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Abstract. – A weakly bound electron in a semiconductor quantum wire is shown to become
entangled with an itinerant electron via the Coulomb interaction. The degree of entanglement
and its variation with energy of the injected electron, may be tuned by choice of spin and initial
momentum. Full entanglement is achieved close to energies where there are spin-dependent
resonances. Possible realisations of related device structures are discussed.

A major goal in the rapidly emerging field of quantum information processing is the con-
trolled exchange of quantum information between propagating and static qubits. Purely elec-
tron systems have potential as entanglers due to strong Coulomb interactions and although
charge-qubit systems suffer from short coherence times, spins in semiconductor quantum wires
and dots are sufficiently long-lived for spin-qubits to be promising candidate for realizing quan-
tum gates involving both static and propagating spins [1–5]. Electron entanglers have been
proposed using a double dot, exploiting the singlet ground state [6], the exchange interaction
between conduction electrons in a single dot [7,8], and the exchange interaction between elec-
tron spins in parallel surface acoustic wave channels [9]. The measurement of entanglement
between propagating electron pairs has also been proposed using an electron beamsplitter [10].
In this letter we propose a scheme whereby a single propagating electron interacts strongly
with a bound electron in a quantum wire. This differs from the quantum-dot systems referred
to above in several respects. Firstly, entanglement is induced between the spins of one propa-
gating and one bound electron, rather than two propagating electrons, and this entanglement
is detected by measuring a single-electron spin directly (via a spin-filter), rather than indi-
rectly through current-current correlations which average over many spins. Secondly, unlike in
a quantum dot, there are no imposed barriers, only a shallow potential well. Spin-dependent
resonances are a consequence of the Coulomb interaction and electron asymmetry and give
rise to broad resonances that enable entanglement to be controlled by changing the kinetic
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energy of the propagating electron with external gates. This allows considerable flexibility in
controlling the entangling interactions via the kinetic energy of the incident electron.

Consider a semiconductor quantum wire in which there is a weak confining potential which
is capable of binding one, and only one, electron. Slight deviation from a perfect 1D confining
potential, either accidental or deliberate, can give rise to fully bound states for electrons.
When the confining potential is very weak, such as occurs with a weak symmetric bulge in an
otherwise perfect wire, there is one and only one bound state [11]. Furthermore, only a single
electron can be bound in this confining potential since the energy of a second electron will be in
the continuum due to Coulomb repulsion. We have shown that the spin-dependent interaction
between a single propagating electron and the weakly bound electron can induce entanglement
between them, giving rise to a two-electron quantum gate. In this scenario, the flying qubit is
realised as the spin of the propagating electron and the static qubit is the spin of the bound
electron. A possible realisation of such a system is a clean semiconductor quantum wire in
which the propagating electron is injected through a single-electron turnstile [6] and the bound
electron is trapped in a shallow potential well along the wire, controlled by a gate electrode.

The two-electron system may be modeled by the effective Hamiltonian

H = −
2∑

i=1

[
h̄2

2m
∂2

∂x2
i

+ v(xi)
]
+ V (x1, x2), (1)

where m is the effective mass of an electron in the lowest conduction miniband, v(x) is an
effective one-electron potential and V (x1, x2) is an effective two-electron potential. This effec-
tive Hamiltonian accurately describes the system provided: i) confinement in the transverse
dimensions is sufficiently large and the kinetic energy sufficiently low that only the lowest
miniband is occupied, ii) the lowest transverse mode is non-degenerate, iii) the energy scale
is sufficiently low that non-parabolicity is negligible and iv) the change in effective potential
v(x) is sufficiently slow that coupling to higher minibands is negligible. The effective potential
in eq. (1) is generic in that it may be explicitly induced, using surface gates, or implicitly by
an expansion in the transverse dimensions of the quantum wire, or a combination of both. It
may also have contributions from remote charge centres or defects or other remote gates. The
sources of this confining potential are unimportant, and even the condition that potential is
slowly varying may be relaxed, e.g., by use of a very narrow nanoscale gate. However, the
effective potential well must be sufficiently weak to bind only a single electron, though it may
have more single-electron bound states. The problem is analogous to treating the collision
of an electron with a hydrogen atom, e.g., as studied by Oppenheimer and Mott [12]. The
present paper shows how such spin-dependent scattering may be realised and controlled in
a semiconductor quantum wire containing an open quantum dot binding a single electron,
giving rise to resonance scattering and associated spin entanglement in this one-dimensional
system. Such a system can show exotic behaviour similar to the Kondo effect observed in more
conventional quantum-dot systems with high confining barriers [13] and this behaviour has
also been related to the conductance anomalies referred to earlier and considered previously
by the present authors [14,15] and others [16].

For the two-electron case we will show that the scattering of the flying qubit from the
static qubit can induce entanglement in a controlled fashion and may thus be regarded as
a candidate for realising a general two-qubit gate and explicitly demonstrating exchange of
quantum information between a static qubit and a flying qubit. Consider an unentangled state
in which the quantisation axis is chosen to be in the direction of the propagating electron spin
and the bound-electron spin is in some general state on the Bloch sphere, i.e. cos(ϑ/2)| ↓〉+
eiφ sin(ϑ/2)| ↑〉. We may write the antisymmetrised incoming scattering states for the two



766 EUROPHYSICS LETTERS

electrons as Ψin = cΨ+
↑↓ + eiφsΨ+

↑↑, where c = cos(ϑ/2), s = sin(ϑ/2) and

Ψ±
σσ′ =

∣∣∣∣ e±ikx1χ1σ e±ikx2χ2σ

ψb(x1)χ1σ′ ψb(x2)χ2σ′

∣∣∣∣ .

Here ψb(x) is the ground-state wave function of the bound electron and the injected electron
has quasimomentum k and spinor χ↑. After scattering, the propagating electron will be
reflected or transmitted and, asymptotically, will have the same magnitude of momentum, k,
leaving the bound electron again in its ground state, ψb, provided that the initial energy of
the incoming electron is smaller than the energy separation, ∆E, from the the bound state to
the next allowable state. In cases where there is only one bound state, ∆E is the ionisation
energy, otherwise it is the threshold energy for inelastic scattering via intra-dot transitions.
For elastic scattering, the reflected and transmited part of the asymptotic states are

Ψ−
out = c(rnsfΨ−

↑↓ + rsfΨ−
↓↑) + eiφsr↑↑Ψ−

↑↑,

Ψ+
out = c(tnsfΨ+

↑↓ + tsfΨ+
↓↑) + eiφst↑↑Ψ+

↑↑. (2)

We see that both the reflected and transmitted waves show spin entanglement after
scattering provided cos(ϑ/2) and the amplitudes for spin-flip and non–spin-flip scattering,
rsf , rnsf , tsf and tnsf are non-zero. Furthermore, fully entangled states occur when ϑ = 0
and |rsf | = |rnsf | or |tsf | = |tnsf |. Although it is clear that the interaction between electrons
will induce entanglement, it is not obvious that this can be controlled or indeed that maximum
entanglement can be achieved. Full entanglement seems plausible for the following reasons.
Writing the asymptotic states in the basis of spin eigenstates and comparing with eqs. (2) we
see directly that

tnsf =
tT + tS

2
, tsf =

tT − tS
2

and t↑↑ = tT . (3)

This two-electron system has at least a singlet resonance (|tS | = 1) at some energy for which
the triplet state is off resonance (|tT | � 1), as may be seen from explicit solutions of the
scattering problem. We have obtained results for GaAs quantum wires with an effective mass
m = 0.067m0, a wire width of 10 nm giving an energy separation of 125meV between the lowest
and first excited transverse modes, and an effective Coulomb interaction V (x1, x2) given by
integrating the bare 3D Coulomb interaction over the lowest transverse mode. The shallow
effective potential, v(x), is first chosen such that there is only a single one-electron bound
state at energy εb = −12meV with a well depth of 26meV and a width of ∼ 20 nm (fig. 1). As
described in previous work [14,15], the bound electron has a long-range Coulomb interaction
with the propagating electron and, when combined with the well potential, gives rise to a
double-barrier structure which has a singlet resonance energy at approximately εS ∼ εb + U ,
where εb is the energy of the lowest bound state and U = 15meV is the Coulomb matrix
element for two electrons of opposite spin occupying this state. This is also shown in fig. 1
where we have plotted the Hartree-Fock potential due to the bound electron, vHF (x), i.e. the
self-consistent potential seen by the propagating electron in the “frozen” potential due to the
bound electron of opposite spin. For this case, the shallow well is sufficiently narrow that only
a single one-electron bound state is possible. For wider wells a second bound state is allowed
and this will give rise to a triplet resonance (and a further singlet resonance) at higher energy
provided. The singlet-triplet separation may be controlled by changing the width and depth
of the well whilst maintaining the condition that only one electron be bound. With increasing
well width (and decreasing well depth) the singlet-triplet separation reduces and eventually
the resonances overlap.
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Fig. 1 – Shallow potential well v(x) (full line) and corresponding Hartree-Fock potential seen by
a second electron of opposite spin (dashed line). The single resonant bound state, εb, and quasi-
bound singlet state, εS , within the double-barrier structure are also indicated. The dotted line is the
Coulomb repuslion energy due to the bound electron and the dash-dotted line represents the shallow
potential well v1(x) corresponding for the results from fig. 3.

At the lowest (singlet) resonance, |tsf | ≈ |tnsf | ≈ 1
2 and the state is close to being fully

entangled when spins are initially antiparallel (cos(ϑ/2) = 1). Similarly, in reflection, |rS | ≈ 0,
|rT | ≈ 1 and |rsf | ≈ |rnsf | ≈ 1

2 , which is also close to being fully entangled. Note that at
such a resonance, the propagating electron has approximately equal probability (1

2 ) of being
either transmitted or reflected. The precise condition for full entanglement in transmission is
ϑ = 0, |tT + tS | = |tT − tS | and this is satisfied when the complex numbers tS and tT are at
right angles in the Argand diagram, i.e. δS − δT = (2n + 1)π

2 , where δ is the phase shift due
to scattering and n is an integer.

When the states are not fully entangled, a measure of their degree of entanglement is given
by the concurrence [17] which, for the pure states considered here, is defined as

C =
2

〈Ψ|Ψ〉
∣∣∣∣ 〈αα|Ψ〉 〈αβ|Ψ〉
〈βα|Ψ〉 〈ββ|Ψ〉

∣∣∣∣ , (4)

where |α〉and |β〉 are orthogonal qubit base states in any representation. For transmitted
electrons the asymptotic spin concurrence after scattering is thus [18] from eqs. (2), (3), and (4)

Ct =
2c(Tsf Tnsf )1/2

c2 [Tsf + Tnsf ] + s2T↑↑
=

2c[(TT + TS)2 − 4TT TS cos2(δT − δS)]1/2

TT + TS + s2(TT − TS)
, (5)

where Tλ = |tλ|2 for corresponding labels λ. Similarly, |rT + rS | = |rT − rS | for full entan-
glement in reflection with antiparallel spins initially. We again see that full entanglement is
plausible at ϑ = 0 for energies for which either pure singlet or pure triplet states are near
a resonance since we know, for example, that the phase shift for resonant singlet scattering
changes rapidly as we sweep through the resonance energy, whereas the phase shift for the
triplet varies only slowly provided the overlap of the resonance widths is small. Thus, pro-
vided that singlet and triplet energies are not too close in energy, there will be some energy for
which cos(δT − δS) = 0 in eq. (5). We also note from eq. (5) that the concurrence approaches
unity when either TS � TT or TT � TS . This is simply due to the fact that one of the spin
channels (singlet or triplet) is “filtered out” leaving the other channel which is fully entangled.
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Fig. 2 – (a) Singlet and triplet transmission probalility (TS , TT ), spin-flip and non–spin-flip transmis-
sion probability (Tsf , Tnsf ) and corresponding concurrence Ct for the confining potential v(x) from
fig. 1. (b) Phase shifts corresponding to transmission probabilities in (a).

Further illustration of this behaviour is seen by solving the scattering problem explicitly
for specific cases. Numerical solutions for symmetrised (singlet) or antisymmetrised (triplet)
orbital states yield directly the complex amplitudes tS , rS , tT , rT from which the amplitudes
for spin-flip and non–spin-flip scattering may be calculated using eq. (3).

In fig. 2 we plot the singlet and triplet transmission and reflection probabilities, showing a
single maximum of unity for the transmission. We also plot concurrence, which is very close
to the corresponding singlet resonance, occuring when the spin-flip probabilities are equal and
approximately 1

4 in both transmission and reflection. The phase angle of the singlet changes
rapidly with energy through the resonance, whereas the triplet resonance is fairly flat. Since
the total change in singlet phase angle is somewhat in excess of π/2, there is a point where the
singlet-triplet phase difference is precisely π/2 and the transmitted state is fully entangled.
The behaviour is similar in reflection. Note, however, that at low energy, the difference in
phase angle for singlet and triplet tends to π in transmission and the limiting concurrence is
non-zero, whereas in reflection the limiting behaviour is zero phase shift and concurrence. This
can be understood when we consider that at low-energy the total transmission probability is
very small and hence this somewhat unexpected behaviour results from a very improbable
transmission event. When this does occur, the spin-flip process dominates since the incoming
up-spin electron simply displaces the down-spin electron due to Coulomb repulsion. Neglecting
the non–spin-flip process we see, from eq. (5) that tS ≈ −tT , i.e. a phase difference of π.
Actually, the limiting non–spin-flip process, though small, is not negligible, as can be seen from
the finite concurrence. This shows a limiting value of around 0.7 giving Tnsf/Tsf ∼ 0.1. In
reflection, the non–spin-flip process is dominant at low energy by the same argument (as seen
explicitly in the plot) and hence the phase difference tends to zero as does the concurrence.

In fig. 3 we show results for a shallow potential well of depth 12meV and width ∼ 40 nm.
With these parameters there are two single-electron bound states at energies −8meV and
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Fig. 3 – (a) Singlet and triplet transmission probalility (TS , TT ), spin-flip and non–spin-flip transmis-
sion probability (Tsf , Tnsf ) and corresponding concurrence Ct for the confining potential v1(x) from
fig. 1. (b) Phase shifts corresponding to transmission probabilities in (a).

−10meV. This gives both a singlet and a triplet resonance, the latter corresponding to one
electron in the lowest bound state and the other in the higher bound state which becomes a res-
onance obeying Hund’s rule under Coulomb repulsion, with a further singlet resonance outside
the energy window for elastic scattering. We see that there are two unitary peaks of concur-
rence in transmission with the second close to, but clearly discernable from, the peak of the
rather broad triplet resonance. We have shown in other examples, where singlet and triplet res-
onances are very close, that the concurrence does not always reach the unitary limit, since both
singlet and triplet phase shifts vary rapidly with energy with their difference not reaching π/2.

In conclusion, we have shown that spin entanglement and exchange of quantum informa-
tion occurs via the Coulomb interaction when a propagating electron interacts Coulombically
with a single bound electron in a shallow potential well in a one-dimensional semiconducting
quantum wire. The degree of entanglement may be controlled by kinetic energy of the in-
coming electron and the shape of the effective potential well and unitary concurrence occurs
near a singlet or triplet resonance. Potential realisations of such a system are semiconductor
quantum wires and carbon nanotubes.

A possible sequence of operations to demonstrate that entanglement has been achieved
would be as follows. Initialisation would consist of first loading the open quantum dot with
a single electron using a turnstile injector with surface and back gates to control the shape
and depth of the potential well. A second electron is then injected through the turnstile,
incorporating a Zeeman quantum dot spin filter [19] in a global magnetic field. The spin
filter is tuned such that only minority spins are resonant, resulting in a propagating electron
with opposite spin to the bound electron. Alternatively, both static and propagating spins
may have the same polarisation with the spin of the bound electron flipped by a microwave
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π-pulse prior to interaction. Any further spin rotation due to the global magnetic field may
then be accounted for explicitly. This would, of course, depend on the group velocity of
the injected electron which may be controlled by the source drain bias, enabling the kinetic
energy of the incident electron to sweep the resonances. The measurement of spin for the
propagating electron after interaction could also be done using a quantum-dot spin filter in
which a transmitted electron would be detected by a single-electron transistor. The static spin
would then be inferred indirectly by injecting a second propagating spin of known polarisation
and correlating its measured spin after interaction with that of the first propagating electron.
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