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Spin fluctuations in cuprates as the key to highTc
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Abstract. Spin fluctuations represent the lowest established energy scale in cuprates and are crucial
for the understanding of anomalous normal state propertiesand superconductivity in these materials
[1]. The memory-function approach to the spin response in the t-J model is described. Combined
with numerical results for small systems it is able to explain the anomalous scaling at low doping and
the crossover to the Fermi-liquid-like behavior in overdoped systems. Within the superconducting
phase the theory reproduces the resonant peak and its peculiar double dispersion. Such spin fluctu-
ations are then used as the input for the theory of superconductivity within the t-J model, where we
show that an important role is played also by the next-nearest-neighbour hopping parametert ′.
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INTRODUCTION

The phase diagram of cuprates still represents one of the major challenges in solid state
physics, both for theoreticians and experimentalists. Besides superconductivity (SC) and
antiferromagnetic (AFM) ordering, several regimes with distinct electronic properties
have been identified within the normal metallic phase. In this contribution, we are con-
cerned with the spin dynamical response in cuprates which has been intensively studied
using the inelastic neutron scattering (INS) [2, 3] and NMR relaxation experiments [4].

There is an abundant evidence that in underdoped cuprates magnetic properties are
not following the usual Fermi-liquid (FL) scenario within the metallic state above the
SC transitionT > Tc. It should be reminded that within a normal FL the dynamical
spin susceptibilityχ ′′

q(ω) is essentiallyT - independent at lowT < TFL. From the
point of spin response one can use the latter criterion as theworking definition of the
Fermi-liquid temperatureTFL. Note that in usual metalsTFL ≫ 1000 K, in striking
contrast to underdoped cuprates withTFL < Tc [2, 4]. Evidence for the non-Fermi-
liquid (NFL) behavior are INS results for theq-integrated spin susceptibility which
exhibit in a broadω,T range an anomalous, but universalχ ′′

L(ω) ∝ f (ω/T ), established
in underdoped La2−xSrxCuO4 (LSCO) [5, 2], as well as in YBaCu3O6+x (YBCO)
[6]. Similar conclusions arise from evidentT -dependence of63Cu NMR spin-lattice
relaxation rate 1/T1T and of the spin-spin relaxation rate 1/T2G [4].

Cuprates at optimum doping, and even more in the overdoped regime, approach closer
the usual FL description. INS reveals only weak spin response at low energiesω in
the normal state (NS) atT > Tc, characteristic for metals with a broader band. Also,
NMR relaxation rates 1/T1T and 1/T2G are weaklyT -dependent, again consistent with
the FL scenario. Analogous message arises from the analysisof cuprates doped with
nonmagnetic Li and Zn [7], where the impurity-induced spin susceptibility varies as



∝ 1/(T + TK), whereby the characteristic (Kondo-type) temperature isTK ∼ 0 in the
underdoped regime and increasing fast with doping in the overdoped regime.

While in the NS the dynamical spin responseχ ′′
q (ω) is in general compatible with

an overdamped collective mode, the prominent feature appearing in the SC phase is the
magnetic resonant mode. First observed in optimally doped YBCO [8], it has been in
the last decade the subject of numerous INS experiments [3].The resonant response,
in spite of evident differences between YBCO and LSCO systems, as well as changes
with doping, reveals some surprisingly universal characteristics. The peak intensity is
highest at the commensurate wavevectorQ = (π,π), while its frequencyωr increases
with doping up to the optimum doping. In addition, one component of the resonant mode
disperses downwards [9], while another branch apparently emerging from the same peak
shows an upward dispersion [10, 11, 12].

It seems a plausible (although surprisingly not generally accepted) conclusion, that the
understanding of spin dynamics is the key for the proper description of the anomalous
properties of cuprates, and to the mechanism of highTc in particular. The main argument
remains, that up to now the spin fluctuations represent the lowest (experimentally well
established) energy scale in cuprates, both in the NS as wellas in the SC state. Namely,
the peak in the spin response (as measured by INS) in the normal state appears in
underdoped cuprates atωp ∼ Tc, moving even lower with decreasingT . Moreover, the
collective modeωr in the SC phase lies even below the SC gapωr < 2∆0. On the other
hand, low spin-fluctuation energy scale also sets a clear limit to the FL behavior since
FL can become normal only forT,ω which are below this scale.

A comprehensive theoretical description of spin fluctuations in cuprates and their im-
plications on other properties, in particular their role inthe mechanism of SC, is still
lacking. A FL behavior in the overdoped regime far from a metal-insulator transition
seems plausible, nevertheless a solid theoretical approach is missing even in this regime.
A crossover from a strange metal to a coherent metal phase hasbeen predicted within
some theoretical approach. Quite fashionable and frequently invoked interpretation is
given in terms of the quantum critical point (QCP) at optimumdopingc∗h (masked, how-
ever, at lowT by the SC phase), dividing the FL phase atch > c∗h from a (singular)
non-Fermi-liquid (NFL) metal atch < c∗h. Such a scenario is established, e.g. theoreti-
cally in spin systems [13] and experimentally in some heavy-fermion compounds, but
remains controversial in cuprates. The obvious argument against the QCP scenario is
the absence of a critical length scale, e.g., AFM correlation lengthξ (T → 0) → ∞ as
well as the absense of the phase with the AFM long-range orderfor ch < c∗h (sometimes
put in connection with the pseudogap scaleT ∗). In the underdoped cuprates the spin
fluctuation seem to follow quite well the phenomenological scenario of the marginal FL
[14], which got so far only partially a solid theoretical foundation. The main distinction
to the QCP scenario is the absense of a critical length scale,which is in agreement with
low-energy INS revealing at lowT the saturation of the inverse AFM correlation length
κ = 1/ξ , at least in YBCO [3] and in LSCO at low doping [5, 2].

With respect to the most challenging problem, the mechanismof SC in cupratres,
the role of strong correlations and the antiferromagnetic (AFM) state of the reference
insulating undoped compound has been recognized very early[15]. Still, up to date
there is no general consensus whether ingredients as embodied within the prototype
single-band models of strongly correlated electrons are sufficient to explain the onset



of high Tc. Even within the frequently invokedt-J model, being the subject of this
paper, proposed mechanism of SC and the methods for the evaluation of correponding
Tc differ with respect to the fact whether the attractive interaction is mainly local
and instantaneous [16] or the retardation effects are important [17]. Recognizing the
very low spin-fluctuation scale, we will advocate in the following the latter for spin-
fluctuation scenario, emerging in contrast to previous approaches directly from the
strongly correlatedt-J model.

In the following we present some of our recent theoretical results on spin fluctuations
in cuprates and their relation to SC. The analysis within thet-J model, as relevant for
cuprates, is mostly based on the general memory-function approach and the equations-
of-motion (EQM) method, The latter has been first applied to the t-J model to explain
anomalous (MFL-type) properties of NS spectral function [18] and then extended to low-
doping regime [19] and SC [20]. Spin dynamical responseχq(ω) has been considered
within analogous treatment to yield the overdamped mode in the NS and resonant
peak dispersion in the SC state [21], the anomalousω/T scaling in the underdoped
regime [22], the influence of nonmagnetic impurities [23], the NFL-FL crossover in spin
dynamics [24], and double dispersion of resonant peak [25].The extracted knowledge
on spin fluctuations is used as an input the theory of SC [26].

NFL - FL CROSSOVER IN THE NORMAL STATE

To be specific, we consider in the following the spin dynamicswithin the framework
of the extendedt-J model, which has been shown to represent surprisingly well several
electronic properties of cuprates, both qualitatively andquantitatively [27],

H = − ∑
i, j,s

ti jc̃
†
jsc̃is + J ∑

〈i j〉
(Si ·Sj −

1
4

nin j), (1)

including in general both the NN hoppingti j = t and the NNN hoppingti j = t ′, and
involving the projected fermionic operators, ˜cis = (1−ni,−s)cis.

We will first argue [22] that the anomalousω/T scaling and the related NFL behavior
of the magnetic response can be understood as a consequence of few simple ingredients
which appear to be valid for doped AFM in the normal state: a) the collective mode is
strongly overdamped, whereby the damping is nearlyω- andT - independent at lowω,
and b) there is no long-range spin order at lowT , so that static spin correlations saturate
with a finiteξ .

Within the memory function approach the dynamical spin susceptibility χq(ω) =
−〈〈Sz

q;Sz
q〉〉ω can be generally expressed [21, 22] in the form

χq(ω) =
−ηq

ω2 +ωMq(ω)−ω2
q

, (2)

suitable for the analysis of the magnetic response, as present in undoped and moderately
doped AFM [21].ωq represents the frequency of the collective mode provided that the
mode damping is small, i.e.,Λq ∼ M′′

q(ωq) < ωq. In the opposite case, i.e.Λq > ωq the



mode is overdamped. Still, the advantage of the form (2) is that it can fullfil basic sum
rules even for an approximateM′′

q . Thermodynamic quantitites entering Eq. (2) can be
expressed as

ηq = −ι̇〈[Sz
−q , Ṡz

q)]〉 , ω2
q = ηq/χ0

q , (3)

whereχ0
q = χq(ω = 0) is the static susceptibility.

ηq is the spin stiffness and can be expressend in terms of the static correlation
functions, in particular withint-J model ηQ = −〈H〉/N. χ0

q (or ωq) remains to be
determined, even for knownMq(ω). It is quite a sensitive quantity, hence it safer to
fix it by the sum rule (fluctuation - dissipation relation)

1
π

∫ ∞

0
dω cth

ω
2T

χ ′′
q (ω) = 〈Sz

−qSz
q〉 = Cq , (4)

given in terms of equal time spin correlations, which are expected to be much more
robust. MoreoverCq are bound by the constraint(1/N)∑qCq = (1− ch)/4, wherech is
an effective hole doping.

Let us now state two basic assumptions: a) static correlations are taken to follow a
Lorentzian form, i.e.Cq =C/(κ2+ q̃2) whereq̃ = q−Q. κ is assumed to be a noncritical
quantity, which on approaching lowT saturates at a finite value. As already noted, this
is consistent with the neutron scattering data for weakly doped LSCO [5] and YBCO
[6]. It is also consistent with numerical results for thet-J model at finite doping. b)
The damping is also assumed to be a constant,M′′

q(ω) ∼ Λ, i.e., (roughly) independent
of ω , q̃ andT , or at least not critically dependent on these variables. The support for
this assumption comes from our numerical results on small systems, using the finite-
T Lanczos method (FTLM) [27], for thet-J model on small lattices with up to 20
sites. Calculatingχ ′′

q (ω) and extracting thenM′′
q(ω) with the help of Eq.(2), one can

conclude [22] that in spite of widely differentχ ′′
q(ω) the damping functionM′′

q(ω) is
nearly constant in a broad range ofω < t and almost independent ofq. Moreover, for
doped systems withch > 0 data are consistent with a finite (and quite large) extrapolated
valueΛQ(T → 0). In the normal state this leads to a overdamped collective mode vicinity
of q = Q, i.e.,ωQ < Λ, as generally observed in INS experiments[1, 2, 3],

χ ′′
q (ω) ∼ η

Λ
ω

(ω2 +Γ2
q)

, Γq =
ω2

q

Λ
, (5)

andΓq < ωq. At low T → 0, Eq.(4) leads now to a nontrivial restriction forωq andΓq.
The relevant quantity is the peak frequencyωp = ΓQ(T → 0), which determines the
characteristicT = 0 spin-fluctuation scale as well asTFL.

The crucial parameter appears to be

ζ = CπΛ/(2ηκ2), ωp ∼ Λe−2ζ , (6)

which exponentially renormalizesωp. SinceC ∼ O(1) andη ∼ 0.6 t at low doping,ζ is
effectively governed by the ratioΛ/κ2. It is easy to imagine the situation thatζ ≫ 1 in
the underdoped cuprates, leading to very lowωp ≪ Λ and evenωp < Tc. On the other



hand, in the overdoped caseΛ/κ2 ∼ 1 andωp becomes large as in usual FL systems.
Due to exponential dependence in Eq.(6) it is also plausiblethat the crossover from the
NFL regime with extremely smallωp and FL behavior is quite abrupt [24], resembling
the QCP scenario.

In order to extract the characteristic energy scaleωFL of spin fluctuations directly
from numerical FTLM results [24], we use an alternative definition,

ωFL(T ) = SQ/χQ(T) (7)

with the correspondingT = 0 limit ωFL(0). Note thatωFL(0) = 〈ω〉 is just the first
frequency moment of the shape functionχ ′′

Q(ω)/ω,

ωFL(0) = 〈ω〉 =
2

πχQ

∫ ∞

0
χ ′′

Q(ω)dω. (8)

On the other hand, one can extractωFL also from experiments, in particular from NMR
1/T2G relaxation data [4], which give rather straightforward information onχQ(T ).

In Fig. 1 we show FTLM results forωFL(ch) at 0.1t ≤ T ≤ J. Besides we also present
values extrapolated toT → 0. Note that in the consideredT windowSQ(T ) is essentially
T -independent, following well the linear variation 1/SQ = Kch. In contrast, the FL scale
ωFL reveals a nonuniform variation with doping. Again, forch > c∗h, ωFL is already
ratherT -independent forT < J. On the other hand, in the regimech < c∗h we find a
strongT -dependence ofωFL even at lowest reliableT , whereωFL ∼ T +ωFL(0). We can
summarize results in Fig. 1 as follows: a) in the overdoped regimeωFL(0)∼ α(ch−ch0)
with ch0 ∼ 0.12 and a large slopeα ∼ 3.5t ∼ 1.4 eV, b) in the underdoped regime our
results indicate on a smooth crossover to very smallωFL(0) ≪ J.
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FIGURE 1. FL scaleωFL/t vs. ch, obtained for thet-J model using the FTLM forT > 0 and their
T → 0 extrapolated values. The inset showsT = 0 results for 1/SQ vs. ch. Dashed lines are guide to the
eye only.

Let us estimateχQ(T ) and consequentlyωFL directly from experiments on cuprates.
Within the normal state the results for the NMR spin-spin relaxation timeT2G, obtained



from the 63Cu spin-echo decay, can be related to staticχq [28]. Assuming thatχq is
peaked at commensurateq = Q and can be described by a Lorentzian form with a width
κ ≪ π , one gets a simplified relation

1
T2G

∼ 0.083κF(Q)χQ. (9)

1/T2G relaxation rates have been measured and summarized in Ref. [4], i.e., from
underdoped to optimally doped YBCO with 0.63 < x < 1, underdoped YBa2Cu4O8,
nearly optimum doped Tl2Ba2Ca2Cu3O10 (Tl-2223) and the overdoped Tl2Ba2CuO6+δ
(Tl-2201), whereby the normalization with correspondingF(Q) has been already taken
into account. Relevantκ is the one appropriate for low-ω spin dynamics and measured
directly by INS. For YBCO data are taken from Ref.[29], whichallows us to evaluate
χQ(T ) from Eq.(9).SQ is so far not experimentally accessible, so we assume here thet-J
model results to finally extract correspondingωFL(T ) as presented in Fig. 2 for various
cuprates. DerivedωFL(0) are well in agreement with model result in Fig. 1, in particular
regarding the large slope in the overdoped regime and a clearchange of scale between
the underdoped and overdoped cuprates.
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FIGURE 2. ωFL vs. T , for various cuprates. The inset shows the extrapolated scales ωFL(0) andΘ
(defined by 1/χQ ∝ T + Θ) vs. dopingch.

DISPERSION OF THE RESONANT MODE

Using the method of equations of motion within thet-J model it has been shown that
the collective spin fluctuations decay into electron-hole excitations [21, 25]. This leads
to the lowest-order mode-coupling approximation for the damping in the NS,

Λq(ω) =
π

2ηqωN

∫

dω ′[ f (ω ′)− f (ω +ω ′)]∑
k

w2
kqAk(ω ′)Ak+q(ω +ω ′) , (10)



wherewkq is the effective spin-fermion coupling [21] andAk(ω) is the single-particle
spectral function. Provided the existence of ‘hot spots’ where the FS crosses the AFM
zone boundary (being the case for cuprates at low to intermediate doping) we assume
that in the NS low-ω quasiparticles (QP) with dispersionεk and weightZk determine
the spectral functionAk(ω) = Zkδ (ω −εk). This results in a rather constantΛq(ω). The
form of Eq. (10) is anyhow quite generic for the damping of thecollective magnetic
mode in a metallic system, since the lowest-energy decay processes naturally involve
the electron-hole excitations close to the FS. Similar expressions appear also in theories
based on the RPA approach [30, 31]. Within the SC phase, Eq. (10) has to be generalized
to include the anomalous spectral functions [30] leading to[21, 25]

Λq(ω) ∼ π
2ωN ∑

k
w̃2

kq(ukvk+q− vkuk+q)
2[ f (Ek)− f (Ek −ω)]δ (ω −Ek −Ek+q)

]

,

(11)
wherew̃2

kq = w2
kqZkZk+q/ηq, while uk ,vk are the usual BCS coherence amplitudes and

Ek =
√

ε2
k +∆2

k . For the SC gap we assume thedx2−y2 form, ∆q = ∆0(cosqx−cosqy)/2.
Thus we end up with few adjustable parameters at chosench: κ in the Lorentzian form
for Cq, the effective coupling ¯w and the maximum SC gap∆0 [21, 25].
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FIGURE 3. χ ′′
q (ω) at intermediate dopingch = 0.15 for momenta: a) along thex directionq = q(1,0),

and b) along the zone diagonalq = q(1,1).

At intermediate doping the collective mode is heavily overdamped in the NS. The



indication for the latter is low intensity of the INS in the relevant low-energy window.
For the presented case [25] we fix the ’optimum’ doping atch = 0.15 andκ ∼ 1.25. The
SC gap is roughly known from experiments∆0 = 40 meV. The remaining input isΓQ
within the NS. For the appearance of the upper resonant branch it is crucial thatΓQ is
not too large, as seems to be inherent within the RPA [30, 31].

In Fig. 3 we displayχ ′′
q (ω) for momenta both along the twoq directions. Following

observations can be made [25]: a) results reveal two branches emerging from the same
coherent resonant mode atωr ∼ 41 meV. Intensity plots of both branches within the
q plane are square-like around AFMQ, however with quite pronounced anisotropy. b)
For the downward branch the intensities are strongest alongthe(1,0) direction. c) The
development is more sensitive forω > ωr, still the situation with the upward branch is
just opposite to the downward one. The dispersion is stronger along the(1,0) direction.
d) Above the damping thresholdω > 2∆0 the upward branch merges into an incoherent
response broad both inq as well as inω. The incoherent part still exhausts most of the
intensity sum rule, Eq. (4), even forq = Q.

SPIN-FLUCTUATION MECHANISM OF SUPERCONDUCTIVITY

The projection in fermionic operators in thet-J model, Eq.(1), leads to a nontrivial EQM,
which can be in thek-basis written as

[c̃ks,H] = [(1+ch)
ε0

k
2
−(1−ch)J]c̃ks+

1√
N

∑
q

mkq
[

sSz
qc̃k−q,s+S∓q c̃k−q,−s−

1
2

ñqc̃k−q,s
]

,

(12)
wheremkq = 2Jγq + ε0

k−q is the effective spin-fermion coupling, whileε0
k = −4tγk −

4t ′γ ′k is the bare band dispersion on a square lattice, andγq = (coskx + cosky)/2,γ ′q =
coskxcosky. To keep similarity with the spin-fermion phenomenology [17] we use the
symmetrized coupling [21]

m̃kq = 2Jγq +(ε0
k−q + ε0

k )/2. (13)

EQM, Eq. (12), are used to derive the approximation for the Green’s function (GF)
matrix Gks(ω) = 〈〈Ψks|Ψ†

ks〉〉ω for the spinorΨks = (c̃k,s, c̃
†
−k,−s). We follow the

method, as applied to the normal state (NS) GF by present authors [18, 19], and gener-
alized to the SC pairing in Ref.[20, 26]. In general, we can represent the GF matrix in
the form

Gks(ω)−1 =
1
α

[ωτ0− ζ̂ks + µτ3−Σks(ω)], (14)

whereα = ∑i〈{c̃is, c̃
†
is}+〉/N = (1+ch)/2 is the normalization factor,µ is the chemical

potential, and the frequency matrix̂ζks = 〈{[Ψks,H],Ψ†
ks}+〉/α, which generates a

renormalized band̃ζk = ζ 11
ks = ζ̄ −4η1tγk −4η2t ′γ ′k and the mean-field SC gap

∆0
k = ζ 12

ks = − 4J
Nα ∑

q
γk−q〈c̃−q,−sc̃q,s〉. (15)



To evaluateΣks(ω) we use the lowest-order mode-coupling approximation, analogous
to the treatment of the SC in the spin-fermion model [17]. Taking into account EQM,
Eq. (12), and by decoupling fermionic and bosonic degrees offreedom, one gets

Σ11(12)
ks (iωn) =

−3
Nαβ ∑

q,m
m̃2

kqG11(12)
k−q,s (iωm)χq(iωn − iωm) (16)

where iωn = iπ(2n + 1)/β and β = 1/T , whereby we have neglected the charge-
fluctuation contribution.

In order to analyze the low-energy behavior in the SC state, we use the QP approx-
imation for the spectral function matrix where the QP energies areEk = (ε2

k +∆2
ks)

1/2,
while NS parameters, i.e., the QP weightZk and the QP energyεk, are determined from
Gks(ω ∼ 0), Eq. (14). By defining normalizedFq(iωl) = χq(iωl)/χ0

q, and rewriting the
MF gap, Eq. (15), in terms of the spectral function, we can display the gap equation in a
BCS-like form form,

∆ks =
1
N ∑

q
[4Jγk−q−3m̃2

k,k−qχ0
k−qCq,k−q]

Z0
kZ0

q∆qs

2Eq
th(

βEq

2
), (17)

whereCkq = Ikq(iωn ∼ 0)/I0
k plays the role of the cutoff function with

Ikq(iωn) =
1
β ∑

m
Fq(iωn − iωm)

1

ω2
m +E2

ks

, (18)

andI0
k = th(βEk/2)/(2Ek).

Eq. (17) represents the BCS-like expression which we use to evaluateTc. To proceed
we need the input of two kinds: a)χq(ω), and b) the NS QP propertiesZk ,εk. As
discussed in Sec. II the NS spin dynamics atq ∼ Q is generally overdamped in the
whole doping regime [3]. Hence we use the form, Eq.(5). We endup with parameters
χ0

Q,ΓQ,κ , which are dependent onch, but in general as well vary withT . Although one
can attempt to calculate them as described in Sec. III [21], we use here the experimental
input for cuprates, as discussed in Sec. II [24]. For the NSAk(ω) and corresponding
Zk ,εk we solve Eq. (16) forΣ11

k = Σk as in Ref. [19], with the same input forχq(ω). The
main message remains [26] that soft AFM fluctuations withq ∼ Q lead through Eq. (16)
to a reduction ofZk , which isk-dependent. A pseudogap appears along the AFM zone
boundary and the FS is effectively truncated in the underdoped regime withZkF ≪ 1
near the saddle points(π,0) (in the antinodal part of the FS) [19, 26].

Close to half-filling and forχ0
q peaked atq ∼ Q both terms in the gap equation,

Eq. (17), favor thedx2−y2 SC. The mean-field part∆0
k, Eq. (15), involves onlyJ which

induces a nonretarded local attraction, playing the major role in the RVB-type theories
[15, 16]. In contrast, the spin-fluctuation part representsa retarded interaction due
to the cutoff functionCkq, determined byΓk−q. The largest contribution to the SC
pairing naturally arises from the antinodal part of the Fermi surface. Meanwhile, in the
same region alsoZk is smallest thus reducing the pairing strength, in particular in the
underdoped regime.



One can question the relative role of the hopping parameterst, t ′ and the exchangeJ
in the coupling, Eq. (13). While our derivation within thet-J model is straightforward,
an analogous analysis within the Hubbard model using the projections to the lower and
the upper Hubbard band, respectively, would not yield theJ term within the lowest order
sinceJ ∝ t2. This stimulates us to investigate in the following also separately the role of
J term in Eq. (17), both through the MF term, Eq. (15), and the coupling m̃kq, Eq. (13).
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FIGURE 4. Tc/t vs. dopingch for t ′/t = −0.3, calculated for various versions of Eq. (17): a) full result
(full line), b) with neglected MF term (dashed line), and c) in addition to b) modified ˜mkq without theJ
term (dotted line).
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FIGURE 5. Tc/t vs.−t ′/t for fixed ’optimum’ dopingch = 0.17 and different versions of Eq. (17), as
in Fig. 2.

Results for the NS spectral properties reveal that the coupling to AFM fluctuations
partly change the shape of the Fermi surface, more pronounced is however the effect on
the QP weight.Zk is reduced along the AFM zone boundary away from the nodal points.
In Fig. 4 we present final results forTc, as they follow from the gap equation, Eq. (17).
It is evident that the spin-fluctuation contribution is dominant over the mean-field term.



When discussing the role of theJ term in the coupling, Eq. (13), we note that in the
most relevant region, i.e., along the AFM zone boundary ˜mkQ = 2J −4t ′ cos2 kx. Thus,
for hole doped cuprates,t ′ < 0 term andJ term enhance each other in the coupling, and
neglectingJ in m̃kq reducesTc, although at the same time relevantZk is enhanced.

Finally, in Fig. 5 we present results, as obtained for fixed intermediate dopingch =
0.17, but differentt ′/t < 0, as relevant for hole-doped cuprates [32]. As expected the
dependence ont ′ is pronounced, since the latter enters directly the coupling m̃kQ,
Eq.(13). It is instructive to find an approximate BCS-like formula which simulates our
results. The latter involves the characteristic cut-off energy ΓQ, while other relevant
quantities are the electron density of statesN0 andZm being the minimumZk on the FS
(in the antinodal point). Then, we get a reasonable fit to our numerical results with the
expression,

Tc ∼ 0.5ΓQ e−2/(N0Ve f f ), (19)

where the effective interaction is given byVe f f = 3Zm(2J−4t ′)2χQ.
Probably the most interesting novel result on SC is a pronounced dependence ofTc

on t ′ which is also consistent with the evidence from different families of cuprates [32].
One can give a plausible explanation of this effect. In contrast to NN hoppingt, the NNN
t ′ represents the hopping within the same AFM sublattice, consequently in a double unit
cell fermions couple directly to low-frequency AFM paramagnons. CalculatedTc are in
a reasonable range of values in cuprates. We also note that rather modest ’optimum’Tc
value within presented spin-fluctuation scenario emerge due to two competing effects
in Eqs. (17),(19): large ˜mkq andχQ enhance pairing, while at the same time through a
reducedZk and cutoffΓQ they limit Tc. At the same time, INS experiments [3] reveal
that in underdoped cuprates the resonant peak atω ∼ ωr takes the dominant part of
intensity ofq ∼ Q mode which becomes underdamped possibly even forT > Tc. Thus it
is tempting to relateΓQ to ωr and to claimTc ∼ aωr, as indeed observed in cuprates [3].
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22. P. Prelovšek, I. Sega, and J. Bonča, Phys. Rev. Lett.92, 027002 (2004).
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