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Slow quenches in two-dimensional time-reversal symmetric Z2 topological insulators
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We study the topological properties and transport in the Bernevig-Hughes-Zhang model undergoing a slow
quench between different topological regimes. Due to the closing of the band gap during the quench, the system
ends up in an excited state. We prove that for quenches that preserve the time-reversal symmetry, the Z2 invariant
remains equal to the one evaluated in the initial state. On the other hand, the bulk spin Hall conductivity does
change, and its time average approaches that of the ground state of the final Hamiltonian. The deviations from
the ground-state spin Hall conductivity as a function of the quench time follow the Kibble-Zurek scaling. We
also consider the breaking of the time-reversal symmetry, which restores the correspondence between the bulk
invariant and the transport properties after the quench.
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I. INTRODUCTION

Topological insulators have been one of the focal points
of condensed-matter physics for the past decade due to
their interesting properties and potential future applications
in nanoelectronics [1–5]. The topological insulators are bulk
insulators that at the edges host gapless conducting states which
avoid dissipation [6–9]. Although the ground-state physics of
topological insulators is already well established, less is known
about their response to the time-dependent driving, which is
the subject of an active current investigation.

Recently, the question of the response due to the changes
in system’s parameters (quantum quench) was explored in
Chern insulators. Their topological phase is characterized by
a nontrivial Chern number and the quantum Hall effect. By
definition, the topological invariants are conserved by any
adiabatic evolution. But, strikingly, a stronger statement holds.
The Chern number is conserved for an arbitrary evolution (the
only restriction that the Hamiltonian is smooth in momentum)
even if during the evolution the band gap closes [10,11]. Several
works [12–17] investigated response due to a rapid change in
parameters (i.e., a sudden quench) and found that the bulk
Hall response, in contrast to the Chern number, evolves in
time. References [18–20] studied a different case in which
the parameters are varied slowly between different topological
regimes (i.e., a slow quench). The subtle point is that, even
though the change in parameters is slow, it can never be
adiabatic as the band gap closes. For slow quenches, the bulk
Hall response of the postquench system was found to approach
the value determined by the topological invariant of the ground
state of the final Hamiltonian. In a more general setting, the
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response due to slow quenches was also studied in topological
superconductors [10,21–23].

Topological systems are gapless at the critical point be-
tween different topological regimes, thus even slow quenches
between different topological regimes create excitations. The
Kibble-Zurek argument [24,25] predicts that the density of
excitations scales with the quench time to the power given by
the critical exponents, associated with the critical point across
which the system is quenched. Agreement of the Kibble-Zurek
scaling and the actual response of the bulk after the quench was
shown in Refs. [26,27] for Chern insulators and in Ref. [21]
for one-dimensional superconductors.

It is natural to ask whether the above findings are general
and apply to other types of topological insulators. We consider
two-dimensional topological insulators with the time-reversal
symmetry (TRS). They are characterized by theZ2 topological
invariant and, in the topological phase, exhibit the spin Hall
effect. Importantly, several experimental realizations of these
systems exist [28–33].

In this paper we study the topological invariant and the spin
Hall effect of the Bernevig-Hughes-Zhang (BHZ) model. We
set the system to the ground state of the Hamiltonian in a certain
topological regime and then slowly quench the Hamiltonian to
a different topological regime. Similar to the case of Chern
insulators, the numerical results show that the topological
invariant does not change provided the time-reversal symmetry
is respected during the quench. We also offer an analytical
proof of this finding. In contrast to the Z2 invariant, the bulk
spin Hall conductivity does evolve and, in the limit of an
infinitely slow quench, it approaches the value characteristic
of the ground state of the final Hamiltonian. We show that the
deviations from the ground-state value obey the Kibble-Zurek
scaling. We also explore quenches that break the TRS and
keep the band gap open at all times (such quenches cannot be
realized for Chern insulators). In this case the correspondence
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is restored: The topological invariant of the system and the spin
Hall response are both characteristic of the ones evaluated for
the ground state of the final Hamiltonian.

The paper is structured as follows. In Sec. II we introduce
the BHZ model and describe how we evaluate the Z2 invariant
and the spin Hall conductivity. Section III is dedicated to the
results: The phase diagram of the BHZ model is explored,
and the response of the system after a TRS-preserving quench
as well as a TRS-breaking quench are shown. In Sec. IV our
findings are summarized. In Appendix A, band dispersions
and postquench occupancies are analytically discussed. We
show the spin Berry curvature [34] and analyze the deviation
of the postquench spin Hall conductivity from the ground-state
value in detail. We also calculate the critical exponents of the
BHZ model. In Appendix B we generalize the proof of the
conservation of the Chern number to the case of multiple-band
systems, and we give a proof of the conservation of the
Z2 invariant. We present the full formula for the spin Hall
conductivity, and we discuss the oscillations of the spin Hall
response of the postquench system in Appendix C.

II. MODEL AND METHODS

We study a two-dimensional time-reversal symmetric
s = 1/2 system on a square crystalline lattice with two orbitals
per unit cell. Its bulk momentum-space Hamiltonian is given
by

Ĥ (k) = ŝ0 ⊗ [(u + cos kx + cos ky)σ̂z + sin kyσ̂y]

+ ŝz ⊗ sin kxσ̂x + c ŝx ⊗ σ̂y, (1)

where ŝi and σ̂i for i ∈ {x,y,z} are Pauli operators, ŝ0 and σ̂0

are identity operators in spin space and local orbital space,
respectively, and k is an element of the first Brillouin zone
(BZ). c ∈ R is the coupling constant between spin and orbital
degrees of freedom, and u is the staggered orbital binding
energy. The Hamiltonian is expressed in the units of intercell
hopping amplitude which is equal in both x and y directions.
We also set h̄ and the lattice constant to 1. The system has the
TRS with the time-reversal operator T̂ = iŝyK, K being the
complex conjugation. When c = 0, the original BHZ model
[28] is recovered in which the perpendicular projection of
the spin sz is conserved. It describes the low-energy physics
of the HgTe/CdTe quantum wells. In systems with band
inversion asymmetry and structural inversion asymmetry, such
as InAs/GaSb/AlSb type-II semiconductor quantum wells
[30], terms that couple states with opposite spin projections
and preserve the TRS arise. We model such terms with the
simplified c �= 0 term. We consider half-filled systems at zero
temperature, meaning that before the quench the lower two
energy bands are occupied and the upper two are empty.

We describe the time-reversal symmetric insulator by a set
of occupied states {|un(k)〉,k ∈ BZ,1 � n � NF }. A phase of
the bulk time-reversal symmetric insulator is characterized
by the Z2 invariant Nbulk that distinguishes between the
topological regime (Nbulk = 1) and the trivial band insulator
regime (Nbulk = 0). In numerical evaluation it is convenient to
use a gauge invariant definition of the Z2 invariant Nbulk: It is
equal to the parity of the number of times the Wannier center
flow θn(ky), in range ky ∈ (0,π ), crosses an arbitrarily chosen

fixed value of θ̃ ∈ [−π,π ) [35],

Nn(θ̃ ) = number of solutions ky ∈ (0,π ) of θn(ky) = θ̃ , (2)

Nbulk =
(

NF∑
n=1

Nn(θ̃)

)
mod 2. (3)

The Wannier center flow θn(ky) is equal to the phase of the nth
eigenvalue of the Wilson loop, a multiband generalization of
the Berry phase. The Wilson loop is defined as

W (ky) = M (12)M (23) · · · M (N−1,N)M (N,1), (4)

M (kl)
nm = 〈un(kδk − π,ky)|um(lδk − π,ky)〉, (5)

where δk = 2π/N is the discretization step in the momentum
space of a lattice with periodic boundary conditions andN × N

sites. Matrices W (ky) and M (kl) are of dimension NF × NF .
Wannier center flow can be associated with the expectation
value of the relative position of a state from the nearest lattice
site. The Z2 invariant is well defined only for systems with
TRS in which the Wannier center flow is symmetric about and
doubly degenerate at ky = 0,π . For pedagogical discussion see
Ref. [36].

We evaluate the spin Hall conductivity σ
spin
xy by calculating

the spin current density j
spin
y as a response to an electric field

Ex in the perpendicular direction. For the spin current defined
as [34,37] (see Refs. [38–40] for other possible definitions)

ĵ spin
y = 1

2

1

N2
ŝz

∂Ĥ (k)

∂ky

, (6)

the spin Hall conductivity can be evaluated as

σ spin
xy = 1

Ex

NF∑
n=1

∑
k

〈un(k)|ĵ spin
y |un(k)〉. (7)

Ex is a small homogeneous electric field switched on at
t = tE, Ex(t) = E0{1 − exp[−(t − tE)/τE]}. Throughout the
paper we choose τE = 10, E0 = 0.0001, and the system size
200 × 200. We checked that increasing the system size fur-
ther does not affect the results presented in the paper. To
preserve the translational symmetry we introduce the electric
field through a spatially homogeneous time-dependent vector
potential Ax(t) = − ∫

Ex(t)dt [40].

III. RESULTS

A. Phase diagram of the BHZ model

The phase diagram of the BHZ model, shown in Fig. 1(a),
describes the topological phase of the ground state of the
Hamiltonian (1) at parameters P = (u,c). It consists of three
insulating regions: the trivial regime with Nbulk = 0 (white)
and two topological regimes with Nbulk = 1 (gray). Insu-
lating regimes are separated from each other by a broad
Dirac semimetal regime (DSM) in which the system has a
closed band gap with linear dispersion. The upper boundary
between the semimetal and the trivial insulator regimes is
c(u) =

√
2 − u2/2, whereas the lower boundaries between the

topological insulator and the semimetal regimes are c(u) =√
1 − (u − 1)2 and c(u) =

√
1 − (u + 1)2. In the semimetal
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FIG. 1. (a) Phase diagram of the BHZ model in P = (u,c) parameter space. The gray colored area marks topological insulator parameter
regimes where Nbulk = 1, the white area marks the trivial insulator regime with Nbulk = 0, and the blue area marks the Dirac semimetal regime.
Points P0 = (−3,0), P̃0 = (−3,0.3), P1 = (−1,0), P̃1 = (−1,0.3), and P̃2 = (1,0.3) mark initial and final points between which parameters
of the Hamiltonian are quenched (dashed). Several band gap closing points are marked as P01, P̃01, and P̃12. (b) Wannier center flows for the
ground state of the Hamiltonian at P0 and P1. The dashed black line presents a chosen θ̃ used for the determination of the Z2 invariant. (c) Spin
Hall conductivities at P0, P̃0, P1, and P̃1, where σ

spin
0 = e/2π .

regime the band gap closes at different points in the Brillouin
zone, in particular, forP01 = (−2,0) at the� point at k = (0,0),
for P = (0,0) at k = (0,π ) and (π,0), for P = (2,0) at k =
(π,π ), and for P = (±1,1) at k = (±π/2,0) and (0, ± π/2).
In Appendix A, analytical expressions for the band dispersions
near the band-gap closing are given, and graphs are shown at
the band-gap closing points P01, P̃01, and P̃12.

For the purpose of later comparison with the response after
the quench, we first establish what kind of behavior to expect
in distinct parameter regions for the ground state. Figure 1(b)
shows Wannier center flows θ (ky) at P0 and P1 whereas the
dashed line is an arbitrary θ̃ chosen to evaluate the Eq. (3). For
instance, one can see that in the ground state at P1 the Wannier
center flow crosses the dashed line once, hence P1 corresponds
to the topological regime.

The spin Hall conductivity evaluated as described in Eq. (7)
is presented in Fig. 1(c). One can see a sharp distinction
between the results in the topological regime (P1 and P̃1)
where, following a steep rise, the spin Hall conductivity
oscillates around a finite value and the trivial regime (P0 and
P̃0) where it oscillates around zero instead. The frequency of
these oscillations is equal to the band gap. The amplitude of the
oscillations diminishes with time, and it becomes smaller if the
electric field is turned on more adiabatically (i.e., with longer
τE). In the topological regime, the ground-state value of the
spin Hall conductivity is quantized in the units of σ

spin
0 = e/2π

(e is the charge of electric carriers) whenever sz is conserved
(e.g, in P1 it is equal to σ

spin
0 ) but has a nonquantized value

elsewhere [9]. In contrast to the spin Hall conductivity, the Hall
conductivity vanishes in all parameter regimes due to the TRS.

So far we have analyzed the phase diagram in the u < 0,

c > 0 region. As shown in Appendix A, the Hamiltonian pos-
sesses certain symmetries which relate phases in the remaining
regions of the phase diagram to those in the u < 0, c > 0
region. Upon changing the sign of u, the Z2 invariant is
preserved while the spin Hall conductivity changes sign. The
spin Hall conductivity in P̃2 is thus the negative of that in P̃1.
Upon changing the sign of c, both the Z2 invariant and the spin
Hall conductivity remain unchanged.

B. Slow quenches with preserved TRS

Now we turn to the discussion of quenches. We studied the
response of the system undergoing a slow quench of the param-
eters of the Hamiltonian between different topological regimes,
indicated by the dashed lines in Fig. 1(a). The parameter u is
changed smoothly as u(t) = u0 + (u1 − u0) sin2 ( π

2 t/τu) for
t ∈ [0,τu]. For times t > τu, u has a constant value of u1. This
unitary evolution does not break the TRS, namely, during the
quench the Hamiltonian stays time-reversal symmetric.

We first discuss the c = 0 case. In Fig. 2(a) the Wannier
center flows are shown at different times during the quench
P0 → P1 with τu = 15. The system starts in the trivial phase
with the shape of the Wannier center flow as in Fig. 1(b) (see
P0). With progressing time, the Wannier center flow evolves
into the diamond-shape characteristic of the ground state at
P1 (dashed) for |ky | larger than a certain k0 but deviates from
that for |ky | < k0. Since the Wannier center flow vanishes at
ky = 0 for all times, the Z2 invariant remains unchanged. We
also derived this analytically and give the corresponding proof
for a general TRS-preserving unitary evolution in Appendix B.

The shape of the Wannier center flow can be related to
the band occupancy shown in Fig. 2(b). The population of
the (doubly degenerate) lowest-energy-level n1(0,ky) after the
quench is shown for several quench times τu. The population
of the lowest-energy level drops at small |k| < k0 and vanishes
at the � point where the band gap closes during the quench.
The final occupancies can also be derived analytically using
the Landau-Zener formula [41] which gives n1(k) = 1 −
exp[−πk2/vu], vu = | du

dt
|
t=τu/2

| = π |u1 − u0|/2τu, and con-

sequently the delimiting k0 ∼ √
1/τu (see Appendix A). The

distance from the � point thus determines how close the final
state is to the ground state of the final Hamiltonian (at the
corresponding k), which explains the shape of the Wannier
flows.

Figure 2(c) shows the k points at which the band gap closes
during the considered quenches. In contrast to the P0 → P1

quench where the band gap closes at P01 at an isolated point,
for the P̃0 → P̃1 quench, the band gap closes at parameters
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FIG. 2. (a) Wannier center flows of the ground state at P1 (black, dashed) and of nonequilibrium states (solid lines) at various times during
the quench from P0 to P1 with τu = 15. (b) Population of the first energy level after the P0 → P1 quench. (c) Band-gap closing in k space.
For P0 → P1 and P̃0 → P̃1 quenches the band gap closes at P01 and P̃01, respectively. However, for the P̃1 → P̃2 quench, it closes gradually
starting at the blue points and moving to the red ones as indicated with arrows.

P̃01 on a circle around the � point. The quench P̃1 → P̃2 is
distinct from the former two as parameters of the Hamiltonian
enter the conducting region [see Fig. 1(a)], and the band gap
remains closed in a range of parameter values near u = 0. On
entering the conducting region at P̃12, the band gap closes at
four points [blue points in Fig. 2(c)] which with increasing u

split into eight points that with the progressing quench move
along circles centered at momenta (±π,0) and (0,±π ). When
they reach the Brillouin-zone boundary [red points in Fig. 2(c)],
the band gap opens, and the insulating topological regime is
reached.

After the quench with 0 < c 
 1, the electrons with mo-
menta close to those on a circle where the band gap closes
during the quench are excited to the lower conduction band
with probability exp[−π (|k − kc| − c)2/vu], where kc is the
center of the circle. At momenta on the circle the population of
the conduction band is 1. Correspondingly, the Wannier center
flow is deformed, and the topological invariant remains equal
to that of the initial state.

The total number of excitations is Nexc = |u1 − u0|/8πτu

for systems with c = 0 and Nexc = c
√|u1 − u0|/8πτu for

systems with 0 < c 
 1, i.e., in systems with zero and nonzero
c’s it scales differently with τu. As u is a linear function of
time near the gap closing at t = τu/2, we can compare these
results to the predictions of the Kibble-Zurek scaling for linear
quenches with a fixed rate Nexc ∝ τ

−νd/(νz+1)
u . Here, d is the

spatial dimension whereas ν and z are the correlation length
and the dynamical critical exponent, respectively, associated

with the critical point across which the system is quenched.
Following Ref. [42] (see Appendix A), we obtained the critical
exponents of the BHZ model. These give the same behavior as
found from the Landau-Zener formula and read ν = 1 and z =
1 for c = 0 and ν = 1/2 and z = 2 for 0 < c 
 1. Systems
with zero and nonzero c’s thus belong to different universality
classes.

Spin Hall conductivities, evaluated as the electric field is
turned on after the quench, are for several quench durations
shown in Fig. 3(a). As for systems in the ground state, the
spin Hall conductivity first experiences transient behavior and
then oscillates around a nonzero value σ̄

spin
xy with the frequency

equal to the band gap of the final Hamiltonian. As seen in the
plot and as discussed in more detail below, the oscillations
become small for slow enough quenches. Importantly, in
contrast to the unchanged Z2 invariant, σ̄

spin
xy approaches the

value characteristic of the final Hamiltonian. This generalizes
the corresponding findings in Chern insulators in Ref. [18].

The dependence of σ̄
spin
xy on the quench duration τu is

presented in Fig. 3(b) for several quenches. The deviations
from the ground-state values vanish for quenches slow enough.
In order to understand the observed behavior, we evaluated
the spin Hall conductivity using the time-dependent pertur-
bation theory (following the discussion for Chern insulators
in Ref. [13], see also Appendix C). We obtain the following
analytical formula for the time-averaged spin Hall conductivity
at long times:

σ̄ spin
xy = e

(2π )2

2NF∑
n=1

∫
dk nn(k)
spin

n (k), (8)


spin
n (k) = −2 Im

2NF∑
m=1
m�=n

〈un(k)| 1
2 ŝz∂ky

Ĥ (k)|um(k)〉〈um(k)|∂kx
Ĥ (k)|un(k)〉

[En(k) − Em(k)]2
, (9)

where nn(k) is the occupation of the nth energy band at k with
eigenenergy En(k). The spin Hall conductivity is expressed as
an integral of the spin Berry curvature 


spin
n (k) [34] weighted

by the band occupancy. The spin Berry curvature of conduction
bands has the opposite sign to that of the valence bands.
Therefore, the excitations above the ground state diminish
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(a)

(b)
(c)

FIG. 3. (a) Topological invariant (dashed) and the spin Hall conductivity (solid lines) of the nonequilibrium states, resulting from the quench
from P0 to P1. (b) Time-averaged spin Hall conductivity after the P0 → P1 quench (solid) converges for τu → ∞ to the ground-state value
of Ĥ (P1) (thin, solid) and for systems after the P̃0 → P̃1 (dashed) to the ground-state value of Ĥ (P̃1) (thin, dashed). Time-averaged spin Hall
conductivity after the P̃1 → P̃2 quench (dotted) is multiplied by a factor of −1 and converges to the ground-state value of Ĥ (P̃2). (c) Time at
which the amplitude of oscillations in the spin Hall response after the quench P0 → P1 increases for 10% above the minimal amplitude.

the time-averaged spin Hall conductivity, which explains the
dependence seen in Fig. 3(b). For slow quenches excitations
occur in a small region in k space and thus contribute little to the
integral in Eq. (8). Therefore, the time-averaged conductivity
converges for long τu to the ground-state one. For systems
with c = 0 the time-averaged value for slow quenches can be
further simplified to σ̄

spin
xy ≈ e

2π
(1 − |u1 − u0|/4τu) where we

used the Landau-Zener formula for the energy-band occupancy
and approximated the spin Berry curvature with its value at
the � point (similarly was performed in Ref. [19]). A similar
calculation for systems with c �= 0 shows that the deviation
of the postquench spin Hall response from the ground-state
value diminishes for long quenches as δσ

spin
xy ∝ 1/

√
τu. For

slow enough quenches δσ
spin
xy is proportional to the total number

of excitations and hence obeys the Kibble-Zurek scaling.
The formula Eq. (9) is also useful for discussion of the

different magnitudes of the deviations from ground-state
values for different quench protocols as seen in Fig. 3(b)
(horizontal thin lines denote ground-state values). Namely,
after the P̃1 → P̃2 quench, the response deviates from the
ground-state result much more than the responses after the
other two quenches. This is due to two facts. First, the number
of produced excitations is larger and, second, the excitations
occur at momenta where the spin Berry curvature is large (see
Appendix A). More precisely, the number of excited electrons
is approximately two times larger for P̃1 → P̃2 than for the
P̃0 → P̃1 quench. The number is roughly given by the length
of the circles in Fig. 1(c). During the P̃1 → P̃2 quench, the
band-gap closing points cover two full circles. Second, the
value of the spin Berry curvature where those excitations occur
is larger for the former quench protocol. For the P0 → P1 and
the P̃0 → P̃1 protocols, the spin Berry curvatures are small in
the region with excited electrons, hence the deviations from the
ground-state value of the spin Hall conductivity are smallest
there.

We now consider the oscillations around the time-averaged
value. For short times oscillations diminish, and for later times
they start to grow quadratically (see Appendix C). The time
tgrowth after which the amplitude of oscillations starts to grow
increases with the duration of the quench τu. In order to

give a somewhat more quantitative estimate of the behavior,
we defined tgrowth as the time after which the amplitude of
the oscillations increases by 10% above the minimal amplitude
found for a given τu, Fig. 3(c). Note that tgrowth is roughly
linear in τu, which means that for slow quenches there is a
long time window where these oscillations are not important. In
Appendix C, we show that the growth of the oscillations occurs
due to the nonzero off-diagonal elements of the density matrix
in the basis of the eigenstates of the final Hamiltonian. Actually,
often in evaluations of the Hall conductivity [16,43,44] only
the diagonal parts of the density matrix are retained, which
is supported by the argument that a measurement of the
Hall conductance unavoidably introduces decoherence and
collapses the quenched state to a state represented by a diagonal
ensemble.

C. Slow quenches with symmetry breaking

When an important symmetry associated with a certain class
of topological insulators is broken during a quench, different
topological regimes can become adiabatically connected [36],
i.e., the band gap can remain open everywhere during the
quench. The topological invariant becomes ill defined in this
case. We study such processes by adding a convenient TRS-
breaking term b ŝx ⊗ σ̂x to the BHZ model. In parallel to
changing the parameter u as in the case of the TRS-preserving
quench, the amplitude b is turned on during the quench as
b(t) = b0 sin2(πt/τu). In this way the Hamiltonian has the TRS
before and after the quench, but for 0 < t < τu the symmetry
is broken and the band gap remains open. When the quench
is performed slowly enough compared to the inverse of the
minimal band gap during the quench, there are almost no
excitations to conduction bands. This can be seen in Fig. 4(a)
where the population of the first energy band after the P0 → P1

quench is shown for various quench times. In the adiabatic
limit, the system ends up in the ground state of the final
Hamiltonian and thus in the topological phase with Nbulk = 1.

Time-reversal properties of the system during the quench
can be observed from the graphs of the Wannier center flow
in Fig. 4(b). At t/τu = 0 and t/τu = 1 the Wannier center
flow has the typical form for the trivial and topological phases,
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FIG. 4. Properties of the system quenched from P0 to P1 with a TRS-breaking term of amplitude b0 = 0.4. (a) Population of the first
energy-level n1(0,ky) after the quench. (b) Wannier center flows of the nonequilibrium state at different times during the quench with τu = 15.
(c) Spin Hall conductivity after the quench. The graphs with τu = 30 and τu = 60 overlap as the quench with such τu and b0 is already adiabatic.

respectively, whereas at t/τu = 0.5 and t/τu = 0.6 the system
does not exhibit the TRS as can be seen by the absence of
double degeneracy at ky = 0 and ky = π .

After the quench, the electric field is turned on. At long
times, the spin Hall response oscillates around a constant
value with the frequency equal to the band gap of the final
Hamiltonian as shown in Fig. 4(c). For a quench slower than the
inverse of the minimal band gap during the quench, the system
exhibits ground-state spin Hall response. It also coincides
with the spin Hall response of the system after an infinitely
slow symmetry-preserving quench. For faster quenches, there
are excitations present even in the symmetry-breaking case
[see Fig. 4(a)] so the growth of oscillations and the deviation
of the time-averaged value from the ground-state value can
be observed. However, compared to the case of symmetry-
preserving quench, the oscillations are less prominent because
of the smaller number of excitations.

IV. CONCLUSIONS

In this paper we calculated the topological invariant and
the transport properties of the time-reversal symmetric BHZ
model undergoing a slow quench between different topological
regimes. Similar to the case of the Chern insulators discussed
in the literature earlier, our results show that such a quench
preserves the bulk topological invariant. Conversely, the spin
Hall response is changed and for slow enough quenches
approaches that of the ground state of the final Hamiltonian.
The transport properties that are given as an integral over
the Brillouin zone can universally be expected to be close to
those of the final Hamiltonian ground state as the quench is
adiabatic for all states except for those in a small region in
the momentum space. Hence, for the cases where the bulk
invariant is conserved, the loss of correspondence of the bulk
invariant and the bulk transport properties is expected. It would
be interesting to explore the behavior of bulk invariants during
quenches in other systems, too.

We also considered quenches during which the TRS is bro-
ken, which allows the adiabatic connection between different
regimes and hence restores the correspondence between the
bulk invariant and the transport.

It would be interesting to investigate the dynamics of
time-reversal symmetric systems also experimentally with
HgTe/CdTe and InAs/GaSb/AlSb type-II semiconductor quan-
tum wells where the quench could perhaps be performed
by varying the inversion-breaking electric potential in the z

direction, which can be tuned by a top gate in experiments
[45–47]. Alternatively, time-dependent Hamiltonians can be
also realized in ultracold atoms [48–52].
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APPENDIX A: BAND PROPERTIES AT AND AFTER
BAND-GAP CLOSING

1. Band-gap closings and postquench occupancies

Let us introduce uc and kc which are the values of u and
k, respectively, where the band gap closes along the c = 0
line of the phase diagram in Fig. 1(a). For quenches discussed
in this paper the relevant band closings are those at uc = −2
[the gap closes at kc = (0,0)] and at uc = 0 [the gap closes at
kc = (π,0) and at kc = (0,π )]. For systems with 0 < c 
 1
(c = 0.3 is small enough), the band gap closes at momenta
close to those at c = 0. Expanding the Hamiltonian (1) to the
first order in the deviation of the momentum from kc we obtain
band dispersions ±

√
(q − c)2 + δu2 and ±

√
(q + c)2 + δu2,

where q = |k − kc| 
 π and δu = u − uc. For c = 0 the band
gap between two spin degenerate valence bands and two spin
degenerate conduction bands closes at kc with linear dispersion
±q whereas for 0 < c 
 1 the band gap between the upper
valence band and the lower conduction band closes on a circle
with radius c around kc again with linear dispersion ±|q − c|.
Figure 5 shows cross sections of band dispersions for different
kx’s at parameters P for which the band gap closes during
quenches discussed in this paper. Note that in the case of
the P̃1 → P̃2 quench there is a semimetal region of a finite
width around u = 0 in the phase diagram. Although the band
gap closes on a circle as discussed above, for different points
along the circle this happens at different values of u inside the
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FIG. 5. Band dispersions at (a) P01, (b) P̃01, and (c) P̃12.

semimetal region. For example, for the particular value of u

corresponding to Fig. 5(c) the gap is closed only at kx = 0.
Near the band-gap closing, i.e., for |δu| 
 1 and |q −

c| 
 1, the low-energy physics is described by the Landau-
Zener Hamiltonian. The probability for the transition from
the valence to the conduction band is given by the Landau-

Zener formula e−π(q−c)2/vu , where vu = | du
dt

|
u=uc

| [41]. In our

case vu = π |u1 − u0|/2τu. Excitations to the conduction band
occur at momenta where |q − c| � √

vu, i.e., on a disk of
radius ∼√

vu for c = 0 and, provided τu is long enough so
that

√
vu 
 c, on a ring of radius c and of width ∼√

vu for
0 < c 
 1. Figure 6 shows occupations of the upper valence
band after the quenches considered in this paper. As vu ∝ 1/τu,
the total number of electrons excited to the conduction band
around one gap closing Nexc is proportional to 1/τu for c = 0,
whereas for 0 < c 
 1 it is proportional to c/

√
τu. A more

detailed calculation yields Nexc = |u1 − u0|/8πτu and Nexc =
c
√|u1 − u0|/8πτu, respectively. Note that for the quench

P̃1 → P̃2 the gap closes on two separate circles and for the
quench P0 → P1 between two pairs of bands, so the number
of excitations is twice as high.

2. Spin Berry curvature and postquench response

An intriguing observation made in Fig. 3(b) is that after
the P̃1 → P̃2 quench, the time-averaged spin Hall conductivity
σ̄

spin
xy deviates from the ground-state value of the final Hamil-

tonian for an order of magnitude more than after the P̃0 → P̃1

quench. Here we provide a detailed explanation of this puzzling
behavior.

For τu large enough, the deviation of the postquench time-
averaged spin Hall conductivity from its value in the ground
state of the postquench Hamiltonian can be expressed as

δσ̄ spin
xy ≈ −2e

∑
κ

Nexc,κ 
̄
spin
2,κ , (A1)

where κ runs over the band-gap closings and 
̄
spin
2,κ is the

spin Berry curvature of the upper valence band of the final
Hamiltonian, averaged over the momenta where the band
gap closes for a particular κ . The prefactor 2 comes from
the fact that both electrons excited to the conduction band
as well as holes left in the valence band contribute equally
as the spin Berry curvatures of those bands are opposite



spin
3 (k) = −


spin
2 (k). Figure 7 shows spin Berry curvatures of

the upper valence band of postquench Hamiltonians discussed
in this paper. By considering Figs. 6 and 7 it is apparent that
excitations to the conduction band after the P̃1 → P̃2 quench
occur at momenta where the spin Berry curvature is for an
order of magnitude larger than the spin Berry curvature in the
excitation region after the P0 → P1 and P̃0 → P̃1 quenches.

As seen in Figs. 7(b) and 7(c), the spin Berry curvature at
P̃2, when translated by π in both kx and ky directions, is the
negative of the spin Berry curvature at P̃1. This is due to the
fact that the Hamiltonian at −u can be transformed into that at
u: ŝy ⊗ σ̂xĤ−u(kx + π,ky + π )ŝy ⊗ σ̂x = Ĥu(kx,ky). A short
calculation shows that the spin Hall conductivity of the ground
state at −u is of the opposite sign to the one at u whereas theZ2

FIG. 6. Occupancy of the upper valence band of the BHZ model quenched among (a) P0 → P1, (b) P̃0 → P̃1, and (c) P̃1 → P̃2 for τu = 60.
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FIG. 7. Spin Berry curvature of the upper valence band of the BHZ model at parameters (a) P1, (b) P̃1, and (c) P̃2. The value of the spin
Berry curvature at P1 is multiplied by 10. Black lines denote momenta at which the band gap closes during quenches (a) P0 → P1, (b) P̃0 → P̃1,
and (c) P̃1 → P̃2. White regions correspond to the values out of the color code scale.

invariant is the same. Similarly, Hamiltonians at −c and c are
related as ŝzĤ−c(k)ŝz = Ĥc(k). From this it can be shown that
the spin Hall conductivity and the Z2 invariant are the same
for the ground state at c and −c.

3. Calculation of the critical exponents

Let us choose a control parameter ε such that the system
undergoes a quantum phase transition at ε = 0. A quantum
phase transition is characterized by the divergence of both
the characteristic length-scale ξ (ε) ∝ |ε|−ν and characteristic
time-scale τ (ε) ∝ |ε|−zν, ν being the correlation length, and
z being the dynamical critical exponent. According to the
Kibble-Zurek argument, the scaling of the produced defect
density, in our case excitations to conduction bands, depends
on these critical exponents. In this section, we calculate the
critical exponents of the BHZ model.

We extract the critical exponent zν from the characteris-
tic time scale, which is the inverse of the band gap. Not-
ing that the spectrum near the gap closing is of the form
±

√
(q ± c)2 + δu2, we find that the minimal gap vanishes as

δuzν = δu, yielding the critical exponent zν = 1.
For the calculation of the correlation length critical expo-

nent ν we follow Ref. [42]. Authors of Ref. [42] define the scal-
ing function F (k,ε) = (k̂s · ∇k)2Pf(m), where k̂s is the scaling
direction and m is the matrix of the time-reversal operator
T̂ with elements mαβ(k,ε) = 〈uα(k,ε)|T̂ |uβ(k,ε)〉,|uα(k,ε)〉
being the occupied eigenstate α at momentum k and control
parameter ε. The length scale is obtained from the scaling
function F (k,ε) at time-reversal symmetric momenta k0 as

ξ =
∣∣∣∣∣1

ε

(k̂s · ∇k)2F (k,ε)|k=k0

∂εF (k0,ε)

∣∣∣∣∣
1/2

. (A2)

Using this approach, we obtain the critical exponent ν of the
BHZ model: ν = 1 for c = 0 and ν = 1/2 for 0 < c 
 1.

APPENDIX B: CONSERVATION OF BULK INVARIANTS

By definition, topological invariants do not change during
adiabatic transformations of the Hamiltonian that respect the
important symmetries. However, more general nonadiabatic
transformations during which the band gap can even close were
found to preserve the Chern number (at least for two-band

systems) [10,11] too. Below we generalize the proof of the
conservation of the Chern number to the case of multiple-band
systems, and we give a concise proof of the conservation of
the Z2 invariant.

1. Conservation of the Chern number

For a two-dimensional insulating noninteracting system
with translational symmetry one can define the Chern number
[53] as

C = 1

2π

NF∑
n=1

∫
dk 
n(k), (B1)


n(k) = −i∂kx
〈un(k)|∂ky

|un(k)〉 + i∂ky
〈un(k)|∂kx

|un(k)〉,
(B2)

where 
n(k) is the Berry curvature of the nth band.
Let the system be in a state with the Chern number C and

the Berry curvature 
n(k) with NF occupied states |un(k)〉.
We limit our discussion to transformations with translational
symmetry described by a unitary operator U (k), so each state
is transformed as

|un(k)〉 → |u′
n(k)〉 = U (k)|un(k)〉. (B3)

The Berry curvature after the transformation is


′
n(k) = −i∂kx

〈U (k)un(k)|∂ky
|U (k)un(k)〉

+ i∂ky
〈U (k)un(k)|∂kx

|U (k)un(k)〉
= 
n(k) − i∂kx

〈un(k)|U (k)†
[
∂ky

U (k)
]|un(k)〉

+ i∂ky
〈un(k)|U (k)†

[
∂kx

U (k)
]|un(k)〉, (B4)

where we used ∂ki
|U (k)un(k)〉 = [∂ki

U (k)]|un(k)〉 +
U (k)∂ki

|un(k)〉. Note that expressions 〈un(k)|Ô(k)|un(k)〉 =
Tr[ρn(k)Ô(k)] are smooth in k when Ô(k) and the density
matrix ρn(k) = |un(k)〉〈un(k)| are smooth in k. When U (k)
is smooth in k, which is true for time evolutions with
Hamiltonians that are smooth in k, the second and the third
terms in 
n(k) are continuous functions of k, and the Chern
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number can be written as

C ′ = C + 1

2π

NF∑
n=1

∫
dky

∫
dkx(−i)∂kx

〈un(k)|U (k)†

× [
∂ky

U (k)
]|un(k)〉

+ 1

2π

NF∑
n=1

∫
dkx

∫
dkyi∂ky

〈un(k)|U (k)†

× [
∂kx

U (k)
]|un(k)〉. (B5)

Using the periodicity of U (k) and |un(k)〉 over the Brillouin
zone, the first integral over kx , and the second integral over
ky are zero (or, put differently, each component of the vector
field 〈un(k)|U (k)†[∂ki

U (k)]|un(k)〉 is smooth in k, hence the
Stokes theorem can be applied). Hence, we obtain C ′ = C, i.e.,
the Chern number is conserved under a unitary transformation.

To show that our proof reduces to the one for two-band
systems performed by D’Allesio and Rigol in Ref. [11], we
calculate the time derivative of the Chern number (B5). U (k)
now represents the time-evolution operator and by taking into
account that ∂tU

†(k)[∂ki
U (k)] = −iU †(k)[∂ki

Ĥ (k)]U (k), we
get

∂tC
′ = 1

2π

NF∑
n=1

∫
dk

{
∂ky

〈u′
n(k)

∣∣[∂kx
Ĥ (k)

]|u′
n(k)〉

− ∂kx
〈u′

n(k)|[∂ky
Ĥ (k)

]|u′
n(k)〉}. (B6)

For a two-band Hamiltonian Ĥ (k) = − 1
2 B(k) · σ̂ and the

state expressed with the density matrix ρ̂(k) = 1
2 [σ̂0 + S(k) ·

σ̂ ], we obtain the result from Ref. [11],

∂tC
′ = 1

4π

∫
dk

{
∂kx

[
S(k) · ∂ky

B(k)
] − ∂ky

[
S(k) · ∂kx

B(k)
]}

,

(B7)

which vanishes after the application of the Stokes theorem due
to the smoothness of S(k) · ∂ki

B(k) at all times.

2. Conservation of the Z2 invariant

The Z2 invariant can be defined as [54,55]

(−1)Nbulk =
∏

i

√
Det[B(�i)]

Pf[B(�i)]
,

(B8)
B(k)mn = 〈um(−k)|T̂ |un(k)〉,

where B(k) is the sewing matrix, the connection between states
and their time conjugates, �i’s are time-reversal invariant
momenta, n and m are indices of NF occupied states |un(k)〉,
and Pf[A] is the Pfaffian of the matrix A. The formula is
valid only when the wave functions are smooth over the whole
first Brillouin zone [54]. Such a smooth gauge is possible to
construct whenever the Chern number vanishes, which is the
case for time-reversal symmetric systems [56].

Let the system initially have a well-definedZ2 invariant. We
again limit the discussion to time evolutions described by uni-
tary transformations that preserve the translational symmetry
U (k). Each state is transformed as in Eq. (B3) and the sewing

matrix as

B(�i)mn → B ′(�i)mn = 〈um(�i)|U †(�i)T̂ U (�i)|un(�i)〉.
(B9)

If U (�i) commutes with T̂ and U (k) is smooth in k, which
is true for time evolutions with Hamiltonians that are time-
reversal symmetric and smooth in k, B ′(�i) = B(�i) and
N ′

bulk = Nbulk.

APPENDIX C: PERTURBATIVE EVALUATION OF
THE SPIN HALL CONDUCTIVITY

In the main text, we calculated the spin Hall conductivity
from the expectation value of the spin current density (7),
which we evaluated for a Hamiltonian with an explicitly
included electric field. For small electric fields, one can
evaluate the spin Hall conductivity also perturbatively. Let
the electrons immediately after the quench occupy the states
{|ϕα(k)〉 = ∑

n cα,n(k)|un(k)〉,1 � α � NF } where |un(k)〉’s
are the eigenstates of the postquench Hamiltonian Ĥ (k) with-
out an electric field. The response due to the electric field Ex(t)
can be evaluated using the time-dependent perturbation theory
as in Ref. [13]. The resulting spin Hall conductivity reads

σ spin
xy (t) = 2e

(2π )2
Re

NF∑
α

2NF∑
n,n′m=1

∫
dk c∗

α,n(k)cα,n′ (k)fnn′m(t,k)

×〈un(k)|1

2
ŝz∂ky

Ĥ |um(k)〉〈um(k)|∂kx
Ĥ |un′(k)〉,

(C1)

fnn′m(t,k) = −iei�nm(k)t
∫ t

0
ei�mn′ (k)t ′Ax(t ′)dt ′/Ex(t), (C2)

where �nm(k) = En(k) − Em(k) and Ax(t) = − ∫
Ex(t)dt . In

Eq. (C1) the spin Hall conductivity is expressed with time-
independent coefficients of the postquench state cα,n(k), like-
wise time-independent matrix elements of 1

2 ŝz∂ky
Ĥ and ∂kx

Ĥ

and a time-dependent function fnn′m(t,k) which is expressed
in terms of energies of the states En(k) and the dependence
of the electric field on time. It turns out that for parameters
used in our paper, Eq. (C1) gives results that are essentially the
same as that of the full evaluation specified in the main text.
A comparison between the results of Eq. (C1) (all) and of the
full evaluation (dotted line) is shown in Fig. 8(a).

Expression (C1) is convenient for the interpretation of the
results. The contributions to the spin Hall conductivity that
include diagonal elements of the density matrix in the basis
of Hamiltonian eigenstates |cα,n(k)|2 (hereafter referred to as
“diagonal terms”), and contributions including off-diagonal
elements of the density matrix c∗

α,n(k)cα,n′ (k) (referred to as
“off-diagonal terms”) behave differently, see Fig. 8(a). One
can see that the diagonal terms give rise to the finite average
value of σ

spin
xy . The frequency of the decaying small oscillations

around this average value is given by the magnitude of the gap.
The off-diagonal terms, on the other hand, exhibit oscillations
around 0 with the magnitude that for long times increases
in time quadratically. The observed time dependence can
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FIG. 8. (a) Diagonal (diag), off-diagonal (offdiag), all terms (all)
in σ spin

xy (t) according to Eq. (C1), and σ spin
xy (t) resulting from the

full evaluation of Eq. (7) (dotted) for the system after the P0 → P1

quench for τu = 15. (b) Imaginary part of the time-dependent element
fnn′m(t,�) at the � point for the system at parameters P1 is shown for
different index combinations. In both figures the electric field is turned
on as Ex(t) = E0{1 − exp[−(t − tE)/τE]}.

be considered analytically by evaluating the time-dependent
function fnn′m(t,k).

The diagonal terms contain 〈un(k)| 1
2 ŝz∂ky

Ĥ |um(k)〉〈um(k)|
∂kx

Ĥ |un(k)〉, which is nonvanishing only for index combi-
nations n �= m where it is imaginary. Therefore, only the
imaginary part of the function fnnm(t,k) contributes to the

integral. The explicit evaluation for long times (t � τE) yields
Im[fnnm(t,k)]

= 1

�2
nm(k)

− cos[�nm(k)t] + �nm(k)τE sin[�nm(k)t]

�nm(k)2
[
1 + �2

nm(k)τ 2
E

] . (C3)

For long times, the function at every k oscillates around a finite
mean value 1/�nm(k)2. The amplitude of oscillations vanishes
with τE → ∞.

We now turn to the off-diagonal terms. The lead-
ing off-diagonal terms are given by index combinations
m = n′ �= n, and the corresponding time-dependent func-
tion for long times grows quadratically with t, fnmm(t,k) =
i e−i�nm(k)t [(t − τE)2 + τ 2

E]/2. Other off-diagonal index com-
binations give rise to oscillations that grow linearly with time
and are hence important only initially. Figure 8(b) shows the
imaginary part of the function fnn′m(t,k) for different index
combinations.

Finally, we note that, in the limit of an infinitely slow
quench, excitations are present with probability 1 only at k
where the band gap closes. For such a system, the off-diagonal
elements of the density-matrix c∗

α,n(k)cα,n′ (k) are equal to zero
for every k, meaning that the growth of oscillations never
occurs and the spin Hall response is equal to the ground-state
one.
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