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On the resilience of magic number 
theory for conductance ratios of 
aromatic molecules
Lara Ulčakar2, Tomaž Rejec3,2, Jure Kokalj4,2, Sara Sangtarash1, Hatef Sadeghi   1, 
Anton Ramšak3,2, John H. Jefferson1 & Colin J. Lambert   1

If simple guidelines could be established for understanding how quantum interference (QI) can be 
exploited to control the flow of electricity through single molecules, then new functional molecules, 
which exploit room-temperature QI could be rapidly identified and subsequently screened. Recently 
it was demonstrated that conductance ratios of molecules with aromatic cores, with different 
connectivities to electrodes, can be predicted using a simple and easy-to-use “magic number theory.” 
In contrast with counting rules and “curly-arrow” descriptions of destructive QI, magic number theory 
captures the many forms of constructive QI, which can occur in molecular cores. Here we address the 
question of how conductance ratios are affected by electron-electron interactions. We find that due 
to cancellations of opposing trends, when Coulomb interactions and screening due to electrodes are 
switched on, conductance ratios are rather resilient. Consequently, qualitative trends in conductance 
ratios of molecules with extended pi systems can be predicted using simple ‘non-interacting’ magic 
number tables, without the need for large-scale computations. On the other hand, for certain 
connectivities, deviations from non-interacting conductance ratios can be significant and therefore such 
connectivities are of interest for probing the interplay between Coulomb interactions, connectivity and 
QI in single-molecule electron transport.

Understanding and exploiting room-temperature quantum interference (QI) in single molecules is the key to cre-
ating new high-performance single-molecule devices and thin-film materials formed from self-assembled molec-
ular layers. During the past decade, experimental and theoretical studies of single molecules attached to metallic 
electrodes have demonstrated that room-temperature electron transport is controlled by QI within the core of the 
molecule1–20. Many of these demonstrations have been achieved by noting that in contrast with artificial quantum 
dots, where atomic-scale details of the coupling of a dot to external electrodes are not known, the connectivity 
to the core of a single molecule may be controlled to atomic accuracy. Figure 1 shows two examples of molecules 
with a common anthanthrene core, connected via triple bonds and pyridyl anchor groups to gold electrodes. The 
anthanthrene core (represented by a lattice of 6 hexagons) of molecule 1 and the anthanthrene core of molecule 
2 are connected differently to the triple bonds. Therefore it is natural to ask how the electrical conductance and 
interference properties of such molecules are affected by connectivity.

In a typical experiment using mechanically controlled break junctions or STM break junctions13–18, fluctua-
tions and uncertainties in the coupling to electrodes are dealt with by measuring the conductance of such mole-
cules many thousands of times and reporting the statistically-most-probable electrical conductance, just before 
the junction breaks. If σij is the statistically-most-probable conductance of a molecule such as 1, with connectivity 
i-j and σlm is the corresponding conductance of a molecule such as 2, with connectivity l-m, then it was recently 
predicted theoretically and demonstrated experimentally21–23 that for polyaromatic hydrocarbons (PAHs) such as 
anthanthrene, the statistically-most-probable conductance ratio σ σ/ij lm is independent of the coupling to the elec-
trodes and could be obtained from tables of “magic numbers,” which for bipartite PAHs in the absence of 
electron-electron interactions, are simply tables of integers. If Mij (Mlm) is the magic number corresponding to 
connectivity i-j (l-m), then this “magic ratio theory” predicts
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From a conceptual viewpoint, magic ratio theory views the shaded regions in Fig. 1 as “compound electrodes”, 
comprising both the anchor groups and gold electrodes, and focuses attention on the contribution from the core 
alone. The validity of Eq. (1) rests on the following key foundational concepts1,2,21–23:

	 1.	 weak coupling
	 2.	 locality
	 3.	 connectivity
	 4.	 mid-gap transport
	 5.	 phase coherence
	 6.	 connectivity-independent statistics

When these conditions apply, the complex and often uncontrolled contributions from electrodes and 
electrode-molecule coupling cancel in conductance ratios and therefore a theory of conductance ratios can be 
developed by focussing on the contribution from molecular cores alone.

The term “weak coupling” means that the central aromatic subunit such as anthanthrene should be weakly 
coupled to the anchor groups via spacers such as acetylene. ‘Locality’ means that when a current flows through an 
aromatic subunit, the points of entry and exit are localised in space. For example in molecule 1, the current enters 
at a particular atom i and exits at a particular atom j. The concept of ‘connectivity’ recognises that through chem-
ical design, spacers can be attached to different parts of a central subunit with atomic accuracy and therefore it is 
of interest to examine how the flow of electricity depends on the choice of connectivity to the central subunit. The 
concept of ‘mid-gap transport’ is recognition of the fact that unless a molecular junction is externally gated by an 
electrochemical environment or an electrostatic gate, charge transfer between the electrodes and molecule 
ensures that the energy levels adjust such that the Fermi energy EF of the electrodes is usually located in the vicin-
ity of the centre of the HOMO-LUMO gap and therefore transport takes place in the co-tunnelling regime. In 
other words, transport is usually ‘off-resonance’. The concept of ‘phase coherence’ recognises that in this 
co-tunnelling regime, the phase of electrons is usually preserved as they pass through a molecule and therefore 
transport is controlled by QI. The condition of “connectivity-independent statistics” means that the statistics of 
the coupling between the anchor groups and electrodes should be independent of the connectivity to the aromatic 
core. When each of these conditions applies, it can be shown1,2,21,22 that the most probable electrical conductance 
corresponding to connectivity i,j is proportional to G E( )ij F

2
 where G E( )ij F  is the Green’s function of the core 

alone, evaluated at the Fermi energy of the electrodes. In the absence of time-reversal symmetry breaking, G E( )ij F  
is a real number. Since only conductance ratios are of interest, we define magic numbers by

Figure 1.  Examples of molecules with anthanthrene cores, connected via triple bonds and pyridyl anchor 
groups to the tips of gold electrodes, which in turn connect to crystalline gold leads (not shown). Molecule 1 has 
a connectivity i-j and electrical conductance σij, while molecule 2 has a connectivity l-m and electrical 
conductance σlm.
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=M AG E( ) , (2)ij ij F

where A is an arbitrary constant of proportionality, chosen to simplify magic number tables and which cancels in 
Eq. (1). Magic ratio theory applies to any single-molecule junction, provided conditions 1–6 are satisfied. It rep-
resents an important step forward, because apart from the Fermi energy EF, no information about the electrodes 
is required. The question we address below is what are the precise values of the numbers Mij and how are they 
affected by electron-electron interactions?

In the literature, several papers discuss the conditions for destructive QI, for which ≈M 0ij
6,9–18,24–29. On the 

other hand, magic ratio theory aims to describe constructive QI, for which Mij may take a variety of non-zero 
values. If H is the non-interacting Hamiltonian of the core, then since the matrix = − −G E E H( ) ( )F F

1, the magic 
number table is obtained from a matrix inversion, whose size and complexity reflects the level of detail contained 
in H . The quantities Mij were termed “magic”21–23, because even a simple theory based on connectivity alone 
yielded values, which were found to be in remarkable agreement with experiment. For example for molecule 1, 
the prediction was =−M 1ij , whereas for molecule 2, =−M 9lm  and therefore the electrical conductance of 2 was 
predicted to be 81 times higher than that of 1, which is close to the measured value of 79. This large ratio is a clear 
manifestation of quantum interference (QI), since such a change in connectivity to a classical resistive network 
would yield only a small change in conductance. To obtain the above values for Mij and Mlm, the Hamiltonian H 
was chosen to be
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where the connectivity matrix C of anthanthrene is shown in Fig. 2b. In other words, each element Hij was chosen 
to be −1 if i j,  are nearest neighbours or zero otherwise and since anthanthrene is represented by the bipartite 
lattice in which odd numbered sites are connected to even numbered sites only, H is block off diagonal. The cor-
responding core Green’s function evaluated at the gap centre =E 0F is therefore obtained from a simple matrix 
inversion =− −G H(0) 1. Since H and therefore − −H 1 are block off-diagonal, this yields the following structure for 
the magic number table of the PAH core =


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
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M M
M
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t
. The off-diagonal block of the magic number table M  for 

anthanthrene is shown in Fig. 2c. As noted above, for molecule 1, with connectivity 9–22, =−M 19,22 , whereas for 
molecule 2, with connectivity 3–12, =−M 93,12 .

Magic number tables such as Fig. 2c are extremely useful, since they facilitate the identification of molecules 
with desirable conductances for future synthesis. Conceptually, tables obtained from Hamiltonians such as Eq. (3) 
are also of interest, since they capture the contribution from intra-core connectivity alone (via the matrix C, com-
prising −1’s or zeros), while avoiding the complexities of chemistry. Although magic number tables obtained 
from such connectivity matrices were shown to agree qualitatively with break junction measurements of several 
different molecules carried out by different experimental groups22, the errors in the experimental estimates of 
conductance ratios are rather large and the number of molecules tested is small. Therefore it is of interest to seek 
to improve the accuracy of magic number tables by utilising more accurate core Hamiltonians. An essential ingre-
dient missing from the Hamiltonian of Eq. (3) is electron-electron interactions and therefore in what follows we 
aim to obtain improved estimates of magic numbers by including the effect of Coulomb interactions and screen-
ing. Results will be presented for a variety of graphene-like molecules, including benzene, naphthalene, anthra-
cene, pyrene and anthanthrene.

The main outcome of this study is exemplified by the interacting magic number table M int for anthanthrene, 
whose lower off-diagonal block M int is presented in Fig. 2d. Note that magic numbers are only defined up to a 
constant of proportionality, which does not affect the predicted conductance ratios. Therefore to facilitate com-
parison between interacting and non-interacting values, in the table of Fig. 2d, the constant is chosen to minimise 
the mean square deviation between the non-interacting and interacting M-tables. The latter shows for example, 
that in the presence of Coulomb interactions, the magic number for molecule 1, changes from −1 to 

=− .M 0 449,22
int , whereas for molecule 2, the magic number changes from −9 to =− .M 5 443,12

int . Hence interacting 
magic number theory predicts that the conductance of 2 is (−5.44/−0.44)2=152 times higher than that of 1 (or 
more precisely 148 if magic numbers to 3 decimal places are used, as presented in the Supplementary Information 
(SI)). This demonstrates that the conductance ratio of 81, predicted by non-interacting magic numbers is qualita-
tively correct (ie to within a factor of 2). Furthermore comparison between tables c and d in Fig. 2 shows that the 
non-interacting magic number table captures the qualitative trends of the interacting magic number table. This 
qualitative agreement is remarkable, since the former can be obtained from a few lines of e.g. MATLAB code, 
while the latter is the result of a substantial many-body calculation. Results for both non-interacting and interact-
ing magic number tables of a range of PAHs are presented in the SI. Our main conclusion is that non-interacting 
magic numbers are a useful qualitative guide for predicting conductance ratios, even in the presence of Coulomb 
interactions and screening.

Results
In the following numerical simulations, the transmission coefficient Tij(E) describing the probability that elec-
trons of energy E can pass from one electrode to another via sites i, j. Systems with the chiral symmetry have 
a symmetric energy spectrum which means that for half-filled systems the Fermi energy is at the gap centre. 
Therefore, conductance ratios are obtained from Tij(0). To include the effects of the Coulomb interaction, we 
first generalise the Hamiltonian of Eq. (3) to the interacting Parr-Pariser-Pople (PPP) model30–32. We base our 
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treatment of the Coulomb interaction on a scheme proposed by Ohno33, which obtains inter-site interaction 
integrals by smoothly interpolating between the Hubbard integral U for zero separation between sites and an 
unscreened Coulomb interaction for large separations between sites. This is an established model for the aromatic 
molecules and yet its simplicity enables us to study the effect of interaction. Recently it was shown experimen-
tally34 that molecular levels shift as a result of Coulomb interaction with image charges in the metal leads, result-
ing in a HOMO-LUMO gap renormalization. Therefore, we also take into account additional electric potential 
screening, which is induced by the conducting electrodes. We model the latter as infinite parallel plates located at 
a distance d from each of the connection sites.

Calculations for smaller molecules (benzene, naphthalene, and anthracene) are performed using both the 
Lanczos exact diagonalization method35 and using the restricted Hartree-Fock (HF) approximation (for tech-
nical details see Methods and the SI). We use the latter since we consider effects of the Coulomb interaction 
in the simplest scheme possible (for superior approximate methods as for example GW method see36). For the 
larger molecules (pyrene and anthanthrene) the Lanczos “calculation is not feasible. For the smaller molecules, 
where it is possible to compare the Lanczos method with the HF approximation, agreement was found for the 
HOMO-LUMO gaps (within approx. 1%) and conductances (within approx. 10%) for different connectivities. 
This gives us confidence that use of the HF approximation for the larger molecules is valid.

As a first example, we present results for the conductance ratio of molecules with naphthalene cores (see 
Fig. 3a), with two different connectivities, denoted 6–9 and 3–8, whose non-interacting magic ratio is 4 [see 
table in Fig. 3c of the SI]. To elucidate the effects of varying the strength of interactions, we multiply all the 
interaction integrals by a scale factor λ and examine the effect of varying λ. The upper table in Fig. 3b shows a 
comparison between results obtained using HF and direct Lanczos diagonalization for different values of the 

Figure 2.  (a) The numbering system for pi orbitals of an anthanthrene core. (b) The connectivity table C for 
anthanthrene. (c) The non-interacting magic number table M  corresponding to the anthanthrene lattice (a). (d) 
The interacting magic number table M int corresponding to the anthanthrene lattice in the presence of electron-
electron interactions, calculated within the Hartree-Fock approximation. The depth of shading in the tables is in 
proportion to the table entries and highlights the qualitative agreement between the non-interacting and 
interacting magic number tables.
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scaling parameter λ, ranging from λ = 0 (non-interacting) to λ = 1 (interacting) and to the greater, unphysical 
value of λ = 2. For λ = 1, the lower table in Fig. 3b shows the effect of screening by electrodes at different distances 
d from molecule, ranging from d = d0, where d0 is the carbon-carbon bond length, to d = ∞ (no screening). 
Figure 3c shows that the HF approximation reproduces the exact Lanczos HOMO-LUMO gap correctly for naph-
thalene and while there is a small discrepancy in the transmission coefficient (Fig. 3d) at the Fermi level E = 0, the 
HF conductance ratio is qualitatively correct, deviating appreciably from the exact value only when λ becomes 
much larger than the physically-relevant one. Note that the conductance ratio at λ = 0 is not exactly equal to the 
non-interacting ratio of 4 due to the presence of a small but finite coupling of the molecule to the electrodes.

The lower table in Fig. 3b shows that screening by the electrodes does not change the ratio appreciably even 
though the renormalization of the HOMO-LUMO gap is different for different connectivities. The difference in 
gap renormalisation occurs, because screening is more effective when the distance between electrodes is small. 
The gap is thus reduced more by screening for the 6–9 connectivity, where the long axis of the molecule is parallel 
to electrode surfaces, than for the 3–8 connectivity, where it is perpendicular to them. If the QI between differ-
ent paths through the molecule did not change, one would expect the conductance ratio to be proportional to 
the ratio of inverse gaps squared and therefore the conductance ratio at d/d0 = 1 should have increased by 31% 
compared to the conductance ratio in absence of screening. Here this effect is almost exactly compensated by the 
screening induced change of QI between different paths through the molecule.

The results in Fig. 3b show that for naphthalene, the HF and Lanczos predictions for the conductance ratio are 
rather close to each other and to that of (non-interacting) magic number theory. As a second example, Fig. 4b 

Figure 3.  HF and Lanczos results for the naphthalene molecule within the PPP model. (a) Naphthalene 
molecules with 6–9 (left) and 3–8 (right) connectivities to electrodes, whose non-interacting conductance ratio 
is predicted to be 4. Arrows show how currents are distributed in a molecule when a small source-drain bias is 
applied between the electrodes. (b, top) HF and Lanczos conductance ratios (columns 2 and 3, respectively) and 
HOMO-LUMO gaps (columns 4 and 5, respectively) for different interaction strengths λ, with no screening by 
electrodes. (b, bottom) HF and Lanczos conductance ratios for the physical value of λ = 1, in the presence of 
screening by electrodes at different distances d away from the molecule, measured in units of the carbon-carbon 
bond length d0. An infinite distance corresponds to no screening. The two values of the HOMO-LUMO gap 
separated by a semicolon correspond to the 6–9 and 3–8 connectivities, respectively. (c) The density of states in 
the molecule for the 6–9 connectivity (top) and for the 3–8 connectivity (bottom). The coloured and the black 
line show the HF and the Lanczos result, respectively. (d) The transmission function for the 6–9 connectivity 
(top) and for the 3–8 connectivity (bottom). The coloured and black lines show HF and the Lanczos result, 
respectively.
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shows HF results for the conductance ratio of molecules 1 and 2 with anthanthrene cores and Fig. 4c shows their 
corresponding transmission functions T E( ). As for naphthalene, the conductance ratio increases from the 
non-interacting value when interactions are present (upper table in Fig. 4b), but here the deviations from the 
non-interacting magic ratio of 81 are more pronounced. In contrast with naphthalene, the conductance ratio is 
also affected by screening: when the electrodes become closer to the molecule, the ratio drops back towards the 
non-interacting value. In contrast with naphthalene, the rescaling of the HOMO-LUMO gaps of both connectiv-
ities would lead to an increase of the conductance ratio (by 37% for d/d0 = 1), so the drop of the conductance ratio 
can be attributed to screening-induced change in the QI of different paths through the molecule.

To highlight the correlation (and differences) between non-interacting and interacting conductance ratios, the 
blue dots in Fig. 4d are plots of HF conductance ratios versus those predicted by non-interacting magic numbers 
for all possible pairs of connectivities and shows that there is a significant degree of correlation between the two. 
The main conclusion from these results and for corresponding results for other molecules (see SI) is that although 
Coulomb interactions and screening cause the conductance ratios to vary, in many cases the non-interacting 
magic ratios provide the correct qualitative trend. In the case of anthanthrene (Fig. 4), the non-interacting ratio 
of 81 is surprisingly close to the most-physical conductance ratio of 79.3, which occurs at λ = 1 and a screening 
distance of d/d0 = 1.

The above results are obtained from the PPP model, which coincides with the non-interacting Hamiltonian of 
Eq. (3) when =U 0. This model preserves chiral symmetry and guarantees that the centre of the HOMO-LUMO 
gap lies in the middle of the energy spectrum ( =E 0). The model captures the effect of connectivity and Coulomb 
interactions, without introducing complexities associated with the chemical nature of the molecules. To include 
the latter, we used density functional theory to compute the transmission coefficient T E( ) of molecules with dif-

Figure 4.  Results for the anthanthrene molecule within the PPP model. (a) The anthanthrene molecule 
attached to electrodes for molecule 2 with 3–12 connectivity (left) and molecule 1 with 9–22 connectivity 
(right). Arrows as in Fig. 3a. (b) As in Fig. 3b, but only HF results are tabulated here. (c) Transmission functions 
for the 3–12 connectivity (blue) and for the 9–22 connectivity (red). (d) Correlations of the HF conductance 
ratio (horizontal axis) for a particular pair of connectivities with the non-interacting (blue dots) and the 
infinite-range interaction (orange dots) conductance ratio for the same pair of connectivities. Results for all 
possible pairs of connectivities are shown.
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ferent connectivities attached to gold electrodes. Figure 5a shows plots of T Elog ( ) versus E for the 3–8 and 6–9 
connectivities of naphthalene and Fig. 5b shows T Elog ( ) versus E for the 3–12 and 9–22 connectivities of anthan-
threne. To highlight the further role of chemistry, the bottom right inset of Fig. 5b shows corresponding results 
when the anthanthrene core is directly coupled to gold electrodes, as shown in the bottom left inset. For energies 
in the shaded regions of these plots, the ratio of geometric averages of transmission coefficients approximately 
coincides with the non-interacting magic ratio rule (see Table 1, column 7).

PPP and DFT results for conductance ratios of benzene, anthracene and pyrene with two connectivities are 
presented in Figs 7–12 of the SI. Except for benzene, the conductance ratios for those connectivities were meas-
ured experimentally. Table 1 shows a comparison between these results, the non-interacting magic ratios and 
experiment.

The effect of interaction on conductance ratios can be roughly estimated by considering the PPP model in the 
infinite-range interaction limit (where the interaction integrals take the same value ∼U  for all pairs of sites in a 
molecule), which can be solved exactly for an isolated molecule. In this limit, the core Green’s function takes the 
form = − +

∼ −
 ( )G H U H(0) sgn1

2

1
 and can be easily evaluated from the connectivity matrix C and ∼U  alone, with 

=






H C

C
0

0t  (see Supplementary Information). For ∼U  we take the average value of the PPP interaction integrals 

in a given molecule. This is a useful limit, because as shown by Table 1, for all molecules except anthanthrene the 
conductance ratios calculated from G correctly predict the direction in which the PPP ratio will deviate from the 

Figure 5.  (a) DFT results for the transmission coefficients of naphthalene with 6–9 and 3–8 connectivities 
attached to gold electrodes; (b) DFT results for transmission coefficients of anthanthrene with 3–12 and 9–22 
connectivities (molecules 1 and 2) attached to gold electrodes. The bottom-right inset shows corresponding 
transmission coefficients when the anthanthrene cores are directly coupled to gold electrodes.

Molecule  
(i-j; l-m)

Non-interacting 
ratio

PPP 
(HF)

PPP 
(Lanczos)

Infinite range 
interaction

PPP =d d 1/ 0  
(HF) DFT Experiment

benzene (1–2; 
1–4) 1 1.39 1.60 1.75 — — —

naphthalene 
(6–9; 3–8) 4 4.41 4.84 4.59 4.38 2 5.115

anthracene 
(1–8; 5–12) 16 21.2 26.3 19.8 22.0 13 10.215

pyrene 
(5–12; 4–11) 9 3.92 — 4.65 5.78 9 821

anthanthrene 
(3–12; 9–22) 81 148 — 2400 79.3 81 7922

Table 1.  Conductance ratios for various molecules, for a pair of connectivities listed in the first column. 
Column 2: Ratios obtained using non-interacting magic number theory. Column 3: PPP with no screening by 
electrodes, calculated within the HF approximation. Column 4: PPP with no screening by electrodes, calculated 
using the Lanczos method, where available. Column 5: PPP with an infinite range interaction. Column 6: PPP 
with screening by electrodes at d/d0 = 1, within the HF approximation. Column 7: DFT geometric average ratio 
over the shaded regions of Fig. 5. Column 8: experimental ratios, where available.
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8Scientific Reports |          (2019) 9:3478  | https://doi.org/10.1038/s41598-019-39937-1

www.nature.com/scientificreportswww.nature.com/scientificreports/

non-interacting magic ratio. Furthermore, the infinite-range interaction prediction is quantitatively correct 
within approx. 20%. Unfortunately, for anthanthrene with 3–12 and 9–22 connectivities, the infinite-range inter-
action limit conductance ratio is not a good approximation to the PPP ratio. We traced the latter failure to the fact 
that the Green’s function element corresponding to the 9–22 connectivity crosses zero as a function of the inter-
action strength in the vicinity of the actual value of interaction. Therefore, the conductance ratio is very sensitive 
to the actual form and strength of interaction for this connectivity.

The orange dots in Fig. 4d are plots of HF conductance ratios versus those predicted by infinite range interac-
tion model for all possible pairs of connectivities and show that there is a significant improvement compared with 
the non-interacting magic ratios. Moreover, as shown in Fig. 16 in the SI, typically the infinite-range interaction 
model correctly predicts in which direction the PPP conductance ratio will deviate from the non-interacting 
value.

The main result contained in Figs 3,4, and Table 1 is that the non-interacting conductance ratios are typically 
similar to those obtained in the presence of Coulomb interactions and therefore despite their simplicity, are 
a useful guide for predicting conductance ratios and identifying connectivities with high or low conductance. 
Furthermore for small molecules, where Lanczos results for the PPP model are available, the Lanczos ratios agree 
with those obtained using HF.

On the other hand, there are cases where interactions cause a strong deviation from non-interacting con-
ductance ratios. We identified several pairs of connectivities for different molecules, where this is the case. For 
example, for anthanthrene we predict the conductance ratio for 6–7 and 1–10 connectivities to be about 275, 
which is much larger than the non-interacting ratio of 16 for this pair of connectivities. Additional examples are 
presented in Tables 3 and 4 of the SI. These connectivities are interesting, because experimental measurement of 
their conductance ratios would establish that at least for certain connectivities, Coulomb interactions are needed 
to describe transport through such molecules.

Discussion
We have used exact (Lanczos) diagonalization, Hartree-Fock theory and density functional theory to examine 
conductance ratios of polyaromatic hydrocarbons with different connectivities to electrodes, which can be pre-
dicted using a simple and easy-to-use “magic number tables,” such as those shown in Fig. 2c,d (and in Figs 2–6 of 
the SI). We find that when Coulomb interactions and screening due to electrodes are switched on, conductance 
ratios are rather resilient, even though the conductances themselves vary. Consequently, although the precise 
numbers depend on the strength of the interaction and on screening, qualitative trends in conductance ratios can 
be predicted using non-interacting magic number tables. Overall the differences between HF, Lanczos and DFT 
predictions and variations due to screening are found to be comparable with deviations from experimental values. 
Therefore at the current level of experimental measurement, non-interacting magic numbers provide a useful tool 
for identifying molecules for subsequent experimental screening, without the need for large-scale computations 
involving electron-electron interactions. On the other hand, we have also identified examples where conductance 
ratios are sensitive to interactions. These molecules would be interesting targets for future synthesis, since their 
conductance ratios would demonstrate that in general both QI and interactions play an important role in con-
trolling the flow of electricity through single molecules.

Methods
When analysing the PPP model, calculations for smaller molecules (benzene, naphthalene, and anthracene) 
are performed using both the Lanczos exact diagonalization method35 and for larger molecules, where exact 
diagonalization is not feasible, we use the restricted Hartree-Fock (HF) approximation (for technical details see 
Methods and the SI). In both cases, the wide band approximation was used, in which the self energy due to the 
contacts is modelled by a single number. When including chemical details at an atomistic level, we use the SIESTA 
implementation of DFT combined with non-equilibrium Green’s functions, in which the full self-energy matrix 
is computed.

This dual approach to modelling is needed, because correlated ab initio calculations with chemical specificity 
are not feasible. A similar combination of methods was utilised in36, where in addition, the GW method was used. 
Within the PPP model, interactions are present within the molecule only, whereas interactions within the DFT 
mean-field treatment are present in both the molecules and electrodes.

DFT-NEGF.  The optimized geometry and ground state Hamiltonian and overlap matrix elements of each 
structure was self-consistently obtained using the SIESTA implementation of density functional theory (DFT). 
SIESTA employs norm-conserving pseudo-potentials to account for the core electrons and linear combinations 
of atomic orbitals to construct the valence states. The generalized gradient approximation (GGA) of the exchange 
and correlation functional is used with the Perdew-Burke-Ernzerhof parameterization (PBE) a double-ζ polar-
ized (DZP) basis set, a real-space grid defined with an equivalent energy cut-off of 250 Ry35,36. The geometry 
optimization for each structure is performed to the forces smaller than 40 meV/Å. The mean-field Hamiltonian 
obtained from the converged DFT calculation or a simple tight-binding Hamiltonian was combined with Gollum 
quantum transport code37 to calculate the phase-coherent, elastic scattering properties of the system consisting of 
left (source) and right (drain) leads and the scattering region. The transmission coefficient T(E) for electrons of 
energy E (passing from the source to the drain) is calculated via the relation  = Γ Γ †T E Tr E E E E( ) { ( ) ( ) ( ) ( )}R L . 
In this expression, Γ = Σ − Σ†E i E E( ) ( ( ) ( ))L R L R L R, , ,  describe the level broadening due to the coupling between left 
(L) and right (R) electrodes (which are modelled with atomic precision as shown in Fig. 5) and the central scat-
ter ing reg ion,  Σ E( )L R, are  the  retarded sel f -energies  associated with this  coupl ing and 

= − − Σ − Σ −ES H( )L R
1  is the retarded Green’s function, where H is the Hamiltonian and S is overlap matrix. 

Using obtained transmission coefficient T E( ), the conductance could be calculated by Landauer formula 
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( ∫σ σ= −∂ ∂dE T E f E( )( / )0 ) where σ = e h2 /0
2  is the conductance quantum, = + − −f E E E k T( ) (1 exp(( )/ ))F B

1 
is the Fermi-Dirac distribution function, T is the temperature and kB is Boltzmann’s constant.

Hartree-Fock.  The PPP Hamiltonian, = ∑ + ∑ − −†H H c c U n n( 1)( 1)ijs ij is js ij ij i j
int 1

2
, contains matrix ele-

ments Hij of the non-interacting Hamiltonian (for the nearest-neighbour hopping integral we take γ = 2.4 eV) and 
interaction integrals Uij, which in the absence of screening by electrodes we calculate using the Ohno interpola-
tion33: Uij = U/(1 + (U/(e2/4πε0dij))2)−1/2 where U = 11.13 eV is the Hubbard parameter and dij is the distance 
between sites i and j. The interatomic distance is d0 = 1.4 Å. We take the image charge effects into account by 
analytically solving38 the Poisson’s equation for the electrostatic Greens function in a simplified geometry, namely 
we assume the electrodes are two infinite parallel plates located at a distance d away from each of the connectivity 
sites. We decouple the interaction terms within the restricted HF approximation, yielding renormalized hopping 
matrix elements †= −H H cU cij ij

HF
ij js is . The expectation value is calculated from the Slater determinant built 

from the occupied scattering states of a molecule attached to electrodes. We model electrodes as tight-binding 
chains with nearest-neighbour hopping integral of 10γ. The hopping integral between the connectivity site on the 
molecule and the nearest electrode site is γ, leading to coupling ΓL,R = 0.2γ (in the wide band limit we can neglect 
the energy dependence of Γ). The procedure is iterated until a self-consistent solution is obtained. Due to the 
chiral symmetry possessed by the PPP Hamiltonian of our molecules, the HF Hamiltonian has the same structure 
as the non-interacting one, i.e. the hopping integrals between atoms on the same sublattice as well as on-site ener-
gies remain zero. Once the convergence is achieved, the conductance is calculated with the Landauer-Büttiker 
formula39,40 with the transmission function T(E) read from the scattering state at energy E. We also performed 
unrestricted HF calculations where we allowed each sublattice to develop a magnetization. We found that the 
antiferromagnetic solution becomes the ground state only for interaction strengths that exceed the physically 
relevant ones by more than approx. 50%. For details, see the Supplementary information.

Systems with the chiral symmetry have a symmetric energy spectrum which means that for half-filled sys-
tems the Fermi energy is at the gap centre36. The chiral symmetry is defined and its consequences are explained 
in Supplementary Note 3. There it is shown that the PPP model as well as the corresponding Hartree-Fock 
Hamiltonian have this symmetry. Chiral symmetry ensures that the energy spectrum of the molecule is symmet-
ric with respect to the centre of the HOMO-LUMO gap.

Clearly HF is an effective non-interacting theory, which creates new effective hoppings between 
non-neighbouring sites, which are absent from the non-interacting model. The inclusion of arbitrary long-range 
hoppings could significantly change the magic ratios, whereas those generated by the HF approximation using 
physically-relevant parameters do not.

Lanczos.  The size of the Hilbert space grows exponentially with the size of the molecule and the exact full 
diagonalization of the PPP Hamiltonian is in our case limited to smallest system of benzene molecule. We there-
fore apply the Lanczos method41, which allows for the treatment of larger systems as well as the calculation of 
ground state properties exactly. Within the Lanczos method one obtains the ground state |ψ0⟩ of an isolated mol-
ecule by starting from a random many-body state and then iteratively applying the Hamiltonian for generation of 
new basis states, within which the effective Hamiltonian is tridiagonal and easy to diagonalize. On the other hand, 
the core Green’s function G is obtained by starting the iterative procedure from cis|ψ0⟩ or †cis|ψ0⟩, and by calculat-
ing matrix elements between two series of Lanczos eigenstates for the Lehmann representation. The results con-
verge within 80 iterative steps. The Green’s function  of a molecule attached to electrodes is then calculated 
within the elastic co-tunneling approximation42,43, i.e., the presence of the electrodes is taken into account with 
the Dyson’s equation  = − Σ − Σ− −G1 1

L R. The self-energies ΣL,R due to coupling to electrodes correspond to 
the same electrode-molecule couplings as in the HF calculation. The approximation is valid far from transmission 
resonances and above the Kondo temperature of the system. In our case both conditions are satisfied, because the 
Fermi level is at the centre of the HOMO-LUMO gap and there is no unpaired electron in the molecule. In the 
elastic co-tunneling approximation the conductance can again be calculated with the Landauer-Buttiker formula, 
with the transmission function obtained from  as  = Γ Γ †T E E E E E( ) Tr{ ( ) ( ) ( ) ( )}R L

44.

Data Availability
All data generated or analysed during this study are included in this published article (and its Supplementary 
Information files).
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