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Spin-entanglement of two electrons occupying two spatial re-
gions – domains – is expressed in a compact form in terms of
spin-spin correlation functions. The power of the formalism is
demonstrated on several examples ranging from generation of

entanglement by scattering of two electrons to the entangle-
ment of a pair of qubits represented by a double quantum dot
coupled to leads. In the latter case the collapse of entanglement
due to the Kondo effect is analyzed.

1 Introduction Based on the peculiar behaviour of
entangled quantum states, in 1935 Einstein, Podolsky and
Rosen argued that quantum mechanical description of real-
ity is not complete [1]. Today this article is Einstein’s most
cited publication, but quantum entanglement is not consid-
ered a paradox. In fact, the ability to establish entangle-
ment between quantum particles in a controlled manner is
a crucial ingredient of any quantum information process-
ing system [2]. Also, the study of entanglement provides
insight into the nature of many-body states in the vicinity
of crossovers between various regimes or points of quan-
tum phase transition [3].

In realistic hardware designed for quantum information
processing, several criteria for qubits (DiVincenzo’s check-
list) must be fulfilled [4]: the existence of multiple identifi-
able qubits, the ability to initialize and manipulate qubits,
small decoherence, and the ability to measure qubits, i.e.,
to determine the outcome of computation. Quite generally,
the parts of an interacting system are to some extent entan-
gled. However, fully entangled qubit pairs are required for
such applications [2]. This leads to the question of how to
quantify the entanglement.

The entanglement of binary quantum objects (qubits)
can be quantified by the entanglement of formation, a no-
tion which for pure states reduces to the von Neumann
entropy [5–7]. This measure is convenient since it is pro-
portional to the number of fully entangled pairs needed to

produce a given entangled state. Also, it is monotonically
related to the concurrence, which can be evaluated by the
Wootters formula [8] as a simple function of the density
matrix.

A possible realization of a qubit pair can be achieved by
confining electrons to two spatial regions. In this case one
has the freedom to choose between spin or charge of the
electron to represent a qubit. The entanglement measures
must account for both possibilities. Additional complica-
tions arise due to the indistinguishability of the particles
and possible states of multiple occupancy [9–12].

On the experimental side, it seems that among several
proposals for quantum information processing systems, the
criteria for scalable qubits can be met in solid state struc-
tures consisting of coupled quantum dots [13,14]. The abil-
ity to precisely control the number of electrons [15] and
the evidence for spin entangled states have been reported
in GaAs based heterostructures [16,17]. It has also been
demonstrated that in double quantum dot systems coher-
ent qubit manipulation and projective readout are possible
[18].

Here we explicitely evaluate the concurrence in terms
of spin-spin correlation functions between the two subsys-
tems. In this manner we easily account for entanglement
between subsystems containing delocalized electrons. We
demonstrate the convenience of our approach by evaluat-
ing the time-dependence of concurrence in a toy example
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Figure 1 (Color online) (a) Two electrons (qubits) localized in
separate quantum dots A and B. (b) Two delocalized electrons in
separate measurement domains A and B; the probability of find-
ing one electron in a domain is equal for A and B: nA = nB = 1.
(c) Scattering of two electrons. (d) Double quantum dot system
coupled to the leads: the chemical potential is set such that each
of the dots is occupied by one interacting electron on average.

of two electrons in a three site chain and in a more realis-
tic entangler based on scattering of electrons in a quantum
wire.

On the other hand, entangled qubits can also be ex-
tracted from interacting many-body systems. Our formu-
las are readily generalized also for this case and even for
finite temperature. As an example, we discuss the case of
two quantum dots coupled serially to metallic electrodes.
In this case, entanglement of a pair of electrons that are
confined in a double quantum dot may collapse at low tem-
peratures due to the Kondo effect even for a very weak
coupling to the leads.

The paper is organized as follows. Sec. 2 introduces
the entanglement measure for two delocalized electrons,
which can be simplified for some special cases elaborated
in Sec. 3. In Sec. 4 we illustrate the convenience of our
approach with numerical examples mentioned above. Con-
clusions are given in Sec. 5.

2 Entanglement of two delocalized electrons A
pure state of two spins represented by electrons, each oc-
cupying a separate quantum dot A and B, can be described
in the basis of single spin- 1

2 states s =↑ or ↓ as |ΨAB〉 =∑
ss′ αss′ |s〉A|s′〉B . Such a state, Fig. 1(a), is factorizable

|ΨAB〉 = |φA〉|φB〉 if and only if α↑↓α↓↑ = α↑↑α↓↓ as
easily checked by explicit construction. For general coeffi-
cients αss′ the state is not factorizable and its entanglement

can be quantified by concurrence C as introduced by Hill
and Wootters [6],

C = 2|α↑↓α↓↑ − α↑↑α↓↓|. (1)

Consider now a more general problem of two electrons
in a state where the system cannot directly be reduced to an
equivalent system with (pseudo) spin degrees of freedom
only. Let us take for example two electrons on a lattice [19]
described by a state

|Ψ〉 =
∑

(i,j) ss′

ψss′

ij c†isc
†
js′ |0〉, (2)

where c†is creates an electron with spin s on site i on the lat-
tice with the total number of sites N . Sites of the lattice are
assumed to be ordered as for example in Fig. 1(b) and (i, j)
corresponds to the summation over all sites i = 1, ...N and
i ≤ j [20].

Such states may arise when two initially unentangled
electrons in wave packets approach each other, then inter-
act and finally become again well separated in distinct re-
gions A and B, Fig. 1(c), where they could be extracted
for further purposes. Alternatively, such states can be real-
ized in various correlated electron systems and, in order to
study them theoretically, elaborate many-body techniques
are sometimes needed. Moreover, usually not the state it-
self but only the correlation functions are available.

Therefore it is advantageous to express the entangle-
ment in terms of spin-spin correlation functions. The spin
operators for a single electron occupying domain A (or B)
are expressed as the sum of operators for sites i within the
given domain,

Sλ
A(B) =

1

2

∑
i∈A(B)

∑
ss′

c†isσ
λ
ss′cis′ , (3)

where σλ
ss′ are the Pauli matrices.

The concurrence is given by the eigenvalues of the non-
Hermitian matrix ρρ̃, where ρ and ρ̃ are the reduced density
matrix and its time reverse, respectively [8]. For axially
symmetric problems, where both 〈Ψ |Sx

A(B)|Ψ〉 = 0 and
〈Ψ |Sy

A(B)|Ψ〉 = 0 as well as 〈Ψ |Sz
A(B)S

x
B(A)|Ψ〉 = 0 and

〈Ψ |Sz
A(B)S

y

B(A)|Ψ〉 = 0, it can be expressed in a compact
form [19]

C = max(0, C↑↓, C‖), (4)

C↑↓ = 2|〈S+
AS−

B 〉| − 2

√
〈P ↑

AP ↑
B〉〈P ↓

AP ↓
B〉,

C‖ = 2|〈S+
AS+

B〉| − 2

√
〈P ↑

AP ↓
B〉〈P ↓

AP ↑
B〉,

where S+
A(B) = (S−

A(B))
† =

∑
i∈A(B) c†i↑ci↓ are spin rais-

ing operators for domains A (or B) and

P s
A(B) =

∑
i∈A(B)

nis(1 − ni,−s) (5)
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are spin-s projectors operating in domains A (or B) with
nis = c†iscis. Fermionic expectation values required in
Eq. (4) are then given as

〈S+
AS−

B 〉 =
∑
[ij]

ψ↑↓∗
ij ψ↓↑

ij ,

〈S+
AS+

B 〉 =
∑
[ij]

ψ↑↑∗
ij ψ↓↓

ij , (6)

〈P s
AP s′

B 〉 =
∑
[ij]

|ψss′

ij |2,

where [ij] in Eqs. (6) corresponds to the summation over
all pairs i, j such that i ∈ A and j ∈ B. Concurrence
formula Eq. (4) is valid as long as double occupancy of
sites is negligible, 〈nisnis′ 〉 → 0. It is assumed that the
wave function is normalized,

〈Ψ |Ψ〉 =
∑

(i,j), ss′

|ψss′

ij |2 = 1. (7)

We stress that the correlation functions in Eq. (4) can be
evaluated for pure or mixed states, the latter arising, for
instance, due to the finite temperature or by tracing out the
environment degrees of freedom, e.g., leads in Fig. 1(d).

3 Special cases In states with the SU(2) symmetry
〈Sx

ASx
B〉 = 〈Sy

ASy
B〉 = 〈Sz

ASz
B〉 and the concurrence for-

mula Eq. (4) simplifies further to a function depending on
only one spin invariant 〈SA · SB〉,

CAB = max

(
0,−2〈SA · SB〉 − 1

2

)
. (8)

The concurrence is expected to be significant whenever en-
hanced spin-spin correlations indicate A-B singlet forma-
tion.

If |Ψ〉 is an eigenstate of the total spin projection Sz
tot

the concurrence is given solely with the overlap between
|Ψ〉 and the AB-spin-flipped state |Ψ̃〉 = |S+

AS−
BΨ〉. If

Sz
tot = ±1 the concurrence is zero, while for Sz

tot = 0

C = C↑↓ = 2|
∑
[ij]

ψ↑↓∗
ij ψ↓↑

ij |, (9)

which is a generalization of the concurrence formula Eq. (1)
to N sites.

The concurrence formulas, Eq. (4), remain essentially
the same if the state |Ψ〉 corresponds to the system in con-
tinuum space, i → r = (x, y, z), the only change being
integrations over the corresponding measurement domains,

C = |
∫

A

∫
B

(ϕ0− ϕ1)
∗(ϕ0+ ϕ1)d

3r1d3r2|, (10)

where ϕS ≡ ϕS(r1, r2) = 〈r1, r2; S|Ψ〉 are singlet and
triplet amplitudes for S = 0 and S = 1, respectively.

Another interesting special case is the wave function
|Ψ〉 which is a linear combination of entangled Bell AB-
pairs,

|Ψ〉 =

4∑
β=1

bβ

∑
[ij]

ψij |ij, β〉,
∑
[ij]

|ψij |2 = 1, (11)

where for each pair of sites (i, j) one can introduce the Bell
basis |ij, β〉 [5],

|ij, 1〉 =
1√
2
(c†i↑c

†
j↑ + c†i↓c

†
j↓)|0〉, (12)

|ij, 2〉 =
ı√
2
(c†i↑c

†
j↑ − c†i↓c

†
j↓)|0〉,

|ij, 3〉 =
ı√
2
(c†i↑c

†
j↓ + c†i↓c

†
j↑)|0〉,

|ij, 4〉 =
1√
2
(c†i↑c

†
j↓ − c†i↓c

†
j↑)|0〉.

(13)

In this case, the concurrence is given with a simple expres-
sion C = |∑β b2

β|.

4 Numerical examples Here we use concurrence
formulas in practice. We evaluate the concurrence for a few
examples of interacting electrons on a lattice described by
the following generic hamiltonian

H = −
∑
ijs

(tijc
†
iscjs + h.c.) +

∑
ijss′

Uijnisnjs′ . (14)

For simplicity we take the electron-electron interaction
constant up to some distance, i.e., Uij = 1

2U
∑M

m=0 δ|i−j|,m.

0 1 2
J

eff
t/(2π)

0

0.5

1

C
(t

)

P
2

Figure 2 (Color online) Full line represents concurrence C(t)
for a three sites system with t12/t23 = 1/10, U/t23 = 5 and
Jeff/t23 = 0.023 (singlet-triplet energy difference). Dashed line
corresponds to the strong coupling limit results Ceff(t) with the
same Jeff. Domains are doubly occupied with the probability P2.
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4.1 Two qubits on three sites First we consider two
electrons on three sites, where site i = 1 corresponds to
the measuring domain A and sites i = 2, 3 to the domain
B. We take the Hubbard model, M = 0, and two non-zero
hopping matrix elements, t12 and t23. In the limit t23 > t12
a bonding orbital is formed between the sites 2 and 3 and in
the ground state of the system there is a single electron in
each of the domains. For large U , the ground state is a spin
singlet formed between site i = 1 and the bonding orbital,
with the excitation energy J to the triplet state.

If in each of the domains there is precisely one electron
and the state is an eigenstate of total spin projection, Sz

tot =
0, Eq. (4) simplifies to

C = 2|ψ↑↓∗
12 ψ↓↑

12 + ψ↑↓∗
13 ψ↓↑

13|. (15)

Let us put the electrons to the system in an initially sep-
arable state consisting of a spin up electron in A and the
other electron with spin down in the bonding orbital of B,
|Ψ(0)〉 = c†1↑

1√
2
(c†2↓ + c†3↓)|0〉. Because the inital state is

composed of different energy eigen-states, the Rabi oscil-
lations occur. In the strong coupling limit, U, t23 � t12 the
system is described by the Heisenberg model with antifer-
romagnetic coupling Jeff ∼ 8t212/(U − 2t23) between the
site 1 and the bonding orbital. In this limit the Rabi oscilla-
tions occur due to the singlet-triplet splitting and the time
evolution of concurrence is given by Ceff = | sinJefft|.

For generic values of parameters additional states, for
example the states when the site 1 is doubly occupied, be-
come relevant. We show the concurrence for such a case
in Fig. 2 and compare it to the simplified expression given
above. The simple behaviour is partly reproduced but ad-
ditional oscilations arise on other time scales. We plot also
the probability that both electrons simultaneously occupy
one of the domains, P2 = 1−〈n1↑+n1↓〉+2〈n1↑n1↓〉. The
oscillations of this quantity occur on the time scale given
by the characteristic time of tunneling events, t−1

12 .
4.2 Two flying qubits Next we consider two flying

qubits, i.e., two electrons on an infinite one-dimensional
lattice with the hamiltonian Eq. (14) and tij = t0 for
j = i + 1. To be specific, let one electron with spin ↑
be confined initially to region A (i ∼ −L) and the other
electron with opposite spin to region B (i ∼ L), Fig. 3.
The simplest initial state consists of two wave packets with
vanishing momentum uncertainties Δk → 0, with mo-
menta k > 0 and q < 0 for the left and the right wave
packet, respectively. After the collision, the electrons move
apart with a probability amplitude M||(k, q) for non-spin-
flip scattering and a spin-flip amplitude M↑↓(k, q). Con-
currence after the collision is then readily expressed from
Eq. (9) as

C = 2|M||(k, q)M↑↓(k, q)|. (16)

Note that C = 1 when non-spin-flip and spin-flip ampli-
tudes coincide in accord with recent analysis of flying and
static qubits entanglement [21–25].

C=0

(a)

(b)

Figure 3 (Color online) (a) Time evolution of spin ↑ and ↓
electron density during the scattering for the Hubbard model
(M = 0) with U = t0 and Δk = π/50 and k0 near the con-
currence maximum. (b) C as a function of k0: (i) the Hubbard
model (M = 0) with U = t0 and Δk = 0; (ii) M = 3: with
Δk = 0 (full line), and (iii) Δk = π/10 (dashed).

More general initial wave packets with finite Δk are
defined with appropriate momentum amplitudes φ↑(k) and
φ↓(q) for spin ↑ and ↓, respectively. The concurrence as
follows from Eq. (9)

C = 2|
∫∫

M∗
||(k, q)M↑↓(k, q)|φ↑(k)φ↓(q)|2dkdq|

(17)
consists of a coherent superposition of scattering ampli-
tudes [19].

The simplest example is the Hubbard model where the
scattering amplitudes can be obtained analytically for the
case of one-dimension, M||(k, q) = 1 + M↑↓(k, q) =
(sin k− sin q)/[sink− sin q + ıU/(2t0)] [26]. In Fig. 3(a)
the time evolution of spin ↑ and ↓ electron densities is
presented. In Fig. 3(b) the corresponding concurrence for
wave packets with a well defined momentum k0 for U = t0
is shown, together with a longer range interaction case,
M = 3, for a sharp momentum (full line) and for a Gaus-
sian initial amplitude φ↓(q) = φ↑(−k) with Δk = π/10
(dashed line). An interesting observation here is a substan-
tial reduction of the concurrence due to coherent averaging
in Eq. (17). Additionally, electrons will be completely en-
tangled at some kinetic energy comparable with the repul-
sion, U ∼ 2t0(1 − cos k0), where non-spin-flip and spin-

4 A. Ramšak et al.: Quantum entanglement of space domains
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Figure 4 (Color online) (a) Time evolution of spin ↑ and ↓ elec-
tron density for U = 2t0, M = 5 with k0 = 0.5π, Δk↑ =
Δk↓ = π/20. (b) C(t) for Gaussian packets with various k0,
M = 5, U = 2t0 and Δk = π/20. At t = 0 the separation
between the packets is 2L = 10/Δk.

flip amplitudes coincide. In Fig. 4(a) and Fig. 5(a) some
representative additional examples of time evolution of in-
teracting wave packets are shown.

The concurrence formula Eq. (9) is derived for elec-
tronic states when double occupancy is negligible, which
in our case is strictly fulfilled only asymptotically when
the electrons are far apart. However, Eq. (9) can be eval-
uated at any time t and the resulting C(t) can serve as a
measure of entanglement during the transition from initial
to final state. In Fig. 4(b) and Fig. 5(b) C(t) corresponding
to parameters of Fig. 4(a) and Fig. 5(a) is shown. Concur-
rence oscillations can be interpreted as a response to the
finite time duration of electron-electron interaction – ex-
change – where the model can be approximately mapped
onto an effective Heisenberg model as in the case of three
sites presented above.

4.3 Qubit pairs in coupled quantum dots One of
the simplest realizations of a solid state qubit is a serially
coupled double quantum (DQD). We model such a DQD
using the two-impurity Anderson Hamiltonian

H =
∑

i=A,B

(εni + Uni↑ni↓) + V nAnB (18)

−t1
∑

s

(c†AscBs + h.c.),

Figure 5 (Color online) As in Fig. 4, with parameters U = 2t0,
M = 5 but different k0 = 0.4π, Δk↑ = π/10 and Δk↓ = π/5.

where c†is creates an electron with spin s in the dot i = A

or i = B and nis = c†iscis is the number operator. The
on-site energies ε and the Hubbard repulsion U are taken
equal for both dots. The dots are coupled to the left and
right noninteracting tight-binding leads with the chemical
potential set to the middle of the band of width 4t0. Each of
the dots is coupled to the adjacent lead by hopping t2 and
the corresponding hybridization width is Γ = (t2)

2/t0.
Schematically this setup is presented in Fig. 1(d). The dots
are additionally coupled capacitively by a inter-dot repul-
sion term V nAnB.

When a DQD is attached to leads the low tempera-
ture physics is to a large extent the same as that of the
two-impurity Kondo problem [27]. There two impurities
form either two Kondo singlets with delocalized electrons
or bind into a local spin-singlet state which is virtually
decoupled from delocalized electrons. The crossover be-
tween the regimes is determined by the relative values of
the exchange magnetic energy J and twice the Kondo con-
densation energy, of order the Kondo temperature given
by the Haldane formula, TK =

√
UΓ/2 exp(−πε(ε +

U)/2Γ ). The competition between extended Kondo and
local-singlet states occurs rather generally in systems of
coupled quantum impurities [28–30].

A qubit pair represented by two electrons in a DQD and
in the contact with the leads acting as a fermionic bath can
not be described by a pure state. In the case of mixed states
of qubit pairs as studied here the concurrence is related to
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<
>

C > 0

Figure 6 (Color online) (a) Spin-spin correlation for V/U =
0, 1/3, 2/3, 1 (full lines) and V/U = 5/4 (dotted) for U/Γ =
12, Γ/t0 = 0.1. (b) Probabilities for parallel (lower curves –
dashed) and anti-parallel (upper curves – full) spins of electrons
in the DQD for V/U ratios as in (a). Note that the probability
for parallel spins for V/U = 5/4 is almost zero (dashed-dotted),
while P↑↓ < 1/2 for J/TK < 1000 (dotted); the probabilities
do not sum to 1. The deficiency (which goes to zero as U → ∞)
is due to the states with double occupancy on at least one of the
dots.

the reduced density matrix of the DQD subsystem as in the
previous case of delocalized electrons pairs. If t1(2)/U is
not small the electrons can fluctuate between the dots (and
to the leads) and such charge fluctuations introduce addi-
tional states with zero or double occupancy of individual
dots [9,11]. As pointed out by Zanardi in the case of simple
Hubbard dimer [11] the entanglement is not related only to
spin but also to charge degrees of freedom which emerge
when repulsion between electrons is weak or moderate.

For systems with strong electron-electron repulsion
considered here, charge fluctuations are suppressed and the
states with single occupancy – the spin-qubits – dominate
and the concept of spin-entanglement quantified with con-
currence can be applied. We again use spin-projected den-
sity matrix and consider only entanglement corresponding
to spin degrees of freedom. Due to doubly (or zero) oc-
cupied states arising from charge fluctuation on the dots
(caused by tunneling between the dots A and B or due to
the exchange with the electrons in the leads), the reduced
density matrix has to be renormalized. The probability that
at the measurement of entanglement there is precisely one
electron on each of the dots is less than unity, P11 < 1, and
the spin-concurrence is then given with

C11 = C/P11, (19)

0 4 8 12
U/Γ

1

10

100

J/
T

K

0 0.2 0.4 0.6 0.8 1 1.2
V/U

1

10

100

J/
T

K

Δn
A

2 < 
0.

4

<S
A

S
B
>=-1/4

.

(a)

(b)

C=0

C=0

U/Γ=12

.

<S
A

S
B
>=-1/4

0.
2

0.
1

Figure 7 (Color online) (a) Charge fluctuations of the domain
A, Δn2

A = 〈n2

A〉 − 〈nA〉
2 (short-dashed), 〈SA · SB〉 = −1/4

(long-dashed) and C = 0 (full) in the (U/Γ, J/TK) plane. (b)
〈SA · SB〉 = −1/4 (long-dashed) and C = 0 (full) in the
(V/U, J/TK) plane.

where P11 = P↑↓ + P‖, and P↑↓ = 〈P ↑
AP ↓

B + P ↓
AP ↑

B〉,
P‖ = 〈P ↑

AP ↑
B+P ↓

AP ↓
B〉 are probabilities for antiparallel and

parallel spin alignment, respectively. Such a procedure cor-
responds to the measurement apparatus which would only
discern spins and ignore all cases whenever no electron, or
a electron pair would appear at one of the detectors at sites
A or B.

Here we present results for the zero temperature limit
obtained by the projection operator method as in Refs. [31–
35]. The temperature dependence of the concurrence for
the case of V = 0 is given in Ref. [36]. Expectation values
〈...〉 in the concurrence formula Eq. (4) are now calculated
using the ground state therefore 〈S+

AS+
B 〉 = 0 and C‖ < 0.

We consider the particle-hole symmetric point with n = 2
and ε + U/2 + V = 0.

Qualitatively, the concurrence is significant whenever
enhanced spin-spin correlations indicate inter-dot singlet
formation. As shown in Fig. 6(a) for U/Γ = 12 and
Γ/t0 = 0.1, the correlation function 〈SA · SB〉 tends to
−3/4 for J large enough to suppress the formation of
Kondo singlets, but still J/U 
 1, that local charge fluc-
tuations are sufficiently suppressed. In particular, the local
dot-dot singlet is formed whenever singlet-triplet splitting
superexchange energy J > Jc ∼ 2TK . With increasing
V → U , and above U , the probability for singly occu-
pied spin states, P11 = P↑↓ + P‖ is significantly reduced,
Fig. 6(b), which also leads to reduced spin-spin correlation.

The entanglement between qubits quantified by con-
currence is small in the regime where the Kondo effect
determines the ground state. The Kondo screening trans-

6 A. Ramšak et al.: Quantum entanglement of space domains
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fers the entanglement between localized electrons to the
mutual entanglement of localized and the conducting elec-
trons [37]. For V ∼ U the Kondo temperature is enhanced
and the corresponding Kondo ground state is competitive
towards the localized singlet state. In Fig. 7(a) we present
a phase diagram of regions with finite and zero entangle-
ment, separated approximately by the J ∼ 2TK line. In
the strong coupling limit the boundary coincides with the
〈SA · SB〉 = −1/4 dashed line. For V > U + TK the
Kondo screening is inhibited and the concurrence is in-
creased, Fig. 7(b). However, the probability for doubly oc-
cupied sites is not small in this regime and the concept of
spin-qubits is not appropriate there [32].

5 Conclusion In this work we showed that the appli-
cability of the concurrence, an entanglement measure orig-
inally restricted to two distinguishable particles (spins),
can be extended to two regions – measurement domains
– occupied by two indistinguishable particles (electrons).
The proposed approach allows for the analysis of entan-
glement in a variety of realistic problems, from scattering
of flying and static qubits, the former being represented as
wave packets with a finite energy resolution, to the time
evolution of static qubits due to electron-electron interac-
tion or externally applied fields. A generalization to sys-
tems described as a mixed state and containing more than
two electrons is possible. As an example, a double quan-
tum dot system occupied, on average, by two interacting
electrons is presented.
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[21] J.H. Jefferson, A. Ramšak, and T. Rejec, Europhys. Lett.
75, 764 (2006).

[22] D. Gunlycke, J.H. Jefferson, T. Rejec, A. Ramšak, D.G.
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[33] J. Mravlje, A. Ramšak, and T. Rejec, Phys. Rev. B 74,
205320 (2006).
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