Spin Backflow in the Vicinity of Spin Polarons in the t-J Model

A. Ramšak¹, P. Horsch², and J. Jaklič¹

¹J. Stefan Institute, University of Ljubljana, 61111 Ljubljana, Slovenia

²Max-Planck-Institut f. Festkörperforschung, 70569 Stuttgart, Germany

We investigate the spin backflow current in a spin-1/2 Heisenberg quantum antiferromagnet associated with the motion of a hole. The spin backflow is studied here with two different methods: (a) starting from the wave function of the hole-like quasiparticle obtained in the self-consistent Born approximation and (b) an approximation-free exact diagonalization technique. Spin currents calculated analytically are in a good agreement with small cluster diagonalization studies.

The motion of a single vacancy (hole) in a 2D antiferromagnet (AF) was extensively investigated using various analytical approaches as well as with exact diagonalization of small clusters[1]. Consensus has been achieved regarding, e.g., the ground-state energy and the quasiparticle (QP) bandwidth.

The aim of this work is to present a more detailed picture of the quasiparticle. An interesting aspect of the deformation of the spin-background is contained in the bond-spin currents

$$\mathbf{j_r} = \langle n_0(\mathbf{S_r}, \times \mathbf{S_r}_2)^z \mathbf{e} \rangle$$
 (1)

relative to the position of the hole. Here n_0 is the position operator for a hole at $\mathbf{r}=0$ and \mathbf{e} is a unit vector $\mathbf{e}=\mathbf{r}_2-\mathbf{r}_1$. This quantity follows from the equation of motion for the spin density $\dot{\mathbf{S}}_{\mathbf{r}}=it\sum_{\mathbf{e},s,s}(\hat{\sigma}_{ss'}c_{\mathbf{r},s}^{\dagger}c_{\mathbf{r}+\mathbf{e},s'}-\mathrm{H.c.})-2iJ\sum_{\mathbf{e}}\mathbf{S}_{\mathbf{r}}\times\mathbf{S}_{\mathbf{r}+\mathbf{e}}$, where $\hat{\sigma}$ are Pauli spin matrices. Here the first term is the spin current induced by the hopping of the hole and the second term $(\sim \mathbf{j_r})$ describes the backflow in the spin system. In the following we limit ourselves to the study of the z component of the current. We note that nonvanishing cross-products are necessary prerequisites of unconventional ground states with spiral or chiral order.

The quasiparticle wave function is derived on the level of a self-consistent Born approximation (SCBA) using a reformulation of the t-J Hamiltonian in terms of spinless fermions and Schwinger bosons [2]. By means of linear spin wave theory we introduce the proper collective excitations of the Heisenberg antiferromagnet. The QP-wave function is given by [3,4]

$$\begin{split} |\Psi_{\mathbf{k}}^{(n)}\rangle &= a_{\mathbf{k}} \Big[h_{\mathbf{k}}^{\dagger} + N^{-\frac{1}{2}} \sum_{\mathbf{q}_1} M_{\mathbf{k}\mathbf{q}_1} G_{\bar{\mathbf{k}}_1}(\bar{\omega}_1) h_{\bar{\mathbf{k}}_1}^{\dagger} \alpha_{\mathbf{q}_1}^{\dagger} \\ \dots &+ N^{-\frac{n}{2}} \sum_{\mathbf{q}_1, \dots, \mathbf{q}_n} M_{\mathbf{k}\mathbf{q}_1} G_{\bar{\mathbf{k}}_1}(\bar{\omega}_1) \dots M_{\bar{\mathbf{k}}_{n-1}\mathbf{q}_n} \\ & \times G_{\bar{\mathbf{k}}_n}(\bar{\omega}_n) \ h_{\bar{\mathbf{k}}_n}^{\dagger} \alpha_{\mathbf{q}_1}^{\dagger} \dots \alpha_{\mathbf{q}_n}^{\dagger} \Big] |0\rangle. \end{split}$$

where $h_{\mathbf{k}}^{\dagger}$ is the creation operator for a (spinless) hole in a Bloch state, $\alpha_{\mathbf{q}}^{\dagger}$ creates an AF magnon with energy $\omega_{\mathbf{q}}$ and the fermion-magnon coupling is given by $M_{\mathbf{k}\mathbf{q}}$. We calculate the Green's function for the hole $G_{\bar{\mathbf{k}}_n}(\bar{\omega}_n)$ in SCBA, where $\bar{\mathbf{k}}_m = \mathbf{k} - \sum_1^m \mathbf{q}_i$ and $\bar{\omega}_m = \epsilon_{\mathbf{k}} - \sum_1^m \omega_{\mathbf{q}_i}$. In Fig. 1 the spatial dependence of the bond

In Fig. 1 the spatial dependence of the bond spin currents is shown for $\mathbf{k} = (5/8\pi, 5/8\pi)$ and J/t = 0.4. The calculation was performed using a $N = 16 \times 16$ unit cell and the number of excited magnons in the wave function $|\Psi_{\mathbf{k}}^{(n)}\rangle$ was restricted to n = 3 [4].

In Fig. 2(a) $j_{\mathbf{r}}$ is presented for various bonds \mathbf{r} defined in the inset. $j_{\mathbf{r}}$ is an odd function with respect to the wave vector (at k=0). Because of the symmetry it vanishes also at $\mathbf{k}=(\pi,0)$. Since the ground state has AF long-range order, the points \mathbf{k} and $\mathbf{k}+(\pi,\pi)$ are equivalent, and therefore, $j_{\mathbf{r}}$ vanishes also at $\mathbf{k}=(\pi/2,\pi/2)$.

To test the validity of the approximations made we have performed exact diagonalization of $N=\sqrt{18}\times\sqrt{18}$ and $N=\sqrt{20}\times\sqrt{20}$ sites clusters. In such a small system there are only a few nonequivalent points in the Brillouin zone,

Figure 1. Bond spin currents $\mathbf{j_r}$ for J/t = 0.4 and $\mathbf{k} = (5/8\pi, 5/8\pi)$. The unit cell was $N = 16 \times 16$. The length of arrows is proportional to $|\mathbf{j_r}|$.

therefore we introduced in the hopping part of the t-J model the phase factors corresponding to the effect of a vector potential [5]. We considered the variation of the phase in the direction which corresponds to the momentum $\mathbf{k}=(k,k)$. In Fig. 2(b) we present results obtained for a unit cell with 18 sites and anisotropic Heisenberg coupling $J_{\perp}/J_z=0.5$. The symmetry of $j_{\mathbf{r}}$ around $\mathbf{k}=(\pi/2,\pi/2)$ is the same as the result obtained within the SCBA. However, comparing the results for N=18 and N=20 sites system in the isotropic limit $(J_{\perp}=J_z)$ we found rather strong finite size effects and the analysis will be presented elsewhere.

In conclusion we have investigated spin-current correlation function around a mobile spin vacancy using the self-consistent Born approximation for the hole self-energy and the corresponding wave function. Using the same method we also found that various correlation functions decay far from the hole as a power-law. Nevertheless the QP spectral weight is finite. In the vicinity of the hole we compared the results with small cluster diagonalization studies. The agreement of the short-range behavior with the exact diagonalization results shows that approximations made in the model and by introducing the SCBA are not harmful. In particular both approaches yield a

Figure 2. Momentum dependence of bond spin current along $\mathbf{k} = (k, k)$ for J/t = 0.4. (a) Results of the SCBA. The lines connecting the symbols are a guide to the eye only. (b) Results obtained with the exact dagonalization of N=18 sites system and $J_{\perp}/J_z=0.5$.

sign change of $j_{\mathbf{r}}$ at $\mathbf{k} = (\pi/2, \pi/2)$.

One of the authors (A.R.) would like to thank I. Sega and P. Prelovšek for instructive discussions.

REFERENCES

- For a review on numerical studies of strongly correlated systems see e.g. E. Dagotto, to be published in Rev. Mod. Phys.
- S. Schmitt-Rink, C. M. Varma, and A. E. Ruckenstein, Phys. Rev. Lett. 60 (1988) 2793
 C. L. Kane, P. A. Lee, and N. Read, Phys. Rev. B 39 (1989) 6880.
- G. F. Reiter, Phys. Rev. B 49 (1994) 1536.
- For technical details and further references see A. Ramšak and P. Horsch, Phys. Rev. B 48 (1993) 10559.
- See W. Kohn, Phys. Rev. 133 (1964) A171 and numerical results for the t - J model X. Zotos, P. Prelovšek, and I. Sega, Phys. Rev. B 42 (1990) 8445.