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The entanglement of flying qubits with static qubits in the solid state is important in the development of
quantum computing. It has recently been shown theoretically that the spin-dependent scattering of a propagat-
ing electron from a bound electron is sufficient to give full entanglement between the qubits embodied in their
respective spins �J. H. Jefferson et al., Europhys. Lett. 74, 764 �2006�; D. Gunlycke et al., J. Phys.: Condens.
Matter 18, S851 �2006��. In this paper a generalized, real-space Anderson model is introduced for a quasi-
one-dimensional structure consisting of a binding site coupled to ideal leads. Degeneracy of both the binding
site and the leads is incorporated to represent, for example, conduction band degeneracy in carbon nanotubes.
The model is used to calculate the spin-dependent scattering behavior and resultant static-flying qubit entangle-
ment created by the scattering process. Degeneracy �and more generally, multiplicity� in the binding site gives
rise to inelastic scattering processes. In the elastic scattering regime, a degenerate binding site gives rise to
antiresonant structures in the transmission spectrum. Additional degeneracy in the leads restricts this effect to
the second set of leads, raising the possibility of spin filtration, though this is eliminated in the inelastic
scattering regime. Degeneracy in the binding site also gives rise to multiple resonances in transmission that will
improve the probability of obtaining entangled pairs relative to the nondegenerate case. This effect is maxi-
mized when the components of the degenerate binding site are symmetrically coupled to the leads.
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I. INTRODUCTION

In solid state quantum computation, an attractive candi-
date for the realization of a qubit is the spin of an electron.
The use of an electron spin as a qubit was proposed at an
early stage,1 and there exists a rapidly expanding technology
for manipulating single spins in solid state semiconductor
structures based on gated quantum wells.2–10 The long relax-
ation and decoherence times6–9 of electron spins trapped at
quantum dots are encouraging.

Carbon nanotubes are a candidate solid state system for
hosting electron spin qubits.11–15 The proposed schemes fo-
cus on arranging a series of spins confined at quasi-zero-
dimensional structures placed along the nanotube. One set of
proposals have suggested the use of gate-defined quantum
dots.16–19 Another set have suggested the use of spin-active
endohedral fullerene species, incorporated into “peapod”
structures.20–22 Examples of such species include Sc@C82,
Gd@C82,

23 and N@C60.
20 With the recent emergence of

single graphite sheet �graphene� experiments, a conceptually
related scheme has been proposed in which a strip of
graphene acts as the one-dimensional �1D� structure that or-
ders and connects a set of quantum dots, each of which iso-
lates an electron spin qubit.24,25

All of these 1D carbon nanostructure schemes offer the
possibility of creating, in a solid state system, a flying qubit.
This is a physical realization of a qubit that is moving, al-
lowing information to be transported from one location to
another. Proposals for such a flying qubit in the solid state
have been rare,26 but would be of great use in implementing
a solid state quantum computer. In 1D nanostructures with
qubits isolated at quantum dots, the spin of an electron
propagating along the host 1D structure could act as a flying

qubit, interacting and exchanging information with the
trapped electrons. Following theoretical studies of conduc-
tion anomalies in semiconductor nanowires,27,28 a scheme
has already been proposed for the formation of entangled
static-flying qubit pairs.29,30

In the simplest version of this scheme, a shallow potential
well is formed in a one-dimensional structure. The well is
sufficiently shallow or narrow that it allows only one bound
orbital. A single electron is injected into the one-dimensional
structure and becomes bound in the well. Subsequent elec-
trons will experience a Coulomb repulsion with the bound
electron. It is assumed that this is high enough that the two-
electron state associated with the well is only quasibound.
Resonant �high probability� transmission will occur for a
propagating electron incident on the well with the energy of
this quasibound state, but only for the singlet component of
the two-electron spin configuration. The exclusion principle
dictates that for a well with only one bound orbital, there will
be exactly one such Coulomb-mediated quasibound state,
and hence at most one, singlet, resonance. For a sufficiently
deep and narrow well, a propagating electron will only have
a high probability of transmission at energies close to the
resonance, and only for the singlet component of the two-
electron spin configuration. Hence, conditional on the propa-
gating electron being transmitted, it has a high probability of
being in a singlet configuration with the trapped electron.
Since the singlet state ��↑↓���↓↑�� is fully entangled, this
scheme projects the state of two electrons into a fully en-
tangled state by the spin-dependent scattering of the propa-
gating electron from the trapped electron. Transmission
therefore acts as a singlet spin filter.

In the more general case of a potential well allowing mul-
tiple bound orbitals, this scheme can still be implemented if
there is a singlet resonance that is well separated in energy
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from other resonances. In many cases, the lowest-lying reso-
nance will fulfil these criteria.

In this paper, the possibility of implementing the scheme
in a system with multiple bound orbitals is investigated in
more depth. Specifically, a generalized real-space Anderson
Hamiltonian is used to model a system containing a doubly
degenerate binding site, a simple example of a system with
multiple bound orbitals. Such a system will have two, typi-
cally nondegenerate, bound orbitals. The possibility therefore
exists of inelastic scattering of the propagating electron from
the bound electron and of multiple resonances. The effects of
degeneracy in ideal leads coupling to the binding sites are
also investigated. Physical analogs for degeneracy of binding
sites and leads include carbon nanotubes or peapods with
degenerate conduction channels12 or semiconductor quantum
wires with multiple leads. Analogs for the binding site de-
generacy without lead degeneracy include any structure in
which two identical quantum dots are coupled to leads. For
example, recent work suggests that single-walled carbon
nanotube quantum dots may display orbital degeneracy.31

The double quantum dot system has received considerable
theoretical interest recently.32 It is supposed that a single
electron is initially bound in the structure and that a second
electron is injected and scatters from it. The spin-dependent
scattering behavior of the propagating electron and the re-
sultant entanglement between the flying and the static spin
qubit are calculated. The entanglement is entirely dependent
on the spin properties of the system. The results of these
calculations demonstrate the appearance in a few-electron
system of the kind of Fano resonances observed in some
transport experiments in carbon nanotubes.33 The single
binding-site scenario previously used in the development of
this entanglement scheme is also briefly revisited.29,30

II. ENTANGLEMENT BY SCATTERING IN THE
NONDEGENERATE CASE

The subject of this study is the scattering behavior of an
electron propagating through a system of degenerate one-
dimensional leads and binding sites, from another electron
trapped by the binding sites. The effect of the Coulomb in-
teraction at the binding site is of particular interest. This
system is modeled using a real-space analog of the Anderson
Hamiltonian. The original Anderson Hamiltonian34,35 was
designed to model a magnetic impurity in a nonmagnetic
metal. Real-space analogs describe a binding site coupled to
two ideal, discretized leads. A two-electron Coulomb repul-
sion �U� is included at the binding site. The Hamiltonian can
therefore be written as

Ĥ = ĤR + ĤL + Ĥc + ĤI, �1�

ĤR = ��
n=1

�

�
�

− tcn+1�
† cn� + �cn�

† cn�	 , �2�

and similarly for ĤLl, with the summation over n running
from −� to −1. These are the lead Hamiltonians. Here, t and
� are hopping and on-site energies for both of the leads. We

set �=0 throughout. A propagating electron in these leads
will occupy an energy band of the form E=−2t cos k, where
k is the electron wave vector. The on-site Hamiltonian for the

binding site �Ĥc�, which is positioned at n=0, is given by

Ĥc = �
�

�0n� + Un↑n↓, �3�

n� = c0�
† c0�. �4�

The binding site has on-site single-electron energy �0 and
Coulomb repulsion U. The interaction Hamiltonian for the

leads with the binding site ĤI is given by

ĤI = t��
�

�c−1�
† c0� + c0�

† c1� + H.c.� . �5�

The coupling has strength t�.
The approach taken in this study is to use the real-space

Anderson Hamiltonian to model a two-electron system. The
situation of interest—one electron scattering from
another—is incorporated via the boundary conditions. When
the two electrons are widely separated, the wave function can
be approximated as separable in the coordinates of each elec-
tron.

��x1,x2� = 
�eikx1 + re−ikx1��b�x2� , x1 � x2

peikx1�b�x2� , x1 � x2.
� �6�

The propagating electron wave function takes the form of a
plane wave that is reflected with amplitude r and transmitted
with amplitude p. Probabilities for reflection and transmis-
sion are hence R= �r�2 and P= �p�2.

Scattering behavior is calculated separately for the singlet
and triplet states, with the antisymmetry principle used to
distinguish between the two by symmetrizing �singlet� or
antisymmetrizing �triplet� the spatial wave function. The
scattering amplitudes r and p are calculated by numerical
solution of the Schrödinger equation. A similar approach to
calculating scattering behavior was used in a recent study
into branched systems.36 Calculated scattering behavior can
provide insights into the transport properties of a system, for
example, by the use of the Landauer formula.37,38

To explore the behavior of the model and its applications
to different physical situations, the scattering behavior is cal-
culated for a range of different parameter values. Only those
regimes of interest to entanglement of the static and the fly-
ing qubit are explored. First, it is required that the bound
electron cannot be ionized by the propagating electron, i.e.
that �b+2t	−4t. Second, it is also required that at least one
resonance should lie in the single-electron propagating band,
as discussed in the Introduction. For example, this gives the
requirement for the single channel, single binding site case
that �b−2t	2�0+U	�b+2t.

The entanglement between the flying and the static qubit
was quantified by calculating the concurrence.39 For a single
channel, the concurrence of the qubits can be calculated in
the transmission regime of a starting state of antiparallel
spins ��↑↓�� from the singlet and triplet scattering amplitudes
using the formula of Jefferson et al. and Ramšak et al.,40
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C =
�ps

2 − pt
2�

�ps�2 + �pt�2
. �7�

Here, ps and pt are the singlet and triplet transmission am-
plitudes, respectively.

The scattering and entanglement spectra for the degener-
ate systems are more easily understood in terms of the results
of the nondegenerate, single channel model. In the nonioniz-
ing regime and the singlet state, these are approximately
equal to those for �0→−�, U→�, −2t	�0+U	2t. In this
limit, the Schrödinger equation can be solved directly to give
the scattering amplitudes as functions of the propagating
electron wave vector k, with the triplet state perfectly re-
flected.

p =
i sin k

eik + 
��

2
− 
 cos k , �8�

� =
�0 + U

t�
, 
 =

t

t�
. �9�

The transmission spectrum �transmission probability as a
function of energy, taken from −2t to 2t, the whole band of
allowed energies for a propagating electron� will have a reso-
nance to P= �p�2=1 at energy

E =
�0 + U

1 −
1


2

. �10�

Displayed in Fig. 1�a� is the transmission spectrum for
one electron scattering from another bound at a binding site
in the singlet configuration. As will be the case throughout
this paper, the energy axis represents the energy of the propa-
gating electron in units of t. The spectrum presented repre-
sents a strongly binding trap site and weak coupling to the
leads, with a strong Coulomb interaction. Specifically, �0
=−10t, t�= t /4, and U=�0− t. These parameters exemplify
the regime of interest to the generation of entanglement. A
single electron will be tightly bound, but the Coulomb inter-
action is sufficient that the quasibound two-electron state
will be within the propagating electron energy band. The
transmission amplitude for singlet scattering matches that
given by the formula for �0→−� extremely closely and dis-
plays the expected resonance to �1. Conversely, the trans-
mission amplitude for triplet scattering is close to zero across
the whole energy band, again approaching the expected
value for �0→−�.

If we inject an electron into our 1D structure at the reso-
nant energy, the singlet configuration component will almost
certainly be transmitted, whereas the triplet configuration
will almost certainly not be. If an electron is transmitted, it
will be almost maximally entangled with the bound electron.
We can quantify this by plotting concurrence as a function of
energy using the formulation of Ramšak et al. for an antipar-
allel starting configuration �Fig. 1�b��.

The results in Figs. 1�a� and 1�b� corroborate those ob-
tained by Ramšak et al.40 using an approximate, analytic
model. Concurrence in the transmitted regime peaks around
the resonance energy but, encouragingly, remains high across
the entire band. The entanglement produced will be more
useful when the transmission probability itself is high.
Hence, although high entanglement can be found in the
transmission regime across the band, it is most useful in the
region of the resonance. It is emphasized that the concur-
rence shown in Fig. 1�b� assumes an antiparallel starting
configuration, an even combination of singlet and triplet con-
figurations. Hence, the overall probability of transmission
corresponding to that starting configuration will be approxi-
mately half that shown in Fig. 1�a�.

III. SINGLE-ELECTRON SCATTERING IN DOUBLY
DEGENERATE SYSTEMS

Two doubly degenerate systems are investigated in this
paper. The first consists of a doubly degenerate binding site
�or equivalently two identical nondegenerate binding sites�
coupled to ideal leads. One site is connected more strongly to
the left lead than the right, and vice versa. The difference is
expressed in two different lead-site coupling parameters, t�
and t�. A site-site coupling parameter tc is also included in
the model of this system. The system is shown in Fig. 2.

The Hamiltonian for this system �single-electron terms
only� is obtained from Eq. �1� by setting

Ĥc = �
�
��

l

�0n�l − tcc0�1
† c0�2 + H.c. �11�

and
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FIG. 1. �a� Singlet scattering. �0=−10t, t�= t /4, and U=�0+ t.
�b� Transmission regime concurrence.
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ĤI = − t��
�

�c−1�
† c0�1 + c0�2

† c1� + H.c.�

− t��
�

�c−1�
† c0�2 + c0�1

† c1� + H.c.� . �12�

The two binding sites are indexed l=1,2.
The doubly degenerate second system consists of both a

degenerate binding site and degenerate leads, effectively giv-
ing two coupled one-dimensional structures. The system is
shown in Fig. 3.

It is assumed that any electron being injected into the
system is initially injected into one set of leads only �the
behavior of any other case can be expressed as a linear sum
over different injection points�. There are now four destina-
tions for the electron. The two degenerate lead-and-binding
site structures are indexed with l=1,2. The electron can be
reflected back the way it came or transmitted via the starting
lead set �r1 , p1�. It can also hop into the second lead set
�r2 , p2�. The designation of the latter two destinations as a
reflection and a transmission is somewhat arbitrary and is
based around a view of the two channels as lying parallel to
each other. The model used here will equally well represent a
system in which the second channel lies in a totally different
direction to the first. Either way, r2= p2 by symmetry. The
Hamiltonian for this system is

Ĥ = �
l=1,2

ĤRl + �
l=1,2

ĤLl + Ĥc + Ĥcoup + Ĥint, �13�

where

ĤRl = ��
n=1

�

�
�

− tcn+1�l
† cn�l + H.c. + �cn�l

† cn�l	 , �14�

Ĥc = �
l=1,2

�
�

�0n�l, �15�

Ĥcoup = − t� �
l=1,2

�
�

�c−1�l
† c0�l + c0�l

† c1�l + H.c.� , �16�

and

Ĥint = − t��
�

�c−1�1
† c0�2 + c1�1

† c0�2 + c−1�2
† c0�1 + c1�2

† c0�1

+ H.c.� − tc�
�

�c0�1
† c0�2 + H.c.� . �17�

Here, Ĥc is the Hamiltonian for the two binding sites, Ĥcoup
is the coupling between each binding site and its correspond-

ing leads, and Ĥint is the coupling between the two binding
sites and lead structures created by the double degeneracy of
the binding sites and the leads.

The single-electron scattering behavior of these systems is
easy to analyze and provides insight into the more compli-
cated two-electron scattering that generates entanglement.
Scattering can be rationalized by taking symmetric and anti-
symmetric combinations over the two binding sites �in the
former system� or over the two lead-and-binding-site struc-
tures �in the latter system�. The method of decomposing a
problem of N coupled channels into N single channel prob-
lems by taking appropriate linear combinations of the chan-
nels is well established for mesoscopic systems.41

Following this transformation, the transmission amplitude
p for a doubly degenerate binding site can be expressed as
p= ps− pa, where ps is the amplitude for transmission through
a symmetric combination of the binding sites, and pa is the
amplitude for the antisymmetric combination. These ampli-
tudes will have the same form as the single binding-site am-
plitude noted in the previous section �Eq. �8�� but with the
modified parameters: U=0 �since this is the single electron
case�; �0

s =�0− tc and ts�= t�+ t� for ps and �0
a=�0+ tc and ta�

= t�− t� for pa. In the regime −2t	�0	2t, the transmission
spectrum will have two resonant peaks. These peaks are
found at approximately the energies given by Eq. �10�, with
the modified parameters �0+U→�0

s , t�2→ t�2+ t�2 and �0
+U→�0

a, t�→ ta�, respectively. There is also an antiresonance
that occurs when ps= pa at

E = �0 −
ta�

2 + ts�
2

ta�
2 − ts�

2 tc. �18�

If t�= t�, the “antisymmetric” resonance and the antireso-
nance disappear since the site-lead coupling that gives rise to
pa vanishes �and pa=0�. In fact, a single resonance will be
found quite generally for an n-fold degenerate binding site,
each component of which is coupled equally to both leads
and with strength tc to every other component. The resonance
will be found at energy

E =
�0 − �n − 1�tc

1 − n
1


2

. �19�

The symmetric and antisymmetric combination of sites in
the case of degenerate binding sites and degenerate leads
gives two decoupled, nondegenerate structures, each contain-
ing a single binding site and set of leads. These are referred
to as the “symmetric” and the “antisymmetric” structure.
They are identical to the single-binding site Anderson model,
with modified parameters as given above for the degenerate
binding site structure. The transmission probabilities for the

FIG. 2. Scattering from a degenerate binding site.

FIG. 3. Scattering in two coupled structures.

HABGOOD et al. PHYSICAL REVIEW B 77, 075337 �2008�

075337-4



doubly degenerate site-and-leads structure are then given by
P1=

Ps+Pa

4 and P2=
Ps−Pa

4 . The factor 4 is introduced by the
multiple branches of the coupled, degenerate system. These
probabilities mean that the transmission spectrum of the dou-
bly degenerate site-and-leads structure will have two peaks
in transmission through either set of leads, their positions
given by Eq. �10� with appropriately modified parameters.
Transmission through lead set 2 will also contain an antireso-
nance, its position again given by Eq. �18�.

Transmission spectra for a doubly degenerate binding site
and for both lead sets of the doubly degenerate site-and-leads
structure are shown in Fig. 4. The parameters used are �0
= t, t�= t /4, tc=0.15t, and t�= t /8. Transmission probabilities
for the degenerate-leads structure are multiplied by 4 to al-
low easy comparison with the qualitative form of the
degenerate-binding-site structure.

The transmission spectrum for the doubly degenerate
binding site structure is qualitatively very similar to that of
the second set of leads in the degenerate-leads structure. This
similarity extends into the two-electron results. In the follow-
ing sections, only the results for the second lead set of the
degenerate-leads case will therefore be presented. These will
be a close match to those for the doubly degenerate binding
site.

IV. TWO-ELECTRON SYSTEMS

The scenario of interest in quantum computing is that in
which one propagating electron scatters from another, bound
electron. To model the interaction between such electrons in
degenerate binding sites, two types of term are added to the
Hamiltonians discussed in the previous section. The first is
an on-site Coulomb repulsion term, Un↑n↓, for each binding
site, as in the nondegenerate Anderson Hamiltonian. The sec-
ond is an inter-binding-site repulsion term, Vn0�1n0�2.

Because there are two binding sites in the systems under
consideration, there will be two �typically nondegenerate�
bound orbitals, one of which will be symmetric with respect
to the binding sites, and one of which will be antisymmetric.
These will be labeled �1 and �2, with respective energies �b1
and �b2, and �b1�b2. It is assumed throughout that the
bound electron initially occupies �1. The energy of the sys-

tem therefore lies in the band for an electron propagating in
ideal leads and another electron bound in �1, that is, E
=�b1+2t cos k1. If this band of energies overlaps with the
band for an electron propagating in ideal leads and an elec-
tron bound in the excited state �2, there is the possibility of
inelastic scattering. Starting at the threshold energy �b2−2t,
the scattering process can end with the bound electron ex-
cited to the energy �b2 and the propagating electron departing
with the altered wave vector k2, as dictated by the “�2 plus
propagating electron” band. Below the threshold energy scat-
tering is therefore entirely elastic. This will be referred to as
the elastic regime. Above the threshold energy, the propagat-
ing electron will in general scatter into a combination of
states with wave vector k1 and states with wave vector k2
�and the bound electron will occupy a corresponding combi-
nation of �1 and �2�. This will be referred to as the inelastic
regime. The probability of transmission into a given channel,
the partial transmittivity, is given by

P�E� =
sin ki

sin K
�pki

�2, �20�

where ki is the wave vector for the propagating electron in
channel i, K is the wave vector for the propagating electron
in the channel in which it was initialized �in this study al-
ways k1�, and pki

is the amplitude of the propagating electron
in channel i. In this study, i=1,2.

The correct form for the concurrence between the propa-
gating and the bound electron when they are in the inelastic-
elastic superposition state found in the inelastic regime is
given by the formula40 of Ramšak et al.,

C =

�� �psing
2 �k� − ptrip

2 �k����k�2dk�
� ��psing�k��2 + �ptrip�k��2���k�2dk

. �21�

Again, this applies for the starting spin state �↑↓�. For
inelastic scattering in the two binding site system, we have
��k�2=��k1�+��k2�. The concurrence is hence

C =
�pk1,sing

2 �k1� + pk2,sing
2 �k2� − pk1,trip

2 �k1� − pk2,trip
2 �k2��

�pk1,sing�k1��2 + �pk2,sing�k2��2 + �pk1,trip�k1��2 + �pk2,trip�k2��2
.

�22�

The approach of Ramšak et al. also facilitates the calcu-
lation of concurrence in the system of degenerate leads. Con-
sidering only transmitted electrons, there are now three do-
mains for concurrence. In the first two, only electrons
transmitted by one or the other of the sets of leads are con-
sidered for purposes of entanglement with the bound elec-
tron. In the third domain, any electron transmitted via either
set of leads is considered. The concurrence for each of these
domains is calculated by incorporating the appropriate sin-
glet and triplet scattering amplitudes into the concurrence
formula Eq. �7�. For example, concurrence between the
bound electron and an electron transmitted via either lead set
is given �in the elastic regime� by
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FIG. 4. Single electron transmission spectra for a doubly degen-
erate binding site and the doubly degenerate site-and-leads struc-
ture. �0= t, t�= t /4, tc=0.15t, and t�= t /8. Transmission probabilities
for the degenerate-leads structure are multiplied by 4.
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C =
�p1,sing

2 + p2,sing
2 − p1,trip

2 − p2,trip
2 �

�p1,sing�2 + �p2,sing�2 + �p1,trip�2 + �p2,trip�2
. �23�

As previously noted, scattering behavior is calculated
separately for the singlet and triplet components of the two-
electron wave function in this study by, respectively, symme-
trizing and antisymmetrizing the spatial wave function. If �0
is sufficiently high, the scattering behavior will approximate
to the behavior in the limit �0→−�. A qualitative under-
standing of the scattering behavior of one electron from a
second electron, bound at a doubly degenerate binding site,
with or without degenerate leads, can be arrived at by ana-
lyzing the singlet and triplet scattering in the limit �0→−�.
In this limit, �1 and �2 become 1

�2
�1,1� and 1

�2
�1,−1� in the

basis of the two binding sites. Apart from separable scatter-
ing states which are incorporated into the boundary condi-
tions, the only two-electron states that need be accounted for
in this limit are those in which both electrons reside on one
or the other of the binding sites. Labeling sites 1 and 2, the
relevant single electron states are �1� and �2�. In the triplet
�spatially antisymmetric� state, scattering is therefore via just
one spatial state: �1 2�, with energy 2�0+V. In the singlet
�spatially symmetric� state, scattering is via three spatial
states: �1 1�, �1 2�, and �2 2� with energies 2�0+U, 2�0+V,
and 2�0+U, respectively.

Singlet scattering in the limit �0→−� can be analyzed by
diagonalizing the space of these three states, viewing the
propagating electron as scattering through three decoupled
states. The energies of the new, decoupled two-electron
states are

�1,3� = 2�0 +
U + V

2
�

��U − V�2 + 8tc
2

2
, �2� = 2�0 + U .

�24�

In the elastic regime and the limit �0→−�, transmission can
therefore be characterized by amplitudes of the form of Eq.
�8�, with appropriately modified coupling between the cen-
tral states and the lead. One term of the form of Eq. �8� will
describe the triplet �antisymmetric� transmission, and three
such terms will describe the singlet �symmetric� transmis-
sion. In the latter transmission spectrum, the overall ampli-
tude will have the form p= p1− p2+ p3, where p1−3 are ex-
pressions of the form of Eq. �8� corresponding to each of the
three decoupled two-electron states. Depending on the value
of V �and recalling that for the purposes of this study it is
assumed that �b1−2t	2�0+U	�b1+2t�, either one or no
peaks will appear in the triplet transmission spectrum, and
either two or three peaks will appear in the singlet transmis-
sion spectrum, corresponding to those of the two-electron
states with energies that will result in quasibound states. The
singlet transmission spectra of the doubly degenerate binding
site and the second lead set of the degenerate leads system
will display an antiresonance, as in the single-electron case.
This is the result of transmission via the second decoupled
two-electron state cancelling transmission via the other two
states, p2= p1+ p3.

In this study, the calculated scattering behavior and the
resultant entanglement between the scattered electron and the

bound electron are presented for two differing parameter
sets. In the first �0=10t, t�= t /4, t�= t /8, tc= t /2, U=−� 7

4 t
+�0�, and V=0. With these parameters, all resonances in
transmission lie within the elastic regime. The binding-site
potential �0 is large enough that qualitative comparisons with
the limit �0→� are valid. Since V=0, only two resonant
peaks are expected in the singlet transmission spectrum and
none at all in the triplet transmission spectrum. The singlet
transmission spectrum will be qualitatively similar to the
single-electron transmission spectrum for a value of �0 simi-
lar to the value of �0+U used here.

Figure 5 shows the singlet transmission probabilities, and
concurrences, for one electron scattering from another bound
within the degenerate-leads system. Using these parameter
values, triplet transmission probabilities were uniformly very
low due to the lack of resonant transmission. Results for the
doubly degenerate binding-site system will be qualitatively
similar to those for the second lead set shown here, although
transmission probabilities will be four times higher. The
boundary of the inelastic regime is E−�b1�−1.

As with the single electron case, two peaks are found in
the transmission spectra of both lead set 1 and lead set 2.
Transmission through lead set 2 also contains an antireso-
nance, as anticipated from the single electron case. Within
the elastic regime, concurrence is overall high, although it is
lower �and suffers a sharp drop� when measured between
electrons transmitted through both channels, and the bound
electron. Even in this case, a peak to C�1 is found, corre-
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FIG. 5. �a� Singlet scattering, first and second lead sets, and
overall for the degenerate leads system. �0=10t, t�= t /4, t�= t /8,
tc= t /2, U=−� 7

4 t+�0�, and V=0. �b� Concurrence for electrons trans-
mitted through the first lead set �offset by 0.2�, through the second
lead set �offset by 0.1� and for electrons transmitted through either
lead set. The boundary of the inelastic regime is at E−�b1�−1.
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sponding to a peak in transmission through lead set 1. High
concurrence is therefore possible along with a high probabil-
ity of transmission. Concurrence drops off in the inelastic
regime �as singlet transmission drops dramatically toward
the same order of magnitude as triplet transmission�, but
since transmission probability is generally very low in this
regime, this is not important.

Scattering behavior is less straightforward in the inelastic
regime. Once again taking the limit �0→−�, each of the
binding-site two-electron states is now effectively coupled to
two sets of boundary condition states. In one set, the propa-
gating electron is scattered elastically. In the other, it is scat-
tered inelastically, leaving the bound electron in �2 and the
propagating electron moving according to the wave vector
k2. The scattering amplitude for elastic scattering from a
single, decoupled state is

p�,k1
=

i sin k1

t���� − E�
2��

+
�

�
eik1 +

�

�
eik2

, �25�

where � is the coupling of the binding-site state to the elastic
scattering boundary states, � is the coupling to the inelastic
scattering boundary states, and ��� is the energy of the bind-
ing site state. All of these parameters are known functions of
�0, t, t�, t�, tc, U, and V. The main difference between this
amplitude and the general scattering amplitude �Eq. �8�� for
the elastic regime is the introduction of the term �

�eik2 into
the denominator, representing dependence on the inelasti-
cally scattered wave vector k2.

In general, this term suppresses the amplitude p�,k1
. The

expression for the position of the antiresonance, p2= p1+ p3,
no longer has a solution for any real energy. The antireso-
nance in the transmission spectrum of the doubly degenerate
binding site and the second lead set of the degenerate leads
system therefore vanishes in the inelastic scattering regime.
The peaks associated with each term of the form of Eq. �25�
are not resonant, and in the case of states with weak cou-
pling, such peaks can no longer be distinguished. Finally, if
�→0, the term in question is completely suppressed. It can
be shown that this occurs in the limit �0→−� when tc=V
−U.

The scattering amplitude for inelastic scattering through a
single, decoupled state is similar in form to Eq. �25�. Both
the elastic and the inelastic channels hence have similar
transmission spectra, with a single nonresonant peak given
by each term of the form of Eq. �25�, which may be sup-
pressed by sufficiently weak coupling to the binding-site
states. The triplet transmission spectrum will therefore have
either one or no peaks, and the singlet transmission spectrum
will have between one and three peaks �but no antireso-
nance� depending on the relative strengths of the couplings.

The second and contrasting parameter set for which data
are presented is �0=10t, t�= t /4, t�= t /8, tc= t /2, and U=V
=�0. Once again, the binding-site potential �0 is large enough
that qualitative comparisons with the limit �0→−� are valid,
and the boundary of the inelastic regime is again E−�b1
�−1. Given these parameter values, a peak in the triplet
transmission spectrum and up to three peaks in the singlet

transmission spectrum �both in elastic and inelastic transmis-
sions� might be expected, all of which will lie in the inelastic
regime. Transmission spectra and concurrence data are pre-
sented for this parameter set in Fig. 6.

A single peak is indeed found in the triplet transmission
spectra at approximately the same energy in both lead sets
and in the elastic and inelastic channels. The peak is also
close to the energy of the two-electron binding-site state
through which the electron is supposed to resonantly scatter,
2�0+V. In the singlet transmission spectra, however, there is
a single peak that appears in the elastic transmission spectra,
and a single peak at a different energy that appears in the
inelastic transmission spectra. The reasons for the nonap-
pearance of a further two peaks in both channels are the
couplings of the three decoupled binding-site two-electron
states to the leads. Given that U=V, the energies of the de-
coupled states and their couplings to the leads in either chan-
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FIG. 6. �a� Singlet scattering and first and second lead sets for
the degenerate leads system. �0=10t, t�= t /4, t�= t /8, tc= t /2, and
U=V=−�0. �b� Triplet scattering for the same system. �c� Concur-
rence after scattering for the starting state �↑↓�. The boundary of the
inelastic regime is at E−�b1�−1.
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nel are approximately �exactly in the limit �0→−�� given by

State 1: �1� = 2�0 + U − �2tc,

� = � 1
�2

− 1�t� + t�� ,

� = � 1
�2

+ 1�t� − t�� .

State 2: �2� = 2�0 + U ,

� = �t� − t�� ,

� = �t� + t�� .

State 3: �3� = 2�0 + U + �2tc,

� = � 1
�2

+ 1�t� + t�� ,

� = � 1
�2

− 1�t� − t�� . �26�

Again, � is the coupling of the binding-site state to the
elastic scattering boundary states, � is the coupling to the
inelastic scattering boundary states, and ��� is the energy of
the decoupled binding site state. As noted �Eq. �25��, scatter-
ing via one of these states into a given channel is suppressed
both by weak site-lead coupling to that channel and by
strong site-lead coupling to the other channel. Coupling to
the inelastic channel from state 3 is weak, while coupling to
the elastic channel is strong, so scattering via state 3 is the
major contributor to elastic channel transmission �yielding
the peak seen in the elastic channel spectra�, but is not dis-
tinguishable in the inelastic channel. The converse is true of
scattering via state 2, and it is this that gives rise to the single
peak seen in the inelastic transmission spectra. Scattering via
state 1 is suppressed in both channels. Modification of V
from strict equality with U reveals that this a consequence of
the disappearance of coupling to the elastic channel, �→0,
discussed previously. The parameters used here, U=V and
tc= t /2�0, do not meet the criterion tc=V−U established for
the limit �0→−�. This is a case in which the results for finite
�0 diverge somewhat from those in the limit �0→−�.

The main feature of the concurrence, measured at either
lead set or at both lead sets, is a drop in the same energy
region as the peaks in the triplet transmission spectra. This is
a consequence of the singlet and triplet transmission prob-
abilities becoming closer, leading to increasing mixing be-
tween the two in the transmission regime. The concurrence
also suffers a notable �if slight� drop at the boundary between
the elastic and inelastic regimes. As a result, although con-
currence is still high ��0.95� in the region of the transmis-
sion peak in the singlet transmission spectra, there is no part
of the energy band in which concurrence at �1 is combined
with high transmission probability. This makes scattering

from an electron at a degenerate binding site in the inelastic
regime disadvantageous for creating entanglement, as com-
pared to scattering in the elastic regime, and especially as
compared to the nondegenerate case. However, the high
probability of transmission �in the case of the degenerate
impurity with nondegenerate leads, this will approach 1�
combined with high, although not unity, concurrence means
that �at least with this parameter set� the system is still ef-
fective in generating entanglement.

A further parameter regime which is of interest to the
entanglement of a propagating electron with an electron
bound at a degenerate binding site is ��0�� t, t�= t�� t, �b1
−2t	2�0+U, and 2�0+V	�b1+2t. As noted for the single-
electron case, equalizing the site-lead couplings, t�= t�, de-
couples the antisymmetric combination of the binding sites,
leaving �in the single electron case� a single resonant peak in
the transmission spectrum. In the case of two electron scat-
tering, this equality has three consequences. The first is that
the antisymmetric excited state of the bound electron is com-
pletely decoupled from the leads in the singlet �spatially
symmetric� configuration, so there is no inelastic regime. The
second is that the single two-electron binding site state avail-
able to the triplet �spatially antisymmetric� configuration is
also decoupled from the leads, so that �recalling that ��0�
� t� there will be no resonant scattering in the triplet con-
figuration. The final consequence is that one of the three
decoupled two-electron binding-site states available to the
singlet spin state is also decoupled from the leads. As a re-
sult, there are a maximum of two resonances that can occur
in the singlet transmission, and none of that can occur in
triplet transmission. In the parameter regime �b1−2t	2�0
+U and 2�0+V	�b1+2t, both possible resonances will oc-
cur in singlet transmission.

The consequences of scattering in this regime for trans-
mission behavior and concurrence are illustrated by the sin-
glet scattering spectrum and the concurrence �again, from the
starting state �↑↓�� for the parameter set �0=−10t, t�= t�
= t /4, tc=0.15t, U=−�0, and V=−�t+�0�. These data are plot-
ted in Fig. 7, in this case for the doubly degenerate binding
site without lead degeneracy. Triplet transmission is very low
across the entire band.

There are two resonances in singlet transmission and an
antiresonance �at which transmission via the two binding-site
states coupled to the leads cancels out�. Concurrence is high
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FIG. 7. Singlet transmission probability and concurrence for a
doubly degenerate impurity. �0=−10t, t�= t�= t /4, tc=0.15t,
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across the band, with the exception of the region of the an-
tiresonance. Most importantly, concurrence approaches one
in the region of both the resonances. This means that there
are two energies at which high propagating-bound concur-
rence is combined with a very high probability of singlet
transmission, rather than �as in the nondegenerate case� one
energy. The generation of entanglement between a static and
a flying qubit is therefore easier in this system than in its
nondegenerate analog.

V. CONCLUSIONS

In conclusion, a generalized real-space Anderson model
has been used to model two-electron scattering behavior in
one-dimensional systems incorporating degeneracy of both
binding centres and ideal leads, and the static-flying qubit
entanglement that results from such scattering. Inelastic scat-
tering in such systems has been addressed. Systems with
degenerate leads act as models for the degenerate first con-
duction channel of carbon nanotubes, while a degenerate
binding site is a model for an orbitally degenerate carbon
nanotube quantum dot.

In the elastic regime and with little Coulombic interaction
between components of the degenerate binding sites, it has
been shown that the qualitative features of the single-
electron scattering are preserved. One or two resonant peaks
are observed, along with an antiresonance, in the singlet
transmission spectrum. Triplet transmission is uniformly low,
so the resonant and antiresonant features of the transmission
spectrum are spin dependent. This is particularly interesting
in the context of systems with degenerate leads, since only
one set of leads is found to display antiresonant behavior in
the singlet state, raising the possibility of spin filtering by
selective transmission. In addition, the reappearance of the
antiresonant structure in the two-electron transmission spec-
trum provides a few-electron basis for the antiresonant ef-
fects recently observed in quasi-one-dimensional
structures.33,42–44 Concurrence in this regime is not uniformly
high, but approaches one in regions of high transmission,
indicating that such systems may be useful for the generation
of entanglement.

Raising the Coulombic interaction between components
of the degenerate binding site raises triplet transmission and

therefore lowers concurrence in parts of the energy band. In
the inelastic scattering regime, components of the singlet
transmission behavior are suppressed. This suppression dif-
ferentiates between the elastic and inelastic channels. The
result is large drops in concurrence in some parts of the band,
while overall concurrence is lower in the inelastic than in the
elastic regime. In addition, transmission as a whole is lower
due to the coupling of binding site states to multiple scatter-
ing channels.

Beyond this, systems with degenerate leads are overall
less useful than those with nondegenerate leads since the
branching of the paths available to the scattered electron
lowers overall transmission.

In general, degeneracy of the binding sites or the leads
therefore makes the generation of entanglement between the
spins of a propagating electron and a bound electron harder
to generate than in the nondegenerate case. For most param-
eter values, it is found that either overall transmission prob-
ability or concurrence are lowered relative to the nondegen-
erate case. Acceptable values of transmission probability and
concurrence may nevertheless be found at appropriate ener-
gies of propagation. The lowering of transmission and con-
currence is particularly noticeable in the inelastic scattering
regime. The most clear exception to this is the parameter
regime in which t�= t�. In this regime, no inelastic scattering
occurs and if the Coulombic interaction between components
of the degenerate binding site is sufficient �that is, if �b1
−2t	2�0+V	�b1+2t�, then two resonances in singlet trans-
mission with accompanying peaks in concurrence �to C�1�
will be produced, providing two energies at which a high
degree of entanglement can be produced with maximum
probability, and hence making the generation of entangle-
ment easier than in the non-degenerate case.
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