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An exact analytical solution is derived for the wave function of an electron in a one-dimensional moving
quantum dot in a nanowire, in the presence of time-dependent spin-orbit coupling. For cyclic evolutions we
show that the spin of the electron is rotated by an angle proportional to the area of a closed loop in the
parameter space of the time-dependent quantum dot position and the amplitude of a fictitious classical
oscillator driven by time-dependent spin-orbit coupling. By appropriate choice of parameters, we show that
the spin may be rotated by an arbitrary angle on the Bloch sphere. Exact expressions for dynamical and
geometrical phases are also derived.
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Introduction and motivation.—The importance of a geo-
metric phase factor in the adiabatic cyclic evolution of a
nondegenerate quantum systemwas first discussed byBerry
[1] and later extended to adiabatic cyclic evolution of a
degenerate quantum system, for which the acquired geo-
metric phase is non-Abelian [2]. Generalization to non-
adiabatic cyclic evolutions was subsequently given for both
nondegenerate [3] and degenerate quantum systems [4].
Since the original proposal of using the spin of an

electron confined in a quantum dot (QD) as a qubit [5], a
great deal of experimental and theoretical progress has been
made on the road to realizing a quantum computer utilizing
spins in QDs [6].
A successful way to achieve single spin manipulation is

by employing electric-dipole induced spin resonance
(EDSR) [7–14] using time-dependent electric fields,
applied via gate electrodes. EDSR mediated by the spin-
orbit interaction (SOI) [9] enables single spin manipulation
as demonstrated in lateral QDs [15] and in QDs formed in
nanowires [16–18]. Spin-flip times in such schemes are
about 100 ns in lateral QDs [15] and below 10 ns in InAs
nanowires [16]. Other theoretical proposals to exploit the
SOI for single spin manipulations can be found in the
literature [19–23].
Because of the spin-orbit interaction present in semi-

conductors [24,25], the single-electron orbital states in a
QD are spin dependent and in the absence of a magnetic
field the eigenstates are Kramers doublets, due to time-
reversal invariance. A (spin-orbital) qubit can then be
defined as the ground state Kramers doublet.
If the QD is displaced, the SOI induces rotations of the

spin-orbital qubit [19]. Such rotations have been studied
numerically [26] and analytically in the adiabatic limit
[27–29]. By adiabatically moving the dot in closed loops
(holonomies) general single-qubit manipulations can be

achieved [27,28] which, together with the use of the
Heisenberg exchange interaction for two-qubit manipula-
tions, enables holonomic quantum computation [30,31] with
spins in QDs [28]. Experimental progress to realize this idea
has been reported recently in quadruple QD systems [32].
In this Letterwe propose themanipulation of a spin-orbital

qubit in a QD via motion in only one (physical) dimension,
e.g., along a quantum wire, using time-dependent spin-orbit
(Rashba) coupling with coupling parameter αðtÞ, achieved
electrically by changing the potential on a gate electrode [33].
This contrasts with previous proposals in which the param-
eter space is a two-dimensional position space [19,26–29].
Recently a sixfold tuning ofαwas demonstratedwithin 1Vof
gate bias in an InAs nanowire [34].
To demonstrate single qubit manipulation, we give an

exact analytical solution for the wave function of an
electron in a one-dimensional moving quantum dot, mod-
eled by a time-dependent harmonic confining potential in
the presence of time-dependent spin-orbit coupling. This
solution is itself interesting and adds to a limited number of
exactly solvable time-dependent problems among which
are general time-dependent harmonic oscillators [35,36],
tunnel-coupled spin qubits driven by ac fields [37], and
time-dependent two-level systems [38,39].
Model and exact solution.—Weconsider theHamiltonian

of a single electron in a one-dimensional system

HðtÞ ¼ p2

2m� I þ
m�ω2

2
½x − ξðtÞ�2I þ αðtÞpn · σ; (1)

where m� is the electron effective mass and ω is the
frequency of a harmonic trap (moving QD). Themomentum
and position operators are p and x, respectively. The dot is
translated with time-dependent position defined by the
harmonic potential minimum at ξðtÞ. The spin rotation axis
due to the SOI αðtÞ is denoted by a unit vector n, which
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depends on the crystal structure of the quasi-one-
dimensional material used and the direction of the applied
electric field [18]. Pauli matrices and the identity in spin
space are σ and I, respectively.
Before presenting the solution, we give a simple example

of the manipulation we have in mind. Consider a spin-
orbital qubit in a nanowire QD with a constant Rashba SOI,
α ¼ α1 and translation of the QD by some distance ξ0. For
adiabatic driving, this movement induces a rotation of the
qubit on the Bloch sphere, which is proportional to the
product ξ0α1 [19]. For example, a spin flip can be realized if
the distance traveled is π=ð2m�α1Þ. This can also be
achieved by nonadiabatic movement of the QD, enabling
spin flips with frequency of the order of the QD level
spacing [40]. After translation, with the dot at a fixed
position, the coupling is then changed from α1 to α2 with
corresponding evolution of the Kramer’s doublets. As we
show below, the evolution of the SOI can be tuned
analogously to that of QD displacement and this evolution
can also be nonadiabatic. By displacing the dot back to the
starting position, while keeping α2 fixed and finally driving
α back to its initial value α1, a unitary transformation is
applied to the original manifold. This transformation
depends only on the area of the loop in the parameter
space of both drivings.
The exact solution of the time-dependent Schrödinger

equation for HðtÞ is obtained via a unitary transformation
U†ðtÞ, chosen so that H0¼UðtÞHðtÞU†ðtÞ−iUðtÞ _U†ðtÞ¼
p2=ð2m�Þþm�ω2x2=2, i.e., an oscillator at the origin
without SOI. The unitary transformation is a combination
of two transformations

U†ðtÞ ¼ AαX ξ; (2)

where X ξ is the transformation into a frame moving with
the QD [41]

X ξ ¼ e−iϕξðtÞIeim�½x−xcðtÞ�_xcðtÞIe−ixcðtÞpI; (3)

where the phase factor ϕξðtÞ ¼ − R
t
0 LξðτÞdτ is the action

integral, with LξðtÞ¼m� _xcðtÞ2=2−m�ω2½xcðtÞ−ξðtÞ�2=2
the Lagrange function of a driven oscillator and xcðtÞ is the
response to the driving ξðtÞ, i.e., the solution to the equation
of motion of a classical driven oscillator

ẍcðtÞ þ ω2xcðtÞ ¼ ω2ξðtÞ: (4)

For constant α the transformation is given by Aα ¼
e−im�xαn·σ as shown in Refs. [40,42]. For time-dependent
αðtÞ this must be generalized to

Aα ¼ e−i½ðϕαðtÞþm� _acðtÞacðtÞ=ω2ÞIþϕðtÞn·σ�

× e−i _acðtÞpn·σ=ω2

e−im�xacðtÞn·σ; (5)

with another action integral phase factor ϕαðtÞ¼−R t
0LαðτÞdτ, where LαðtÞ¼m� _acðtÞ2=ð2ω2Þ−m�acðtÞ2=2þ

m�acðtÞαðtÞ is the Lagrange function of another driven
oscillator, satisfying

äcðtÞ þ ω2acðtÞ ¼ ω2αðtÞ (6)

and a phase factor ϕðtÞ ¼ −m� R t
0 _acðτÞξðτÞdτ. By analogy

with the transformation X ξ, we may regard this generalized
Aα as transforming into the “moving frame” of the spin-
orbit coupling, while also performing a momentum-
dependent spin rotation. The phase ϕðtÞ is a crucial term
that rotates the spin and we will focus on it later. Note also
the equivalence of classical equations of motion for driven
oscillators Eqs. (4) and (6); thus, the analysis of the
classical driving of position [40] can also be applied to
the driving of the SOI.
The solution of the original Hamiltonian Eq. (1), jΨðtÞi,

is obtained directly via the unitary transformation Eq. (2),
i.e., jΨðtÞi ¼ U†ðtÞjψðtÞi, where jψðtÞi is a solution of the
transformed Hamiltonian H0. Thus we have

jΨðtÞi ¼ UðtÞjΨð0Þi; (7)

where UðtÞ ¼ U†ðtÞe−iH0tUð0Þ is the time evolution oper-
ator. For the cases when the initial state is an eigenfunction
ofHð0Þ, i.e., jΨmsð0Þi ¼ U†ð0Þjψmijχsi, where jψmi is the
mth eigenfunction of the undriven harmonic oscillator H0

and jχsi is a spinor with spin s, the time evolved state
simplifies to

jΨmsðtÞi ¼ e−iωmtU†ðtÞjψmijχsi; (8)

where ωm ¼ ðmþ ð1=2ÞÞω.
Henceforth we shall consider only systems with cyclic

evolutions, i.e., cases where the Hamiltonian equation (1)
after time T returns to its initial form, HðTÞ ¼ Hð0Þ with
the state spanning the same Kramers doublet subspace
defined by m, allowing arbitrary superpositions of the two
Kramers’ states. To ensure periodic behavior the driving
parameters ξðtÞ and αðtÞ are chosen so that ξðtþ TÞ ¼ ξðtÞ,
αðtþ TÞ ¼ αðtÞ and via the classical oscillator equations of
motion Eqs. (4) and (6), also xcðtþ TÞ ¼ xcðtÞ and
acðtþ TÞ ¼ acðtÞ. This can be achieved using specific
drivings in both adiabatic and nonadiabatic regimes [40].
The final state after cyclic evolution is given by Eq. (8) for
which, at t ¼ T, the time evolution operator reduces to the
simple non-Abelian Uð2Þ transformation, UðTÞ ¼ eiΦT ,

ΦT ¼
�
−ωmT þ

Z
T

0

LðτÞdτ
�
I − ϕTn · σ; (9)

where LðτÞ ¼ LξðτÞ þ LαðτÞ is the Lagrange function of a
classical two-dimensional oscillator, and the angle of spin
rotation around n, 2ϕT ¼ 2ϕðTÞ, is given by

ϕT ¼ m�
I
C1

ac½ξ�dξ ¼ m�
I
C2

α½xc�dxc; (10)

where ac½ξ� is the response acðtÞ expressed as a function of
the driving ξðtÞ and the contour C1 is the path in the
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parametric space ½ξðtÞ; acðtÞ�. Similarly, α½xc� is the driving
αðtÞ expressed as a function of the response xcðtÞ and C2 is
the path in the parametric space ½xcðtÞ; αðtÞ�.
In the adiabatic limit, xcðtÞ → ξðtÞ and acðtÞ → αðtÞ.

The total phase, Eq. (9) may then be decomposed into
dynamical and geometric Wilczek-Zee parts [2],
ΦT ¼ Φdyn þ Φgeom, with

Φdyn ¼ −
�
ωmT − 1

2
m�

Z
T

0

α2ðτÞdτ
�
I; (11)

Φgeom ¼ −ϕadn · σ; ϕad ¼ m�
I
Cad

α½ξ�dξ: (12)

Note that ϕad is expressed solely in terms of the driving
functions and the contour Cad corresponds to the path in the
parametric space ½ξðtÞ;αðtÞ�, similar to the case of Berry
phase for a nondegenerate state [1].
Examples of holonomic spin manipulations.—The exact

expression for the angle of spin rotation, Eq. (10), is the
central result of this paper from which pseudospin trans-
formations within the Kramers doublet may be imple-
mented via nonadiabatic evolution. The phase is
proportional to the area in the parametric space of the
displacement driving and the spin-orbit response (or
equivalently the spin-orbit driving and displacement
response). Although the periodic driving functions are
arbitrary, a particularly convenient driving scheme is to
change ξðtÞ and αðtÞ sequentially, returning to the displaced
Kramers doublet space at intermediate times, between
which the evolution may be manifestly nonadiabatic with
spin rotations. This is illustrated in Figs. 1(a) and 1(b) in
which at times t1, t2, t3, and t4 the response functions are
equal to the driving functions, with zero time derivatives,
ensuring that at these times we return to the displaced
Kramers doublet space.
From these time variations of drivings and responses we

see that the parametric plot of ½ξðtÞ; acðtÞ� is a square (in
scaled units), as shown in Fig. 1(c). Comparing drivings
and responses, we see that although we are in the non-
adiabatic regime, from Eq. (10) the acquired non-Abelian
phase is calculated to be ϕT ¼ −m�ξ0α0, the adiabatic
result. It follows that ϕT is independent of the specific
choice of drivings, provided there are no residual oscil-
lations at the vertices. The only difference between the
various cases is the cycle time T, which is a minimum for
the highly nonadiabatic case of instantaneous switching
[thin dashed lines in Figs. 1(a) and 1(b)] [40], with similar
behavior for αðtÞ. Explicit calculation gives T ¼ 4π=ω. An
estimate for InSb gives ϕT ∼ 1, using parameters
m� ¼ 0.015me, ξ0 ¼ 200 nm, and α0 ¼ 50 nm=ps [18].
Within the expected range of allowed parameters, we see
that arbitrary rotations about a fixed axis n are feasible.
This rotation axis itself may be changed using additional
side gates, thus opening the possibility of arbitrary rotation
on the Bloch sphere.

The independence of acquired phase to the switching
profile of ξðtÞ and αðtÞ, and its equivalence to the adiabatic
result, is a consequence of sequentially switching these
driving terms and is not generally true. An example is
shown in Fig. 1(d) for which ξðtÞ ¼ ξ0 cosðωt=nÞ and
αðtÞ ¼ α0 sinðωt=nÞ, with integer n ≥ 2. In the adiabatic
limit (n → ∞), the parametric plot is a circle when spin-
orbit and displacement parameters are scaled with α0 and
ξ0. However, unlike the previous example, the trajectories
and the acquired phase deviate from the adiabatic limit, as
can be seen by the red contour line C1 corresponding to
n ¼ 4 [43].
Relation to geometric phases.—Anandan has extended

the definitions of dynamical and geometric phases to cases
of nonadiabatic cyclic evolution of degenerate systems [4].
Using our exact solution, we may derive explicit expres-
sions for these contributions to the total phase.
We focus on cases where at t ¼ 0 our system is in a

degenerate Kramers doublet state, Eq. (8). This state
undergoes cyclic evolution in time T where it is again in
the same Kramers doublet space but with a non-Abelian
spin transformation with total phase given by Eq. (9). Note,
however, that, due to nonadiabatic evolution, the state at

(b)

0

0

1

(c) (d)

(a)

FIG. 1 (color online). (a) Displacement ξðtÞ and spin-orbit
coupling αðtÞ, in scaled units as (sinusoidal) functions of driving
time and (b) scaled responses xcðtÞ, acðtÞ, and _acðtÞ with
T ¼ 12π=ω. Thin dashed lines indicate discontinuous changes
in displacement with T ¼ 4π=ω and the corresponding smooth
response. Contours ½ξðtÞ; acðtÞ� for square and circular loops are
shown in (c) and (d). Note that the acquired phase in (c) is always
unity in scaled units—the adiabatic result, as indicated. By
contrast the harmonically driven case in (d) is a circle only in
the adiabatic limit, with oscillatory contour otherwise.
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intermediate times will generally be a superposition of
other Kramers doublets when expressed in the instanta-
neous eigenbasis set at time t.
To divide the phase into dynamical and geometric parts

we first choose a gauge transformation to another ortho-
normal basis [4,44]

j ~ΨmsðtÞi ¼ e−iΦðtÞjΨmsðtÞi;

ΦðtÞ ¼
�
−ωmtþ

Z
t

0

LðτÞdτ
�
I − ϕðtÞn · σ; (13)

spanning the same subspace but with periodic basis states,
j ~ΨmsðTÞi ¼ j ~Ψmsð0Þi, since ΦðTÞ ¼ ΦT , Φð0Þ ¼ 0. The
time evolution operator, Eq. (7), after one cycle can then be
expressed as [4]

UðTÞ ¼ eiΦT ¼ T ei
R

T

0
½AðτÞ−KðτÞ�dτ; (14)

where T denotes the time ordering operator. Hermitian
matrices Ass0 ¼ ih ~ΨmsðτÞjd=dτj ~Ψms0 ðτÞi and Kss0 ¼
h ~ΨmsðτÞjHðτÞj ~Ψms0 ðτÞi can be, by the virtue of exact
functions Eq. (8), expressed analytically in terms of driving
and response functions. The resulting A and K commute
allowing the total phase to be split intoΦT ¼ Φdyn þ Φgeom,
where Φdyn ¼ − R

T
0 KðτÞdτ and Φgeom ¼ R

T
0 AðτÞdτ,

Φdyn ¼ −
Z

T

0

EðτÞdτI − 2ðϕT − ϕcÞn · σ; (15)

Φgeom ¼ ϕaI þ ðϕT − 2ϕcÞn · σ; (16)

and E − ωm ¼ m�ð_x2c þ _a2c=ω2Þ=2þm�ω2ðxc − ξÞ2=2þ
m�a2c=2 −m�acα is instantaneous energy of driven
classical oscillators, and

ϕc ¼ m�
I
C3

ac½xc�dxc; (17)

ϕa ¼ m�
�I

C4

_xc½xc�dxc þ
I
C5

_ac½ac�dac=ω2

�
: (18)

The geometric Anandan phase equation (16) is dependent
on contours C1…5, which correspond to the trajectories of
time-evolved states of the two Kramers states at t ¼ 0. In
the adiabatic limit ΦT reduces to the Wilczek-Zee phase for
which EðtÞ becomes the time-dependent eigenenergy of
HðtÞ and C1;2;3 → Cad, ϕT → ϕc → ϕad, ϕa → 0. Note that
the dynamical phase in the adiabatic limit is just the
(diagonal) time-integrated energy while the geometric
phase embodies the spin rotation, as expected. However,
this is not generally the case in the nonadiabatic regime for
which the spin rotation is shared between geometrical
and dynamical parts [43]. From Eq. (15) we see that when
ϕT ¼ ϕc the spin rotation is purely geometric. In contrast
from Eq. (16), when ϕT ¼ 2ϕc, the spin rotation is purely
dynamic.

Finally, let us relate our results corresponding to the
cyclic evolution of a degenerate system to results valid for
nondegenerate systems. Degeneracy of the Kramers states
Eq. (8) can be lifted, e.g., by an external magnetic field
which breaks the time reversal symmetry. We consider the
case with the magnetic field along the direction of the
effective field induced by the moving QD due to SOI, i.e.,
with the Zeeman term Hz ¼ −gμBBn · σ. For more general
cases the exact solution may still give new insight by
treating the magnetic field component perpendicular to n as
a perturbation. The solutions to a driven Hamiltonian
HðtÞ þHz are in this case also given by Eq. (8), but
with states jχsi being spinor eigenstates in a magnetic
field, with eigenenergy ωms ¼ ðmþ ð1=2ÞÞω∓gμBB, for
s ¼ �ð1=2Þ, respectively. In this case the Aharonov-
Anandan geometric phase [3] can also be expressed
exactly, βs ¼

R
T
0 h ~Ψmsjd=dτj ~Ψmsidτ ¼ ϕa � ðϕT − 2ϕcÞ,

which in the adiabatic limit reduces to the ordinary
Berry phase βs → ∓ϕad.
Discussion and conclusion.—Geometric phase has

recently been measured in a driven harmonic oscillator,
implemented as one of the electromagnetic modes of a
transmission line resonator using a superconducting qubit as
a nonlinear probe of the phase [45]. With respect to this
experiment the driven harmonic oscillator considered here,
Eq. (1), has an additional internal degree of freedom (spin)
which thedrivingof themomentumcouples to.This suggests
the possibility of including an additional degree of freedom
also in experiment, e.g., thepolarizationof aphoton, together
with its coupling, to observe the non-Abelian phases.
Compared with other proposals, such as EDSR or inverse

engineering[23], inourschemethespincontrol isallelectrical
without magnetic field; thus, qubit errors from fringing
magnetic fields are no longer an issue. Furthermore, our
general exact solution allows extensive exploration and
optimizationof themodel, including thenonadiabatic regime,
incontrast toEDSRwhereSOI [7,9]orZeeman terms [13]are
treated as perturbations, restricting applicability.
Possible effects of the environment on the pseudospin

state of an electron in a moving QD are decoherence and
relaxation due to fluctuating electric fields, caused by the
piezoelectric phonons and conduction electrons in the
circuit [27,46], due to hyperfine interaction with the nuclei
[47] or ionized dopant nuclei in a heterostructure [48]. In
the last case the longitudinal and transverse rates are at the
lowest order in SOI proportional to the speed of the moving
QD [see Eq. (28) in Ref. [48]] which applies in our case for
linear ramp driving in the adiabatic limit [40]. The spin
relaxation of free and QD-localized electrons with spin-
orbit coupling disorder has also been studied [49] though
not in the moving QDs. An important consideration in the
practical implementation of this scheme is the affect of
random fluctuations in both the time-dependent SOI and the
QD motion. Although a detailed investigation of this is
beyond the scope of the present Letter, we point out that our
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method and exact solution applies to arbitrary drivings of
both the QD motion and time-dependent SOI and could
therefore be used as a starting point for a detailed study of
noise properties, which would be welcome. This would
extend the already promising results for static disorder
of adiabatic QD motion [48] and spin-orbit coupling
disorder [49].
To conclude, we have presented a formalism for the

analysis of holonomic spin-orbit qubitmanipulations,where
the non-Abelian Uð2Þ phase acquired during one cycle is
exactly given by the contour integral in the space of time-
dependentQDpositionandRashba interactionresponse.The
time evolution operator UðtÞ and hence also the wave
function, is completelydeterminedby thedrivingparameters
ξ,αand their responsesxc,ac.Analytical expressionsderived
allow a detailed analysis of different types of driving, with
potential application to the design and optimization of high-
speed qubit gates. Explicit expressions for dynamic and
geometric phases enable the off-diagonal (spin-rotation) part
to be arbitrary, shared between them.
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Here we give two examples of periodic motion for which
the drivings ξ(t) and α(t) vary simultaneously and for
which the state returns to the initial Kramers subspace
after a complete period, T . The first example (circu-
lar driving) demonstrates the transition from highly non-
adiabatic to adiabatic driving and shows clearly the effect
of non-adiabatic motion on the various parametric con-
tours. These are also seen in the second example (broken
ellipsoidal driving) which can give rather exotic trajec-
tories and for which we also show how an arbitrary divi-
sion between dynamic and geometric phases can be made.
This contrasts with the scenario discussed in the text for
which ξ(t) and α(t) are varied sequentially returning to
the displaced Kramers subspace at intermediate times,
which always gives square contours for the parametric
plots, the adiabatic result.

DRIVING AND RESPONSE

The exact time evolution operator U(t) is completely
determined, firstly by the quantum dot time-dependent
displacement coordinate ξ(t) and time-dependent Rashba
coupling α(t) and secondly by the response to these two
driving functions. Displacement response xc(t) and spin-
orbit response ac(t) are related to drivings by an uncou-
pled set of harmonic equations of motion,

ẍc(t) + ω2xc(t) = ω2ξ(t),

äc(t) + ω2ac(t) = ω2α(t).

In the present case we seek periodic response to periodic
driving. Of a particular interest are the solutions where
the initial (and final) values of driving and response co-
incide. For example, when xc(0) = 0 and ẋc(0) = 0, the
solution is given by

xc(t) = ω

∫ t

0

sin[ω(t− τ)]ξ(τ)dτ,

and in order to fulfill the condition of periodicity of the re-
sponse, the driving has to be appropriately tuned. Since
the equations of motion correspond to undamped oscil-
lators, in general only discrete values of one cycle pe-
riod T are possible. Equations of motion can efficiently
be solved by Fourier expansion in the time domain and

then analytical solution is possible for a broad class of
drivings.

CIRCULAR DRIVING
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Fig. S1: Position ξ(t)/ξ0 and the SOI α(t)/α0 (full) as func-
tions of driving time t/T and responses xc(t)/ξ0, ac(t)/α0

(dashed). Panel (a) shows fast, non-adiabatic driving, n = 3,
i.e., T = 3T0, and panel (b) a slower driving with n = 8.
Fast oscillations correspond to frequency of the oscillator,
ω = 2π/T0.

Here we consider driving corresponding to a circular
path α[ξ] with constant frequency, ξ(t) = ξ0 cos(ωt/n)
and α(t) = α0 sin(ωt/n), where n ≥ 2 is integer, the
period is T = nT0 and T0 = 2π/ω. Periodic responses
with xc(0) = ξ(0) and ac(0) = α(0) are given by

xc(t) = ξ0
n2 cos(ωt/n)− cos(ωt)

n2 − 1
,

ac(t) = α0

n (n sin (ωt/n)− sin(ωt))

n2 − 1
.
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The phases (see Eq. (10), (17) and (18)) are given ana-
lytically,

φad = m∗

∮

Cad

α[ξ]dξ = −πm∗ξ0α0,

φT = m∗

∮

C1

ac[ξ]dξ = m∗

∮

C2

α[xc]dxc

=
n2

n2 − 1
φad,

φc = m∗

∮

C3

ac[xc]dxc =
n2

(

n2 + 1
)

(n2 − 1)2
φad,

φa = m∗(

∮

C4

ẋc[xc]dxc +

∮

C5

ȧc[ac]dac/ω
2)

= πm∗
n
(

n2 + 1
)

ξ2
0
ω + 2n3α2

0
/ω

(n2 − 1)
2

.

φT is in fact independent of the initial values xc(0), ac(0),
ẋc(0), and ȧc(0) in spite of the fact that the contours C1,2
strongly depend on the choice of the initial values. Note
also that φc/φT > φT /φad > 1 and φa > 0 while in the
adiabatic limit, n → ∞, φT = φc = φad and φa = 0.

In Fig. S1(a) is presented normalized displacement
ξ(t)/ξ0 and the SOI α(t)/α0 as functions of driving time
t/T for n = 3 (full lines). Dashed lines correspond to the
response functions xc(t)/ξ0 and ac(t)/α0. The spin-orbit
response exhibits a more pronounced oscillatory behav-
ior, because the initial condition, at t = 0, was chosen
ȧc(0) = 0, which differs from α̇(0) > 0. For the dis-
placement we chose ẋc(0) = ξ̇(0) which leads to a more
synchronized motion. In Fig. S1(b) analogous results for
n = 8 are presented and here also ac(t) displays a higher
degree of oscillations which would by progressively larger
n diminish as O(1/n).

Examples of trajectories [ξ(t), ac(t)] (contours C1) are
shown in Fig. S2(a) from the fastest non-adiabatic n = 2
case towards adiabatic with n = 16 and the adiabatic
limit n → ∞ result corresponds to the driving [ξ(t), α(t)].
Bullet represents the initial point at t = 0. In Fig. S2(b)
the corresponding results for [α(t), xc(t)] represent con-
tours C2. Although the shapes of C1 and C2 are different,
the enclosed area for the same n is equal. Note that C2 ex-
hibits much less oscillations, consistent with Fig. S1. The
last of three important trajectories, [xc(t), ac(t)], contour
C3, is presented in Fig. S2(c).

The last set of contours corresponds to the paths in
the phase space of separate, displacement and spin-orbit
degrees of freedom. In Fig. S3(a) is shown [xc(t), ẋc(t)],
the contour C4. In the adiabatic limit it shrinks to the
line leading to vanishing enclosed area. The correspond-
ing [ac(t), ȧc(t)] trajectory, the contour C5, is presented
in Fig. S3(b), in the adiabatic limit a line decorated by
superimposed oscillations.
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Fig. S2: Panel (a): Contours [ξ(t), ac(t)] or C1 (scaled) for
various n = 2, 4, 16 and the adiabatic limit n → ∞ (circular
contour Cad). Panel (b): Contours [xc(t), α(t)] corresponding
to C2; colors for n = 2, 4, 16,∞ as in panel (a). Note entirely
different C1 and C2, but still

∮
C1

ac[ξ]dξ =
∮
C2

α[xc]dxc for

each n. Panel (c): Contours [xc(t), ac(t)] or C3. In all pan-
els bullets represent start (end) of a cycle, with xc(0) = ξ0,
ẋc(0) = 0 and ac(0) = 0, ȧc(0) = 0. Note also that in the
adiabatic limit all contours reduce to circle Cad.
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Fig. S3: Panel (a) shows scaled phase space contours
[xc(t), ẋc(t)] or C4 and panel (b) [ac(t), ȧc(t)] or C5, for various
n = 2, 4, 16. In the adiabatic limit, n → ∞, ẋc(t) = ȧc(t) = 0.

BROKEN ELLIPSOIDAL DRIVING
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Fig. S4: Position ξ(t)/ξ0 and the SOI α(t)/α0 as functions of
driving time t/T and the corresponding responses xc(t)/ξ0,
ac(t)/α0. Note that the time-dependence of SOI is delayed
by ∆T , otherwise with time-dependence identical to the dis-
placement driving.

Here we consider driving corresponding to the path
α[ξ] with ξ(t) = ξ0 sin (ωt/2)Θ(t)Θ(2T0 − t), and α(t) =
α0ξ(t − ∆T )/ξ0, where Θ(t) is the Heaviside step func-
tion, T0 = 2π/ω and ∆T is the time delay (see Fig. S4).
The driving is applied periodically with the cycle period
T = 2T0 + ∆T . The responses are periodic and within

one cycle are given by

xc(t) =
2

3
ξ0 [2 sin (ωt/2)− sin(ωt)] Θ(t)Θ(2T0 − t),

ac(t) = α0xc(t−∆T )/ξ0.
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Fig. S5: Panel (a): All three relevant phases φT , φc, and φad

plotted as a function of delay ∆T/T0. The phases are scaled
by the factor m∗ξ0α0. Black circles represent two points of
equality of φT = φc, where the dynamical phase is diagonal.
Red circles indicate two φT = φad points. Note that the
phases change sign at different ∆T . Panel (b): Off-diagonal
geometric and dynamical phase, φT − 2φc or −2(φT − φc),
respectively. Note circles and squares indicating points of
diagonal geometric or dynamical phase, respectively.

Phases φT , φc, and φad, calculated as a function of de-
lay ∆T/T0, are presented in Fig. S5(a). There are several
interesting details to be noted: (i) all curves are similar
in the sense that particular phase for small ∆T is nega-
tive and by progressively larger time delay at some point
changes sign and finally vanishes at ∆T = 2T0, where
there is no overlap between ξ(t) and ac(t), see Fig. S4.
(ii) All phases mutually intersect in two ∆T points, there-
fore φT can be tuned to be equal to φc, which eliminates
off-diagonal parts of the dynamical phase, for example.
It is evident also that one can tune φT = 2φc which elim-
inates off-diagonal parts of the geometric phase [see also
Fig. S5(b)]. (iii) Due to the fact that each of the phases
at some point vanishes and changes sign, the ratio be-
tween any pair of phases can take any value, positive or
negative. Since the amplitudes of drivings, ξ0 and α0,
are additional free parameters, consequently one can by
changing ∆T tune the phases to any value – indepen-
dently.
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Contours [ξ(t)/ξ0, ac(t)/α0], [xc(t)/ξ0, ac(t)/α0] and
[ξ(t)/ξ0, α(t)/α0] are presented in Fig. S6. In panels
(c) and (d) note the reversion of the directions of C1,3,ad
which is the reason for the change of sign of the phases
shown in Fig. S5. In all panels bullets represent start
(end) of a cycle, with xc(0) = xc(T ) = 0, ẋc(0) =

ẋc(T ) = 0, ac(0) = ac(T ) = 0, and ȧc(0) = ȧc(T ) = 0.
Scaled phase space contours [xc(t), ẋc(t)] and

[ac(t), ȧc(t)] are identical to the case of circular motion
for SOI response [ac(t), ȧc(t)], Fig. S3(b) for n = 2,
with the displacement response appropriately scaled by
ξ0/α0.
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Fig. S6: Contours [ξ(t)/ξ0, ac(t)/α0] (C1), [xc(t)/ξ0, ac(t)/α0] (C3) and [ξ(t)/ξ0, α(t)/α0] (Cad). Panels (a), (b), (c), (d) corre-
spond to different values of ∆T/T0 = 1/4, 5/8, 3/4, 5/4, respectively (in Fig. S5(a) indicated by dashed lines).
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