B above the critical
value Bc=4J� for all system sizes shown in Fig. 8�a�. This
result can also be deduced analytically. Since in a fully po-
larized state CAC=0, this Bc actually denotes a transition
from S1=N /2−1 to S0=N /2 ferromagnetic ground state with
energy E0=N�J�−B� /2. The energy of the one-magnon exci-
tation above the ferromagnetic ground state is given by the
spin-wave theory, which is in this case exact, as E1=E0
−J��2−cos kxa−cos kya�+B, where �kx ,ky� is the magnon
wave vector and a denotes the lattice spacing. Evidently, a
transition to a fully polarized state occurs precisely at Bc
=4J� at �� /a ,� /a� point in the one-magnon Brillouin zone.

V. SUMMARY

The aim of this paper was to analyze and understand how
concurrence �and related entanglement� of qubit pairs
�dimers� is affected by their mutual magnetic interactions. In
particular, we were interested in a planar array of qubit
dimers described by the Shastry-Sutherland model. This
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FIG. 4. �Color online� Results for the Shastry-Sutherland lattice
with N=20 sites and periodic boundary conditions. Presented are
renormalized spin-spin correlation functions −2�SA·SB,C�− 1

2 as a
function of J� /J and for various temperatures. Asterisk indicates
critical Jc� which roughly separates the dimer and Néel �AFM limit�
phase.
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model is suitable due to very robust ground state composed
of entangled qubit pairs which breaks down by increasing the
interdimer coupling. It is interesting to study both the en-
tanglement between nearest- and between next-nearest spins
�qubits� at finite temperature and magnetic field. The results
are based on numerical calculations using low-temperature
Lanczos methods on lattices of 4, 8, 16, and 20 sites with
periodic boundary conditions.

A comprehensive analysis of concurrence for various pa-
rameters revealed two general conclusions.

(a)

(b)

(c)

(d)

FIG. 5. �Color online� �a� Zero-temperature concurrence CAB

for a 20-site cluster for various J� /J and B /J. Shaded area repre-
sents the regime of fully entangled dimers, CAB=1. �b� The corre-
sponding results for T /J=0.1. �c� Next-nearest concurrence CAC for
T=0, and �d� for T /J=0.1. Note the qualitative and even quantita-
tive similarity with the tetramer results, Fig. 2. Dashed lines sepa-
rate CAB�C��0 from CAB�C�=0.

FIG. 6. �Color online� Temperature and magnetic-field depen-
dence of CAB for J� /J=0.4 and N=20. Note the similarity with the
corresponding tetramer results, Fig. 3�a�. Dashed lines separate
CAB�0 from CAB=0.

(a)

(b)

FIG. 7. �Color online� �a� Next-nearest-neighbor concurrence
CAC for J�=J. �b� Heisenberg lattice result as a special case of the
SSM, J=0. Shaded region represents CAC=0. In the line shaded
region �low finite temperature and large magnetic field�, our nu-
merical results set only the upper limit CAC	5�10−4. Dashed
lines separate CAC�0 from CAC=0.
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�1� For a weak coupling between qubit dimers, J�	Jc�,
qubit pairs are locally entangled in accordance with the local
nature of the dimer phase. This is due to a finite singlet-
triplet gap �spin gap� in the excitation spectrum that is a
consequence of strong geometrical frustration in magnetic
couplings. The regime of fully entangled neighbors perfectly
coincides with the regime of finite spin gap, as presented in
Fig. 9. Calculated lines for various system sizes N in Fig.
9�a� denote regions �shaded for N=20� in the �J� /J ,B /J�
plane where CAB=1 at T=0. In the lower panel 	Fig. 9�b�
,
the lines represent the energy gap E1−EGS between the first
excited state with energy E1 and total spin projection Sz=1
and the ground state with energy EGS and total spin projec-
tion Sz=0, calculated for B=0. For J�	Jc� �full lines�, E1
−EGS corresponds to the value of the spin gap. With an in-
creasing magnetic field, the spin gap closes �shaded region
for N=20� and eventually vanishes at the CAB=1 borderline.
Shaded regions in Figs. 9�a� and 9�b� therefore coincide.
Note also that the results for N=16 and 20 sites differ mainly
in Jc�.

As a consequence of finite spin gap and local character of
correlations, it is an interesting observation that even N=4
results as a function of temperature and magnetic field quali-
tatively correctly reproduce N=20 results in the regime of
J�	Jc�. The main quantitative difference is in a renormalized
value of Jc�=J /2 for N=4, as is evident from the comparison
of Figs. 2 and 3 and Figs. 5 and 6. This similarity of the
results appears very useful due to the fact that concurrence
for tetrahedronlike systems �N=4� is given analytically �Sec.
II�.

�2� In the opposite, strong interdimer coupling regime,
J��Jc�, the excitation spectrum is gapless and the concur-
rence between next-nearest qubits, CAC, exhibits a similar

behavior as in the antiferromagnetic Heisenberg model
J /J�→0. Our B=0 results coincide with the known result
extrapolated to the thermodynamic limit CAC� 1

6 . In finite
magnetic field and T=0, the concurrence vanishes at Bc
=4J� when the system becomes fully polarized �ground state
with the total spin S=N /2�. However, at elevated tempera-
tures, the concurrence increases due to excited singlet states
and eventually drops to zero at temperatures above Tc�J�.

We can conclude with the observation that our analysis of
concurrence and related entanglement between qubit pairs
was also found to be a very useful measure for classifying
various phases of the Shastry-Sutherland model. As our nu-
merical method is based on relatively small clusters, we were
unable to unambiguously determine possible intermediate
phases of the model in the regime J��Jc�, but we believe that
concurrence will also prove to be a useful probe for the clas-
sification of various phases in this regime using alternative
approaches. However, we were able to sweep through all
other dominant regimes of the parameters including finite
temperature and magnetic field.

ACKNOWLEDGMENTS

The authors acknowledge J. Mravlje for useful discus-
sions and the support from the Slovenian Research Agency
under Contract No. P1-0044.

APPENDIX: EIGENENERGIES AND EIGENVECTORS
FOR PERIODICALLY COUPLED TWO QUBIT DIMERS

Consider two qubit dimers coupled into a tetramer and
described with the Hamiltonian 	Eq. �1�
 and Fig. 1�a�. The
model is exactly solvable in the separate �S ,Sz� subspaces
corresponding to different values of the total spin S and its z
component Sz. Following the abbreviations for singlet and
triplet states on nearest-neighbor �dimer� sites i and j,
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6 +2N−3/2.
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�sij� =
1
�2

�↑i↓ j − ↓i↑ j� ,

�tij
0 � =

1
�2

�↑i↓ j + ↓i↑ j� ,

�tij
+� = �↑i↑ j� ,

�tij
−� = �↓i↓ j� , �A1�

the resulting eigenstates ��k� and eigenenergies Ek corre-
sponding to the Hamiltonian Eq. �1� are

S = 0, Sz = 0: ��1� = �sAB��sCD� ,

E1 = − 3J/2, �A2�

��2� =
1
�3

�− �tAB
0 ��tCD

0 � + �tAB
+ ��tCD

− � + �tAB
− ��tCD

+ ��

E2 = J/2 − 4J�. �A3�

S = 1, Sz = − 1: ��3� = �sAB��tCD
− � ,

��4� = �tAB
− ��sCD� ,

E3,4 = − J/2 − B , �A4�

��5� =
1
�2

��tAB
0 ��tCD

− � − �tAB
− ��tCD

0 �� ,

E5 = J/2 − 2J� − B . �A5�

S = 1, Sz = 0: ��6� = �sAB��tCD
0 � ,

��7� = �tAB
0 ��sCD� ,

E6,7 = − J/2, �A6�

��8� =
1
�2

��tAB
+ ��tCD

− � − �tAB
− ��tCD

+ �� ,

E8 = J/2 − 2J�. �A7�

S = 1, Sz = 1: ��9� = �sAB��tCD
+ � ,

��10� = �tAB
+ ��sCD� ,

E9,10 = − J/2 + B , �A8�

��11� =
1
�2

�− �tAB
0 ��tCD

+ � + �tAB
+ ��tCD

0 �� ,

E11 = J/2 − 2J� + B . �A9�

S = 2, Sz = − 2: ��12� = �tAB
− ��tCD

− � ,

E12 = J/2 + 2J� − 2B . �A10�

S = 2, Sz = − 1: ��13� =
1
�2

��tAB
0 ��tCD

− � + �tAB
− ��tCD

0 �� ,

E13 = J/2 + 2J� − B . �A11�

S = 2, Sz = 0: ��14� =
1

2
�2�tAB

0 ��tCD
0 �

+ �tAB
+ ��tCD

− � + �tAB
− ��tCD

+ �� ,

E14 = J/2 + 2J�. �A12�

S = 2, Sz = 1: ��15� =
1
�2

��tAB
0 ��tCD

+ � + �tAB
+ ��tCD

0 �� ,

E15 = J/2 + 2J� + B . �A13�

S = 2, Sz = 2: ��16� = �tAB
+ ��tCD

+ � ,

E16 = J/2 + 2J� + 2B . �A14�
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