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Abstract. We discuss the electronic transport through molecules in the Kondo
regime. We concentrate here on the influence of molecular vibrations. Two types of
vibrations are investigated: (i) the breathing internal molecular modes, where the
coupling occurs between the molecular deformation and the charge density, and (ii)
the oscillations of molecule between the contacts, where the displacement affects the
tunneling. The system is described by models which are solved numerically using
Schönhammer-Gunnarsson’s projection operators and Wilson’s numerical renormal-
ization group methods.

Case (i) is considered within the Anderson-Holstein model. Here the influence
of the phonons is mainly to suppress the repulsion between the electrons at the
molecular orbital. Case (ii) is described by a two-channel Anderson model with
phonon-assisted hybridization. In both cases, the coupling to electrons softens the
vibrational mode and in the strong coupling regime makes the displacement unstable
to perturbations that break the symmetry of the confining potential. For instance,
in case (ii) when the frequency of oscillations decreases below the magnitude of per-
turbation breaking the left-right symmetry, the molecule will be abruptly attracted
to one of the electrodes. In this regime, the Kondo temperature increases but the
conductance through the molecule is suppressed.

1.1 INTRODUCTION

The fast pace of the computer industry is mainly driven by the miniaturization
of elements in microprocessors. The ultimate limit of the miniaturization is
to control the current through individual molecules and it is remarkable that
transistors based on single molecules bridging metallic electrodes have already
been produced and their current-voltage characteristics have been measured
[1–4]. Such molecular junctions are produced using mechanical breaking or
electromigration tecniques which currently do not allow for scaling up to larger
circuits, but they already provide information on the electron transport on the
nanoscale that could be essential to the circuitry of tomorrow [5].

Moreover, because the transmission through a molecule is sensitive to its
immediate electro-chemical (and also magnetic) environment such devices
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could work as molecular sensors. For instance, the binding of guest species
to a single host molecule bridging two electrodes has already been discerned
in conductance measurements [6]. The studies of conductance could thus en-
able recognition of single molecules and thereby realize the ultimate limit of
analytical chemistry.

In certain regimes the molecular junctions exhibit the Kondo effect [1,7–9]:
the anomalous behavior of conductance due to the increased scattering rate
driven by the residual spin (i.e., the quantum impurity) localized at the molec-
ular orbital. The molecular transistors thus provide the nanoscopic realization
of quantum impurity models and can be used thus also as a laboratory to inves-
tigate many-particle physics, for instance the quantum phase transitions [10].

The transport through molecules is affected by molecular vibrations (MV).
The molecular internal vibrational modes and oscillations of molecules with
respect to the electrodes explain the side-peaks observed in the non-linear con-
ductance [1,8,9,11]. In this article we are interested in the effects of coupling
to the MV at low temperatures and at a small bias (i.e. in the Kondo regime)
and their signature in the dependence of the conductance on the gate-voltage.

We consider two different types of molecular vibrations. (i) In the case
of breathing molecular modes, i.e., when the MV couple to the electron den-
sity, the electron-electron repulsion is effectively diminished and the electron
effective mass is enhanced. (ii) When the molecule itself oscillates between
the contacts, i.e., the MV modulate the tunneling, the effective repulsion is
unmodified but the asymetrical part of the modulation introduces the charge
fluctuations in the odd conduction channel, which leads to the competition
between odd and even channel that can result (albeit with some articial fine-
tuning of the models, as we discuss) in the ground state with the non-Fermi
liquid 2 channel Kondo fixed point.

Although the influence of the MV on the electrons differs profoundly in
these two cases, the back-action of electrons to molecular vibrations is univer-
sal. The coupling to electrons tends to soften the molecular modes (diminish
their effective frequencies). This softening is related to the increased charge-
susceptibility in case (i) or increased susceptibility to breaking of inversion
symmetry in case (ii). The result is a suppressed conductance with simulta-
neous increase of the Kondo temperature.

This contribution provides an overview of our work on quantum impurity
models coupled to phonons [12–15]. Because of lack of space we here develop
only the main ideas and refer the reader to these articles and the references
therein. For background on the Anderson-Holstein model we specifically refer
also to [16–18] and for the work on the oscillating molecules we refer also
to [19, 20].
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Fig. 1.1. Transport through a molecule with a breathing mode.

1.2 Coupling of vibration to charge: Anderson-Holstein

model

Consider a molecule with a breathing mode, trapped between two electrodes
as depicted schematically on Fig. 1.1. Assuming that a single molecular orbital
is relevant for the electron transport (experimentally this assumption is sup-
ported by wide inter-orbital energy spacings [8]), the system can be described
by the Anderson-Holstein Hamiltonian,

H =
∑

kα

ǫknkα +
∑

kασ

(
Vkαc†kασdσ + h.c.

)
+ ǫn + Un↑n↓ + M(n − 1)x + Ωa†a

(1.1)
describing bands of noninteracting electrons in the left (α = L) and right
(α = R) electrodes, with energies ǫk, nkα = nkα↑ + nkα↓, which are counted

by nkασ = c†kασckασ . Likewise n = n↑ + n↓ with nσ = d†σdσ counts the elec-
trons at the molecular orbital with the single-electron energy denoted by ǫ;
ckσ, dσ are the electron anhilation and c†kσ , d†σ the electron creation operators.
The tunneling matrix element between k-state in the electrode α and the
molecular orbital is given by Vkα. The electrons in the electrodes are assumed
noninteracting, the electron repulsion between electrons at the molecular or-
bital is U . The charge on the molecular orbital couples to the displacement of
the phonon mode x = a + a† [a(†) is the phonon anhilation (creation) opera-
tor] via a Holstein coupling of strength M , while the frequency of the internal
vibrational mode of isolated molecule is Ω.

Assuming (for simplicity) that the system is inversion symmetric (meaning
that the tunneling to the left is equal to the tunneling to the right electrode,
VkL = VkR) it is convenient to define operators in the electrodes which are
even/odd upon inversion

ce,o =
1√
2

(cL ± cR) . (1.2)

By rewriting the Hamiltonian in the new basis, likewise, the coupling to even
channel is given by Ve = (1/

√
2)(VL+VR) and the coupling to the odd channel

vanishes Vo = (1/
√

2)(VL−VR) = 0. It is thus sufficient to retain only the even
operators explicitly and describe the system by a single channel Anderson-
Holstein model.
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H =
∑

k

ǫknke +V
∑

σ

(
f †

σdσ + h.c.
)
+ǫn+Un↑n↓+M(n−1)x+Ωa†a, (1.3)

where fσ is the linear combination of the conduction electrons to which the
molecular orbital (i.e., the impurity) couples directly,

fσ = (
∑

k

Vkeckeσ)/(
∑

k

|Vke|2)1/2 = (1/
√

N)
∑

k

ckeσ . (1.4)

1.2.1 Analytical considerations

A convenient starting point for the analysis of the model is to perform the
unitary displaced oscillator transformation. One obtains:

H ′ = e
M

Ω
(a−a†)(n−1)He−

M

Ω
(a−a†)(n−1) = (1.5)

= ǫeffn + Ueffn↑n↓ + V

[
∑

σ

f †
σd′σ + h.c.

]
+

∑

k

ǫknk + Ωa†a,

where
d′ = e−

M

Ω
(a−a†)d; Ueff = U − 2M2/Ω; ǫeff = ǫ + M2/Ω. (1.6)

The transformed Hamiltonian H ′ is of the same form as H , but with a reduced
repulsion Ueff . The coupling to the phonons is hidden in the transformed
operator d′. The transformed boson operators read,

a′ = a − M

Ω
(n − 1). (1.7)

The displacement is shifted depending on the occupancy of the molecular
orbital

x′ = x − 2M(n − 1)/Ω. (1.8)

There is an interesting large-frequency limit M/Ω → 0, but M2/Ω finite,
where the coupling to phonons is entirely described in terms of the effective
parameters of the model.

The same result follows from considering the EP interaction perturba-
tively [16]. A pair of EP vertices and a phonon propagator can be formally
substituted by a frequency-dependent point electron-electron interaction ver-
tex, The influence of the phonon mode is then retained in the frequency de-
pendence of the interaction

U(ω) = U + M2D0(ω) = U − 2M2Ω

Ω2 − ω2
, (1.9)

because D0(ω) = 2Ω/(ω2−Ω2). At low frequencies the interaction is screened
due to the formation of bipolarons U(ω → 0) = Ueff , at high frequencies the
bare interaction is recovered. If Ω is large, then the low-energy behavior is
given entirely by the Anderson model with Ueff . Note that effective repulsion
can become negative; that provides the motivation for studies in the U < 0
regime.
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1.2.2 Numerical results

The results presented here are discussed in more detail in [12]. The results for
repulsive U as a function of gate voltage ǫ+U/2 are presented in Fig. 1.2 with
full lines. On the top panel the conductance, in the middle panel the average
charge and on the bottom panel the fluctuations of charge are plotted. In
the Kondo regime, where the average charge 〈n〉 ∼ 1, the conductance is
enhanced towards the unitary limit G → G0. The maximal conductance is
given by the quantum of conductance G0 = 2e2/h (h is the Planck’s constant,
e the electron charge) and corresponds to the unitary transmission [21, 22].
Actually, the average charge and conductance are related by the Friedel sum
rule

G = G0 sin2 π

2
n. (1.10)

The Friedel sum rule in this form holds for single-impurity parity symmetric
models. The generalization to non-symmetric case is possible [13].
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Fig. 1.2. (a) Conductance for the Anderson model with −6Γ ≤ U ≤ 10Γ in incre-
ments of 2Γ (full lines for U > 0, dashed lines for U < 0 and a thicker full line for
U = 0). (b) Local occupancy n and local moment Mloc (inset). (c) Charge fluctua-
tions ∆n2 = 2n − n2

− M2

loc. Inset: renormalized charge susceptibility (πΓ/4)χc.

The fingerprint of the Kondo physics is also the appearance of the local

moment Mloc =
〈
(n↑ − n↓)

2〉1/2
, presented in the inset of Fig. 1.2(b) and
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the suppression of the charge fluctuations ∆n2 =
〈
(n − 〈n〉)2

〉
, Fig. 1.2(c). In

the inset the corresponding charge susceptibility, χc = −∂n/∂ǫ is given. In
agreement with the fluctuation-dissipation theorem, the charge fluctuations
are similar to the charge susceptibility, ∆n2 ∼ (πΓ/4)χc. Strictly, 〈n2〉 is given
with the integral of the imaginary part of the dynamic charge susceptibility,
χ

′′

c (ω), therefore the relation to static χc is only qualitative.
In Fig. 1.2(a) the conductance for various U < 0 is presented with dashed

lines. The first observation is a narrowing of the conductance curve and the
corresponding enhanced charge fluctuations [Fig. 1.2(c)], consistent with a
sharp transition in the local occupation and a suppression of the local mo-
ment, Fig. 1.2(b). For increasing |U |, the charge susceptibility diverges and
overshoots the charge fluctuations.

For general values of parameters, i.e., for moderate Ω, the problem with
EP coupling cannot be mapped onto the Anderson model. However, the be-
havior is still to the largest extent determined by Ueff , and similar to the above
discussed results, Fig. 1.2. For example, the result of the Schrieffer-Wolff trans-
formation is now an anisotropic Kondo model [23], where the anisotropy stems
from the fact that the phonon displacement couples only to the z-component
of the isospin Tz.

In addition to the renormalization of U now also the hybridization is renor-
malized as shown on Fig. 1.3, where the results for bare U = 5Γ case are com-
pared to the U = 10Γ, Ueff = 5Γ case for Ω = 10Γ , Ω = Γ and Ω = Γ/100.
The smaller the Ω, the sharper the jump in the conductance corresponding

to an enhanced effective mass due to the larger effect of e−
M

Ω
(a−a†).

The results for very soft phonons Ω = Γ/100 can also be understood in
an alternative manner. In the Kondo regime the conductance is close to the
bare Anderson model result with U = 10Γ . In the mixed valence regime the
curve is much steeper, due to a strong renormalization [24] of the hopping.
In the empty-orbital regime the conductance approaches the result obtained
with a doubly reduced electron-electron interaction

Ueff = U − 4M2

Ω
, (1.11)

which can be understood as follows. First the oscillator displacement is shifted,
x → x̃ + 2λ thus the Hamiltonian is transformed into

H̃ = (ǫ + 2λM)n + x̃ [M (n − 1) + Ωλ] + Ωã†ã + ..., (1.12)

where λ = −M (n − 1) /Ω, with vanishing transformed displacement. This
Hamiltonian can be solved with trial wave functions with no phonons. The
renormalized local energies are then ǫ + 2M2/Ω, ǫ, and ǫ − 2M2/Ω for n =
0, 1, 2, respectively. The shifts of ǫ where n = 0, 2 in turn correspond to
reduced Ũ = U − 4M2/Ω and to Ũ = U for n = 1.
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Fig. 1.3. A fixed U = 10Γ and Ueff = 5Γ with for Ω = Γ , Ω2 = 10Γ and
Ω2 = 10Γ . Also plotted are the results for a bare Anderson model with U = 10Γ ,
U = 5Γ and U = 0 (dotted, short-dashed and dashed-dotted, respectively). (a)
Conductance, (b) occupation fluctuations and (c) deformation fluctuations. In the
inset, the deformation fluctuations for a softer mode are shown.

1.2.3 Softening of the phonon mode

Phase transitions are ubiquitously related to the instability of the symmetry
restoring modes. In ferroelectrics, for instance, the para→ferro phase transi-
tion will occur when the unstable phonon is frozen-in to one of the equivalent
configurations [25, 26]. As the temperature is tuned towards the transition,
T → Tc the related static temperature-dependent susceptibility will diverge,
χ(T ) = C/(T − Tc). According to the Kramers-Kronig relation

χ(T ) = χ′(0, T ) =
2

π

∫ ∞

0

χ′′(ω′, T )

ω′
dω′ (1.13)

this will occur when the dissipative imaginary part of the susceptibility χ′′(ω)
has a peak at low frequencies. As poles of χ′′(ω) indicate the normal modes
of the system, the frequency of the normal mode ω0 should vanish at the
transition.

There is a remarkable analogy to this behavior in the strong-coupling
regime of the Anderson-Holstein model (although there is no phase transi-
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tion; we are dealing with a single degree of freedom here). As shown in the
inset of Fig. 1.2(c), the charge susceptibility ∂n/∂ǫ diverges for large M . The
charge-charge correlation function should also increase there according to the
fluctuation-dissipation theorem. Due to the Holstein coupling of charge to the
displacement it seems plausible that the phonon correlation function should
also be influenced. Indeed, in the Anderson-Holstein model the charge-charge
and the displacement-displacement correlation functions are directly related

D(ω) = D0(ω) + M2D0(ω) ≪ (n − 1), (n − 1) ≫ω D0(ω), (1.14)

as can easily be proved by considering the equation of motion. The phonon
propagator must thus develop a low frequency component. The phonon mode
is softened as M grows large. On Fig. 1.4 the NRG results for imaginary part
of the phonon propagator

A(ω) = − 1

π
Im ≪ x, x ≫ω= − 1

π
Im

∫ ∞

0

(−i)〈[x(t), x(0)]〉eiωtdt (1.15)

are plotted. The oscillations which occur at frequency Ω for the uncoupled

0 0.05 0.1 0.15 0.2
ω
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10

20

30

40

A
(ω

)
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M=0.1
M=0.15

U
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>0

U
eff

<0

ω=Ω

Fig. 1.4. The displacement-displacement spectral function for Ω/Γ = 5, U/Γ = 15,
M/Γ = 0, 5, 7.5.

oscillator become with increasing electron phonon coupling softer and their
characteristic frequency diminishes. The spectral functions are broadened on
the logarithmic scale as in [15].

The softening can also be related to the change in the shape of the effective
potential the oscillator experiences due to the coupling to the electrons. The
effective potential can be extracted using the SG method as explained in [15].
The results are shown in Fig. 1.5. We see that when the sign of the effective
repulsion is changed, the oscillator potential will evolve to a double well form.
The displacements of large magnitude (corresponding to displaced oscillator
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Fig. 1.5. Effective potential for U/Γ = 7.5, Ω/Γ = 2.5, and M/Ω = 1.15, 1.25, 1.35.

transformation for states of double and zero occupancy) will be preferred. The
low frequency component of the propagator corresponds to slow fluctuations
of the oscillator between the degenerate minima of the effective potential, the
high-frequency component corresponds to fast oscillations within the wells.

1.3 Oscillations with respect to the leads

We now turn to the case where the molecule oscillates between the electrodes.
We model the system with the Hamiltonian, Eq. (1.1) for M = 0, but with
phonon-assisted hopping induced by the displacement dependent tunneling
matrix elements Vkα → Vkα(x), as schematicaly presented on Fig. 1.6.

V  x   ( )RLV  x   ( )

x

Fig. 1.6. (Color online) Schematic plot of the model device.

The full Hamiltonian thus reads,

H =
∑

kα

ǫknkα +
∑

kσ

[
Vkα(x)c†kασdσ + h.c.

]
+ ǫn + Un↑n↓ + Ωa†a. (1.16)

From now on, we are here interested in the particle-hole symmetric point
ǫ = −U/2, where the molecule is on average singly occupied. We use U = 15Γ .
Other details of calculation can be found in [15]. Again, it is practical to define
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even and odd combinations of states in the electrodes, and in this basis the
tunneling part of the Hamiltonian reads,

Ve(x)v̂e + Vo(x)v̂o (1.17)

where

Ve,o(x) =
VL(x) ± VR(x)√

2
, (1.18)

modulate the tunneling to even and odd channels. Hybridization operators are
v̂α = f †

σαdσ + h.c. for α = e, o, respectively, where fe is the even combination
of electrode orbitals and fo is the odd combination of electrode orbitals. Note
that

|Ve(x)| > |Vo(x)| (1.19)

if VL,R(x) are both positive or both negative for all x.

0 0.5 1 1.5
x

-1
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1

2

3

4
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in
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gr
al
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x

1+x
e
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1-x
e

x
/cosh x

e
-x

/cosh x

V
R

V
L

Fig. 1.7. (Color online) Various forms of the tunneling-modulation. The unphysical
regime of LM where the tunneling starts to increase with increasing distance to the
electrode is indicated by dashing.

1.3.1 Two-channel Kondo model

The odd channel is coupled to the molecule only due to the asymmetric mod-
ulation of tunneling. For example, in the linear approximation VL,R(x) =
V (1 ∓ gx) the even channel is coupled to the molecule directly and the odd
channel is coupled to the molecule via a term proportional to gx. Unlike in the
Anderson-Holstein model, the attempts to eliminate the coupling to phonons
using a variant of Lang-Firsov transformation fail. Note that the coupling to
phonons as considered in this Section does not affect the effective repulsion
but it affects the hybridization and therefore the Kondo temperature can be
enhanced [15].

As a consequence of the coupling the molecular orbital to two channels the
low-energy behavior is that of the two-channel Kondo (2CK) model [19, 27].
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The screening of the spin occurs in the channel with the larger coupling con-
stant. If the couplings match, an overscreened, i.e., a genuine 2CK problem
with a non-Fermi liquid behaviour results. For a linearized model to be intro-
duced below such a fixed point has indeed been found at an isolated value of
the electron-phonon coupling with simulations based on numerical renormal-
ization group [14, 15, 28].

1.3.2 Overlap integrals

The calculations are performed using several functional forms of Vα(x) de-
picted in Fig. 1.7. In a realistic experimental situation the tunneling between
the molecule and the tip of an electrode will be saturated at small distances
and it will progressively decrease with increasing distance of the molecule from
the electrode. The precise functional dependence of overlap integrals will in
general depend on details of the molecule and the tips of the electrodes, but
the overall behavior should be as shown in Fig. 1.7(a) with dotted line.

Linearized modulation

The simplest form of overlap integrals is obtained by the expansion to lowest
order in displacement resulting in linear modulation (LM)

VL,R(x) = V [1 ∓ (gx + ζ)] . (1.20)

The tunneling matrix element, constant V for g = 0, is linearly modulated by
displacement for g > 0. We assume the system is almost inversion symmetric.
A small ζ ≥ 0 is the magnitude of the symmetry breaking perturbation. In
the symmetrized basis the overlap integrals take on the following form

Ve =
√

2V, Vo =
√

2V (gx + ζ). (1.21)

Note that Eq. (1.21) does not satisfy the requirement Eq. (1.19) for gx > 1−ζ,
because the overlap to the left electrode becomes negative and its absolute
value starts to increase with increasing x (dashed region in Fig. 1.7).

Regularized modulation

A more realistic approximation to overlap integrals is the exponential depen-
dence on displacement but it breaks down at small distance to the electrodes
as discussed exhaustively in [15]. The modulation should therefore at large
displacements be regularized and for the rest of this paper we use

VL,R(x) = V [exp(∓gx)/ cosh(gx) ∓ ζ] , (1.22)

or in the symmetrized basis

Ve =
√

2V, Vo =
√

2V [tanh(gx) + ζ] . (1.23)

The inequality Eq. (1.19) is satisfied (the 2CK fixed point is thus inaccessible)
and the normalization with the cosh function ensures that the hybridization
saturates at small distances to the electrodes.
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Fig. 1.8. Semi-classical estimate of effective oscillator potential for tanh modula-
tion. Parameters Ω = 0.01, Γ = 0.02 are in units of D (half-width of the band).

1.3.3 Effective potential

At U = 0 and replacing operators a, x by real valued quantities, the model
Eq. 1.16 is solvable exactly and the energy of the ground state as a function
of x provides the estimate of the effective oscillator potential. This simple
estimate agrees qualitatively with the results of more elaborate methods [15].
We plot the results on Fig. 1.8.

Initialy harmonic potential softens with increasing g and at a certain point
a double well potential develops. The softening thus occurs similarly as in
the case of Anderson-Holstein model but here it is related to the dynamical
breaking of inversion symmetry [19]. Due to the softening, the instability
towards perturbations breaking the symmetry (degeneracy between the two
minima of the double-well potential) can be expected. On the mean field
level [13], the instability is indeed seen as a tendency towards an asymmetric
ground state with large average x in systems with inversion symmetry.

1.4 Numerical results

The development of the double well potential induces fluctuations of displace-
ment and its influence can also be seen in the NRG results of static quantities
shown on Fig. 1.9 for U = 0.3, Γ = 0.02, Ω = 0.01 In these results an inversion
symmetry breaking perturbation of strength ζ = 0.01 is included.

The average displacement presented on Fig. 1.9(a) increases as the electron-
phonon coupling is increased. The fluctuations of displacement initially in-
crease then they dimininsh, as the oscillator gets trapped in the lower of the
two-well potential (also this behavior is discussed in more detail in [15]). At
large electron-phonon coupling also the average displacement starts to dimin-
ish. This happens because for tanh-form of the hybridization for large g the
hybridization is maximal already for small displacemnts and therefore the
system can minimize the elastic energy without cost in the kinetic energy.
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Fig. 1.9. (Color online) (a) Displacement and displacement fluctuations. (b) Av-
erage hopping to left and right; fluctuations of charge.

On Fig. 1.9(b) also the electronic expectation values are shown. At large
g, the molecule is near the right lead as signified by increased hopping to
the right. The total hybridization and, correspondingly, the charge fluctua-
tions are also increased there. The Kondo temperature is increased, but the
conductance is suppressed due to the asymmetric configuration [15].

The softening of the potential is seen also in the displacement spectral
function shown on Fig. 1.10. Similar to the behavior discussed in the previous
chapter, the frequency of vibration diminishes with increasing g, because the
confining potential is softened. At large g the molecule is trapped to the lower
of the two wells, the oscillations between the two-wells become unfavourable
and the spectral weight is again transferred to high frequencies corresponding
to oscillations within the lower of the two wells.
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Fig. 1.10. (Color online) Displacement spectral functions for parameters as in
Fig. 1.9.
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1.5 Conclusion

We invoked Anderson model coupled to phonons to describe the transport
through the molecule coupled to molecular vibrations. While the influence the
MV exhibit on electron depends on the details of the coupling, the coupling
to electrons tends to soften the MV. In the strong coupling regime of the
Anderson-Holstein model (Ueff < 0), a perturbation of the orbital energy
drives the system from the particle-hole symmetric point characterized with
zero average displacement of the oscillator. Likewise, in the Anderson model
with asymmetricaly modulated hybridization, a perturbation of the left-right
symmetry results in a state with large average displacement (the molecule is
attracted to one of the electrodes).

1.5.1 Discussion

In measurements of conductance through molecular junctions the side-peaks
pertaining to the excitation/annihilation of vibrational quanta are clearly dis-
cerned at a finite bias. The influence of phonons in the equilibrium at a small
bias is less investigated, because it does not appear to affect the measured
conductance significantly. Why is this so?

The answer is that systems with electron-phonon (EP) coupling to internal
molecular modes can usually be reformulated in a manner that refers to the
EP coupling only by a redefinition (renormalization) of the original (bare)
parameters, which themselves are not, unfortunately, known to start with. For
instance, such a parameter is the repulsion, which is effectively diminished due
to the influence of the EP coupling. But because the repulsion is diminished
already for a decoupled molecule any attempt to discern the effects of the
Holstein phonon by comparing to the data for isolated molecules will likely
prove in vain.

If one was interested in discriminating the effects of the coupling to
phonons nevertheless, a convenient quantity to look at would be the frequency
dependence of the local charge susceptibility. In the regime of reduced repul-
sion due to the EP coupling, the charge would be susceptible to the oscillations
of gate voltage only below the phonon frequency. In order to investigate this
experimentally, one would need to be able to measure the time dependence
of molecular charge. While this currently seems a formidable task, we note
that in quantum dots (QDs) the time-resolved measurements of charge using
quantum-point contacts have already been demonstrated, e.g. in [29].

In near future, there is more hope to discern the effects of the EP coupling
to the contacts. However, even qualitative effects – such as the breaking of
the particle-hole (PH) symmetry, which occurs when the breathing modes
couple to the electron charge and modulate the tunneling at the same time –
can be dominated by non-perfectly symmetric contacts. But still, measuring
the linear conductance to a better precision and comparing the data for rigid
molecules to the data for softer molecules could unravel the influence of the
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breathing oscillations and the type of their coupling to the electron transport
in the equilibrium.

The case of molecules oscillating between the electrodes is a bit different.
One particular effect of the EP coupling is obvious. Imagine a break junction
with a single molecule bridging the two contacts. In principle, one can slowly
increase the tension between the contacts, until they separate. Any tiny per-
turbation of the parity will choose a contact to which the bridging molecule
will be attracted. This is precisely the physics analyzed here: the tension
pulls the contacts apart and the separation sets the modulation of tunneling
by induced displacement of the molecule. With increasing tension also the
modulation increases. The potential confining the molecule to the center is
softened, and instantly, the molecule is attracted to one of the contacts.

One might argue that the idea is rather to get as close to the breaking
point to observe the onset of the non-Fermi liquid (NFL) fixed point. But
because NFL fixed point corresponds to the case when the molecule fluctuates
between far left and far right, the conductance is zero as is also if the molecule
is far left or far right. It is worth calculating the temperature dependence of
conductance and hope for some anomalies due to the NFL formation energy
scale (for a very recent work in this direction see [28]), but we anticipate that
it will be difficult to distinguish the results from these corresponding to the
displacement of the molecule towards one of the contacts only.

On the other hand, one could observe the effects of the phonon-mode soft-
ening directly in nanoelectromechanical suspended cantilevers. Consider the
setup, depicted in Fig. 1.11. The cantilever (blue) oscillates between the aux-

d

Fig. 1.11. Scheme of the proposed device.

iliary contacts (gold). The frequency of oscillations can be detected indepen-
dently, e.g. by a quantum-point contact shifted perpendicularly with respect
to the plane defined by the cantilever and the contacts [30]. We predict that
the frequency of oscillations will decrease when the distance between the con-
tacts d is diminished provided that the device will operate in the regime of
coherent tunneling.

It would be interesting also to investigate the softening by suppressing it
with the magnetic field. For magnetic fields above the Kondo temperature
the spin at the orbital is frozen. According to the Pauli principle the charge
fluctuations and the transport of electrons are blocked. Simultaneously, also
the related kinetic energy gain vanishes and the softening is suppressed [31].
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