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Abstract
The quantum-dot cellular automaton (QCA), a processing platform based on interacting
quantum dots, was introduced by Lent in the mid-1990s. What followed was an exhilarating
period with the development of the line, the functionally complete set of logic functions, as well
as more complex processing structures, however all in the realm of binary logic. Regardless of
these achievements, it has to be acknowledged that the use of binary logic is in computing
systems mainly the end result of the technological limitations, which the designers had to cope
with in the early days of their design. The first advancement of QCAs to multi-valued (ternary)
processing was performed by Lebar Bajec et al, with the argument that processing platforms of
the future should not disregard the clear advantages of multi-valued logic. Some of the
elementary ternary QCAs, necessary for the construction of more complex processing entities,
however, lead to a remarkable increase in size when compared to their binary counterparts. This
somewhat negates the advantages gained by entering the ternary computing domain. As it
turned out, even the binary QCA had its initial hiccups, which have been solved by the
introduction of adiabatic switching and the application of adiabatic pipeline approaches. We
present here a study that introduces adiabatic switching into the ternary QCA and employs the
adiabatic pipeline approach to successfully solve the issues of elementary ternary QCAs. What
is more, the ternary QCAs presented here are sizewise comparable to binary QCAs. This in our
view might serve towards their faster adoption.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The pioneers in computer design were well aware that
the world is not purely black and white. In this view,
employing binary logic for its representation is not always
the most suitable. Multi-valued logic, a generalization
of binary logic, represents an important alternative. The
potential advantages are greater data storage capabilities, faster
arithmetic operations, better support for numerical analysis,
non-deterministic and heuristic procedures, communication
protocols, and efficient solving of non-binary problems [1–4].
Ternary logic is the simplest logic from the set of multi-
valued logics, and the ternary number system offers the most
efficient way of representing numbers [5]. Hence ternary logic
seems quite a natural choice for multi-valued computer design.
Unfortunately, all attempts at its realization have so far more

or less fallen through, mostly due to the inaccessibility of basic
building blocks compatible with multi-valued logic. On the
other hand, bistable switches, above all the CMOS transistor,
have made the construction of binary computers possible and
simple. The absence of competitive multi-state building blocks
has strengthened the dominance of binary technology, which
can be noticed by observing the development guidelines for
future processing platforms.

Nonetheless, we believe that with nanotechnology, which
enables the manipulation of materials on the level of atoms,
the time has come to reconsider the possibilities for the
realization and usage of multi-valued logic. The initial work
centred around the QCA platform employed for multi-valued
processing, more precisely ternary logic, was performed by
Lebar Bajec et al [6–8]. The authors have advanced the
basic binary QCA cell (bQCA cell) originally introduced by
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Lent et al [9] so that it allows the representation of three logic
values and named it simply the ternary QCA cell (tQCA cell).
The authors showed that the straight wire and the core of
the inverter retain their functionality with a simple switch of
the basic building block (i.e. the substitution of bQCA cells
for tQCA cells promotes the two QCAs to work in a ternary
domain). This, however, is not true for the corner wire and the
fan-out. Besides that, extending the inverter core with a wire
provokes erroneous behaviour. Even more problematic is the
QCA, which implements ternary conjunction and disjunction,
namely the majority voting gate [6–8, 10]. The authors did
solve this issue, but by developing a more complex and from
the size point of view suboptimal structure [7, 8]. Indeed, when
compared to the binary counterpart, the QCA more than tripled
in size. In addition, the new structure, although implementing
both ternary conjunction as well as disjunction, does not allow
input flexibility (i.e. using one as the selector of the computed
function), which is one of the more highly praised features
of the binary majority voting gate. This induces a concern
that the new processing platform, due to the complexity of the
primitives, which serve as building blocks of arithmetic-logic
units and memorizing units, might experience a future similar
to that of its predecessors.

In this paper we present solutions that are based on
adiabatic pipelining [11], which is derived from adiabatic
switching. The decision for its application originates from
the benefits that were presented by researchers working on
binary QCAs. The foremost two are increased switching
stability of QCAs and simplified design of memorizing
structures. A quantum-mechanics-based model with support
for adiabatic switching was thus developed for modelling and
simulation of tQCA cell based QCAs. The semi-classical
model employed by Lebar Bajec et al is, due to its simplicity,
easy to implement, but it allows only an overall estimation
of the behaviour of tQCA based structures. Indeed a limited
consideration of the quantum-mechanical properties removes
the possibility of the introduction of adiabatic switching [12].
A quantum-mechanical model that is based on a Hubbard-type
Hamiltonian with Coulomb repulsion, on the other hand, takes
into account the full range of quantum-mechanical properties.
By employing it here we present workable structures that
implement the ternary corner wire, the ternary fan-out and
the ternary majority voting gate and solve the interconnection
problem of the ternary inverter.

In section 2 we present an overview of the ternary
quantum-dot cell, followed by its quantum-mechanical
description. In section 3.1 we describe the adiabatic
pipelining and its influence on the quantum-mechanical model.
Section 4 concludes by presenting tQCA cell based QCAs that
employ adiabatic pipelining to implement the ternary inverter
interconnection, the ternary corner wire, the ternary fan-out,
the ternary symmetric inverter, and the ternary majority voting
gate.

2. The ternary QCA

A quantum-dot cellular automaton (QCA) is a planar array of
quantum-dot cells (also named QCA cells). Each cell contains

Figure 1. The geometry of the ternary quantum-dot cell presented by
Lebar Bajec et al (a). The notation for the quantum dots and the
tunnelling paths in the ternary quantum-dot cell (b).

a specific number of charges (typically electrons) and its
influence on neighbouring cells is due to Coulomb interaction
between its charges and the charges residing on them. Inside
a single cell the charges reside only at designated locations,
the quantum dots. They are able to tunnel between adjacent
quantum dots, but tunnelling outside a cell is impossible.
QCA cells operate at energy levels where Coulomb interaction
prevails over tunnelling. This means that with specific planar
arrays (arrangements) of QCA cells it is possible to mimic
the behaviour of interconnecting wires as well as logic gates,
and by interconnecting these, more complex devices capable
of processing can be constructed.

The basic binary QCA, presented by Lent et al, is
constructed from bQCA cells, which support the representation
of binary information, and is capable of binary processing [9].
Its following advancement, the ternary QCA, presented by
Lebar Bajec et al, employs tQCA cells, which support the
representation of ternary information, and enables ternary
processing [6].

2.1. The tQCA cell

The tQCA cell consists of eight circular quantum dots with
diameter D = 10 nm. The quantum dots are arranged
in a circular pattern with radius D/sin(π/8), so that the
distance between neighbouring quantum dots equals 2D (see
figures 1(a) and (b)). The tQCA cell contains two electrons,
and the same tunnelling properties apply as in the bQCA cell
(i.e. the electrons can tunnel only between adjacent quantum
dots and not outside the cell). Since correct intercellular
interaction is possible only if symmetric charge neutralization
is ensured [13], a fixed positive charge of ρ+ = e0/4, where e0

is the elementary charge, is assigned to each quantum dot.
In an isolated quantum-dot cell the contained electrons,

due to Coulomb repulsion, strive to localize in quantum dots
that ensure their maximal separation. In the tQCA cell there
are four such arrangements (see figure 2(a)). According to
Lebar Bajec et al, the arrangement with electrons in quantum
dots 2 and 4 is marked as state A, and those with electrons in
quantum dots 1 and 3 as B, 5 and 7 as C, and 6 and 8 as D. In the
absence of external electric fields these four arrangements have
exactly the same energy and correspond to the tQCA cell’s
ground state. This degeneracy manifests as an equally probable
localization of the electrons in every dot, which is symbolically
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Figure 2. The four distinct electron arrangements, i.e. the four
possible states marked A, B, C, and D, of a ternary quantum-dot cell,
that correspond to the maximal interelectron separation (a) and the
representation of a ternary quantum-dot cell in the neutral state (b).

represented as in figure 2(b). It is said that the tQCA cell is in
a neutral state. The presence of external influences splits the
degeneracy and causes one of the arrangements to become the
tQCA cell’s ground state.

One of the principles that define computing with QCAs is
ground state computing [9]. It asserts that from the computing
point of view the only acceptable state of a QCA cell is its
ground state. The four possible electron arrangements of a
tQCA cell can thus be interpreted as logical values. We here
employ the balanced ternary logic, so state A is interpreted as
logical value −1, state B as logical value 1, and states C and D
as logical value 0. State D is typically, for reasons that will be
explained in the following section, allowed only as an internal
(processing) state [6–8].

Another principle which defines computing with QCA is
edge driven computation. It asserts that the input cells, using
which data are input into the QCA for processing, are typically
situated at the borders of the structure and their states are fixed
using external electrostatic fields. Similarly it asserts that the
output cells, by means of which the processed data are output
from the QCA, are positioned at the borders of the structure
as well. Their states are read and interpreted as logical values,
which represent the output of the logic function implemented
by the QCA. The rest of the cells act as internal cells and are
the only cells that perform any data transformation.

2.2. The model

For the tQCA cell we employ a simple model that uses a tight-
binding Hubbard-type Hamiltonian similar to the one used by
Lent et al for the bQCA cell. The quantum dots are represented
as sites and the degrees of freedom internal to the quantum
dots are ignored [9]. The corresponding Hamiltonian for the
observed cell c is composed of four terms, and can be written
as

Ĥ c =
∑

i,σ

(V0 + V c
i )n̂i,σ

+
∑

i> j,σ

ti, j (â
†
i,σ â j,σ + â†

j,σ âi,σ )

+
∑

i

EQn̂i,↑n̂i,↓

+
∑

i> j,σ,σ ′
VQ

n̂i,σ n̂ j,σ ′

ri, j
. (1)

The first term of equation (1) deals with the on-site energy,
the second term accounts for electron tunnelling between sites,
the third term is the on-site charging cost for localizing two

electrons of opposite spin at the same site, and the last term
corresponds to the Coulomb interaction between electrons
localized at different sites. The number operator for site i
and spin σ is represented by n̂i,σ = â†

i,σ âi,σ , where â†
i,σ is the

creation operator which creates an electron with spin σ at site
i .

As we here consider a fixed number of electrons in the cell,
the overall energy constant V0 is irrelevant and is set to zero.
The potential energy of an electron at site i in the observed cell
c due to the existing charges in all other cells of the QCA is
calculated as

V c
i =

∑

k �=c, j

VQ

ρk
j − ρ+
rk,c

j,i

, (2)

where ρk
j is the electron density at site j in cell k, ρ+ is the

fixed positive charge used to maintain charge neutralization,
rk,c

j,i is the distance between site j in cell k and site i in cell c,
and VQ is the Coulomb coupling strength. The on-site charging
cost EQ = VQ/(D/3) is a physically reasonable approximation
for the Coulomb energy of two electrons separated by one third
of the quantum dot’s diameter D. The tunnelling energy ti, j is
associated with tunnelling between dots i and j ; the choice of
its value will be explained in the following sections.

Although the QCA concept is generic in that there
may be different possible implementations (e.g. metal-island,
semiconductor, molecular, magnetic [14, 15]), the specific
values of the physical parameters used here correspond to
a semiconductor implementation based on a GaAs/AlGaAs
material system [16, 17]. The choice has been made regardless
of the known fabrication immaturity, primarily because the
platform has been well investigated and the results obtained
can easily be compared with their binary counterparts [18–21].
To be specific, the Coulomb coupling strength VQ was
evaluated for the GaAs/AlGaAs material system assuming
a uniform dielectric constant of 11.9 [12], and its value is
120.9 meV.

To find the stationary states of the observed tQCA cell, we
solve the time-independent Schrödinger equation

Ĥ c|�n〉 = En|�n〉, (3)

where |�n〉 is the nth eigenstate of the Hamiltonian and En is
the corresponding eigenenergy. These eigenstates are found in
the subspace of zero total spin projection,

|�n〉 =
∑

i, j

ψn
i j â

†
i,↑â†

j,↓|0〉, (4)

where â†
i,↑â†

j,↓|0〉 represents spin-up and spin-down electron
states at sites i and j , respectively, and the summations
run over all eight sites in the cell. The Hamiltonian
matrix is diagonalized numerically using realistic parameters
corresponding to GaAs/AlGaAs.

2.3. Mapping tQCA cell states to logical values

In order to provide the means for processing every processing
platform must use some sort of mapping from physical
quantities into logical values and vice versa. The classical
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CMOS uses voltage levels; the binary QCA, on the other hand,
uses polarization [9]. As a convenient single variable measure
the polarization enables mapping of a bQCA cell state into
the corresponding logical value, and assuming an ideal charge
distribution also vice versa. The polarization presented by Lent
et al is, however, not directly applicable to tQCA cell states;
therefore we characterize the logical value of the cell by the
probability that the corresponding logical state S (A, B, C, or
D) is occupied.

The ground state of the system is, in our case due to the
strong repulsive interaction, always being a spin singlet. The
logical states are thus represented by singlet pairs (dimers) of
electrons occupying two diametrical sites, |A〉 = 1√

2
(â†

2,↑â†
4,↓−

â†
2,↓â†

4,↑)|0〉 for S = A, for example, and correspondingly for
other states presented in figure 2. An appropriate quantifying
measure, if the system is in a particular state S, is the density–
density correlation function

PS =
∑

σ,σ ′
〈�0|n̂i,σ n̂ j,σ ′ |�0〉, (5)

where i and j are sites characterizing the logical state S.
In our case of negligible double occupancy PS simplifies to
the probability that electrons are in quantum state |S〉, i.e.,
PS = |〈S|�0〉|2.

In the case of a static charge distribution or in the
limit when electron density fluctuations are negligible, the
correlation function decouples, PS = ρiρ j , where the electron
density ρi is given by

ρi =
∑

σ

〈�0|n̂i,σ |�0〉. (6)

In our approach the electron density is also applied to
represent the charge density in equation (2).

The logical value of the cell can also be characterized by
a single parameter L, which takes values L = ±1 if the cell is
in logical states A or B, respectively, and L = 0 if the cell is in
logical states C or D. A suitable choice is

L = PB − PA

Q
, (7)

where Q = PA + PB + PC + PD is the probability that the
ground state of the cell is in one of the quantum states |S〉.
Such a single measure L is reliable under the condition that Q
is sufficiently close to unity—fulfilled in the regime of strong
Coulomb repulsion studied in this paper—and deviations occur
only during transitions between the states.

3. The cell to cell interaction

QCA processing is based on cell to cell interaction, where the
state of a cell influences the states of its neighbours and vice
versa. The basic interaction shown in figure 3 comprises two
tQCA cells, where cell X acts as the input (driver) and cell
Y as the observed output. We choose the cells’ centres to be
separated by r = 110 nm, so that the proportion between the
maximal interdot distance in a cell and the intercell distance
remain the same as in the case of the bQCA cell.

Figure 3. The tQCA cell to cell interaction; the initial state, where
cell X is in state A and cell Y is neutral (a), and the resulting state,
where cell Y assumes state A (b).

The model, equation (1), can easily be solved for a single
cell. However, to analyse a QCA composed of a larger
number of tQCA cells in the same way would soon reach
the boundaries of feasibility. Indeed, exact diagonalization
methods become intractable as the number of cells and the
number of basis states increase rapidly (e.g. a site-ket basis for
a QCA composed of k tQCA cells requires 64k ket vectors).
To overcome this problem when modelling QCAs composed
of bQCA cells, Lent et al proposed a method called the
intercellular Hartree approximation (ICHA) [22]. Here we
employ the same technique. The ground state of the entire
system (i.e. the QCA) is found by iteratively solving for the
ground state of each cell. A single cell is observed using (3)
and the effects of that cell on the potential energies in all other
cells are then updated. The intercellular interaction is treated
self-consistently using the Hartree approximation.

The cell response function is obtained by applying a static
charge distribution (ρD

i ) to cell X and observing the resulting
charge distribution in cell Y. As a series of sequential steps
first a transition from one ground state to neutral and then from
the neutral state to another ground state is applied to cell X.
The static charge distribution for the transition from the neutral
state to a ground state is computed as (see figure 4)

ρD
i (s) =

√
s(1 − ρ+)2 + ρ2+,

ρD
i ′ (s) = min(ρ+, (1 − ρD

i (s))/2),

ρD
i ′′(s) = 1 − ρD

i (s)− 2ρD
i ′ (s),

(8)

where s ∈ [0, 1]. With s = 0 the static charge distribution
gives a neutral cell, whereas with s = 1 a cell with electrons
occupying two diametrical quantum dots is obtained. The
charge density in quantum dots characterizing the ground state
is given by ρD

i (s), (i.e. i = 2 and 4 for ground state A, 1 and
3 for ground state B, etc). The charge density in the nearest-
neighbour quantum dots is given by ρD

i ′ (i.e. i ′ = 5, 6, 7, and
8 for states A and B, etc.) and the charge density in the next-
nearest-neighbour quantum dots is given by ρD

i ′′ (i.e. i ′′ = 1 and
3 for state A, etc.).

Figure 5 presents six state transitions of cell X and the
corresponding response functions for cell Y. Every transition
of cell X was carried out in 2000 steps. The results were
obtained using the ICHA approach for tunnelling energy t =
−0.01 meV. Reverse transitions are not presented as they are
symmetrical to those presented. For each transition there are
four graphs depicting the PS for states A, B, C, and D. The
lighter curve (blue) is for cell X and the darker curve (orange)
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Figure 4. Plot of the static charge distribution (a) applied to cell X for the transition from the neutral state to state A (b).

is the response of cell Y. On observing the graphs, it can be
noticed that cell Y follows the state changes of cell X. What is
more, cell Y saturates very quickly to the corresponding state
and the response function is highly nonlinear for the initial and
final states and almost flat for the other two. As in the case of
the bQCA cell [23], the abruptness of the response function
depends on the ratio of tunnelling energy to the Coulomb
energy for electrons on neighbouring sites.

3.1. Adiabatic pipelining

In computer science, pipelining is a well known technique,
typically used for improving computing performance [24]. The
basic idea is to divide a problem into independent subproblems,
which can be worked on simultaneously, but in sequence. From
this viewpoint, pipelining is similar to an assembly line in a
manufacturing plant. New inputs are accepted at one end, are
worked on in a sequence of stages, and are output at the other
end of the assembly line. By laying out the production process
on an assembly line, products at various stages can be worked
on concurrently. In computer science, a pipeline refers to a set
of processing elements, namely stages, connected in a series
in which the output of one stage provides the input to the next
one. Each stage is dedicated to solving a particular independent
subproblem and can be executed in parallel with the other
stages. To overcome synchronization problems the execution
of stages is usually controlled by one or more clock signals.
Using pipelining, the computing performance is improved by
the increase of the system’s throughput when processing a
stream of data.

In QCAs, the pipeline architecture was introduced by Lent
et al [11]. Interestingly enough, it was not used primarily due
to the above-described benefits, but to increase the processing
reliability of complex QCAs. The latter mainly depends on the
reliability of the switching process, i.e. the transition from a
cell’s ground state that represents one logical value to a ground
state that represents another. An uncontrolled execution of
this transition is called abrupt switching, while a controlled
execution is achieved by applying the concept of adiabatic
switching [11]. Its implementation in QCAs is based on a
cyclic control signal, denoted as the adiabatic clock, which,
by means of an electric field that acts on the interdot barrier
heights, controls the probability of tunnelling of electrons

within a QCA cell. The adiabatic clock signal is composed
of four phases (see figure 6). The gradual increase of barrier
heights is called the switch phase (S) and it serves the affected
cells’ gradual update of their states with respect to states of
their neighbours. The phase with constant and raised barriers
is called the hold phase (H) and is intended for the stabilization
of the cells’ states when they are to be transmitted to the
neighbours that are in the switch phase (i.e. the affected cells
act as a fixed input for all other cells). The gradual decrease
of the barrier heights and the constant and lowered barriers are
called release (R) and relax (L) respectively, and they support
the cells’ gradual preparation for a new switch (i.e. the cells’
states gradually transit to a neutral state).

In the Hamiltonian presented in equation (1) the interdot
barrier height is modelled through parameter t , which is thus
directly affected by the adiabatic clock signal. For the tQCA
cells the chosen clock signal is not linear, as it turned out
to be too abrupt for proper localization of the electrons. In
fact when raised barriers correspond to 0 meV and lowered to
−2 meV, preliminary tests showed that most of the ‘action’
happens when t ∈ [−0.5, 0] meV [25]. The increased number
of quantum dots with respect to the bQCA cell leads to more
possible locations for the electrons to tunnel to; hence their
localization in the desired quantum dots is possible only when
the barriers are sufficiently high. The adiabatic clock signal for
the tQCA cell is thus based on a sinusoidal function that has
been scaled to the interval [0, 1] (see figure 6). After dividing
the function into two sections, one monotonically increasing
and the other decreasing, we choose the first section as the
control signal in the switch phase and the second as the control
signal in the release phase. The hold and relax phases are
kept constant: the former with barriers raised and the latter
with barriers lowered. The constructed signal has a gradual
change in the vicinity of raised barriers and thus allows more
time for the electrons to successfully localize in the appropriate
quantum dots.

It is desired that the number of cells being controlled
by one signal is as large as possible, as this reduces the
challenges that would be caused by attempting to deliver a
separate clock signal to every cell. Nevertheless, increasing the
number of cells controlled by one adiabatic clock diminishes
the reliability of the switching process; hence a compromise
is often the only option. The adiabatic clock, however,
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Figure 5. The cell response functions for six state transitions. The lighter curve (blue) denotes the state transition of cell X and the darker
curve (orange) denotes the response function of cell Y.

enables the introduction of the pipeline architecture. Since
the clock signal is composed of four phases, any QCA can be
decomposed into smaller stages or subsystems controlled by
four phase shifted signals, each defining its own clocking zone
(see figure 7). Let C0 denote the base signal (as presented in
figure 5) and Ci , i = {0, 1, 2, 3} the base signal phase shifted
by i phases. The phase shifted nature of the controlling signals
allows the stages that are in the hold phase to act as inputs for
stages that are in the switch phase (see figure 7). Therefore a

subsystem after performing the computation can be designed
to lock its state and act as the input for another subsystem.
As the transaction is finished the second subsystem can start
processing while the first subsystem is ready for processing on
new inputs.

4. Elementary ternary QCAs

We have simulated the basic ternary primitives (wire, inverter,
and AND/OR logic gate) presented by Lebar Bajec et al
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Figure 6. The adiabatic clock signal, which controls the cells’
switching process, is composed of four phases, namely: switch (S),
hold (H), release (R), and relax (L). In the graph the barrier height is
normalized to the interval [0, 1], where value 0 denotes lowered
barriers (high probability of the electrons tunnelling between
adjacent quantum dots) and value 1 denotes raised barriers
(no tunnelling of electrons possible).

in [7] under abrupt switching with a tunnelling energy
of t = −0.01 meV. The results obtained have been
compared with those presented by Lebar Bajec et al, and
for the problematic structures new pipelined architectures are
proposed.

4.1. The inverter

Lebar Bajec et al have focused their research foremost on the
ternary inverter core (figure 8(a)). The results the authors
obtained show that the proposed implementation behaves
correctly. Simulations based on our quantum-mechanical
model confirm their claims. Indeed, the balanced ternary logic
negation can be expressed as

y = x ≡ −x, (9)

where x, y ∈ {−1, 0, 1}; then if logical value x corresponds to
the state of input cell X and logical value y to the state of output
cell Y it can be seen that the QCA acts as a ternary inverter (see
the truth table in figure 8).

In order to construct more complex structures, the inverter
core has to be connected to other primitives. This is achieved
by means of wires. Simulations based on our quantum-
mechanical model show that the interconnection of a wire
to the input section of the inverter core does not affect
its behaviour even when abrupt switching is employed (see
figure 8(b)). On the contrary, the interconnection of the inverter

Figure 7. Four phase shifted adiabatic clock signals (a) and an
example of the adiabatic pipeline architecture applied to the ternary
wire QCA (b). The wire is decomposed into six stages (subsystems)
controlled by four signals. This achieves synchronization of data
flow from top to bottom. The figure shows a snapshot (marked s in
the signal graphs) from a sequence of data transfers along the wire.
The first and fifth cells are in the hold phase and serve as fixed inputs
for the second and sixth cells, which are in the switch phase,
respectively. It can be noticed that due to the pipeline architecture
they can hold different data at the same time instant. The third cell is
in the release state and the fourth cell is relaxed, so their influence on
the data being transferred is minimal.

core’s output section to a wire is more problematic, resulting
in highly unstable behaviour, which mostly favours the output
state C. The issue can be solved by treating the inverter as a
pipeline of two or three stages. In the first case the input wire
and inverter core are assigned to one clocking zone (controlled
by signal C0) and the output wire to another clocking zone
(controlled by signal C1), as in figure 9. In the second case the
input QCA wire is controlled by signal C0, the inverter core
by signal C1, and the output wire by signal C2. In order to
maintain a simple clocking scheme the two-stage solution is
preferred.

Figure 8. The core of a ternary inverter (a) and the extension of the input section (b). The behaviour matches the truth table of ternary
negation.
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Figure 9. The solution of the inverter interconnection issue by using
two pipeline stages.

4.2. The corner wire and fan-out

Our analysis shows that the ternary wire behaves correctly as
long as the tQCA cells are aligned in a straight line. The
presence of a corner in a wire or a fan-out yields erroneous
behaviour, as presented in figure 10. Both structures result
in erroneous output whenever the input state is A or B.
The problem arises from the conflicting situation in the cell
to cell interaction at the corner section of the QCA. For
example, while observing the behaviour of the corner wire (see
figure 10(a)) during the transmission of state A (or B) from
input cell X to output cell Y it is expected that the second
cell seizes the state of the input cell and this should force
the same state to the third cell. The fourth cell, however,
has a conflicting situation. It is expected to seize the third
cell’s state, but due to their diagonal arrangement it is also
expected to seize the inverted state of the second cell. The

conflicting influence of the second and third cell prevents the
fourth cell from occupying the desired state and causes the
electrons to favour localizing in quantum dots 6 and 8 (i.e. state
D), thus achieving the maximal separation with the electrons
in the other two cells. This has a reflux effect on the third
and consequently the second cell as well as transmission to
the output cell. The end result is an erroneous processing
output. The transmission of states C and D over the corner wire
behaves as expected, because the states are alternating along
the wire, which ensures that the electrons in cells two, three,
and four are arranged so that their maximal spatial separation
is achieved even from the cell to cell point of view, and no
conflicting situation emerges. A similar scenario occurs in the
case of the fan-out (see figure 10(b)). In the section where
the wire splits there are four cells in a conflicting situation.
It is important to note that the above-described scenario takes
place if abrupt switching is used as well as when all cells are
subjected to the same adiabatic clock signal.

The corner wire and fan-out issue can be easily solved
using the pipelining concept. As discussed, the issue originates
from the conflicting situation of the corner cells. It can be
solved by splitting the QCA into two subsystems (stages),
controlled by two phase shifted clock signals C0 and C1 (as
depicted in figure 11). Concentrating on the corner line, this
decomposition is designed so as to fix the state of cells two
and three and thus prevent the reflux effect from happening.
Moreover, it ensures the desired behaviour of cell four. The
latter is due to the larger influence of cell three than that of

Figure 10. The corner wire and fan-out and their erroneous behaviour.

Figure 11. The pipeline architecture of corner wire and fan-out enables their correct behaviour.
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Figure 12. The erroneous behaviour of the symmetric ternary
inverter.

cell two. As both of these have electrons fully localized with
no probability of their tunnelling, cell four seizes the state of
cell three. From the pipeline point of view this can be described
as bringing the correct state to the corner and only then taking
it towards the other (one or two) directions. Note, however, that
if the corner cell (cell three) is not designated to the clocking
zone controlled by signal C0 the behaviour is incorrect, as if
without adiabatic pipelining applied.

4.3. The symmetric inverter

In binary QCAs the shortcomings of the inverter discussed
in section 4.1 are elegantly solved by a symmetric inverter.
The latter, however, does not suffice in the ternary QCA case.
A thorough analysis (see figure 12) shows that the problem
arises from the inverter’s mid-section, which comprises a fan-
out and two corner wires (one above and one below). As was
demonstrated in the previous section, the two structures exhibit
erroneous behaviour whenever they are controlled by a single
adiabatic clock signal. Following the methodology of their
amendment, the symmetric ternary inverter can be split into
three stages (see figure 13(a)). The input section of the fan-
out is assigned to clocking zone 0 controlled by signal C0,
and the output section of the fan-out and the input section of
the corner wire are assigned to clocking zone 1 (signal C1),
while the inverter core is assigned to clocking zone 2 (signal
C2). The proposed clocking scheme can be further simplified
by combining the second and third stages into a single one
controlled by signal C1. The two-stage QCA obtained (see
figure 13(b)) produces correct results, although in a rather
unusual way. More specifically, in the case of input states

Figure 14. The QCA obtained by simple substitution of bQCA cells
for tQCA cells in the binary majority voting gate and the
corresponding truth table. When obeying the preconditions about the
selector input S and the state D the QCA gives only two erroneous
outputs.

C and D the symmetric ternary inverter behaves as expected.
Input states A and B yield the correct output states as well (B
and A correspondingly), but, as a contrast to the three-stage
solution, for input state A the ‘expected’ state transfer is carried
out only over the upper data path, whereas for input state B the
transfer is only over the lower data path (see figure 13(b)).

4.4. The majority voting gate

The QCA called the majority voting gate, or shorter majority
gate, is one of the best assets of binary QCAs. The structure is
expected to provide as the output state the state that is present at
the majority of the inputs. Besides its architectural simplicity,
one of the most praised features is its ability to perform logic
AND and logic OR operations, achieved simply by fixing one
of the input cells to the corresponding state. Lebar Bajec
et al tried to preserve these properties in the ternary domain
as well by using the same QCA but substituting bQCA cells
for tQCA cells [6–8]. To solve the problems that have emerged
the authors introduced two preconditions. The first states that
only the input cell denoted as S can be used as the selector of
the gate’s behaviour, whereas inputs X1 and X2 can serve only
as inputs to the selected logic function (see figure 14). The
second states that state D is allowed only as an internal state;
thus it cannot be used on any of the inputs.

Figure 13. Two possible pipeline architectures of the symmetric ternary inverter: a three-stage (a) and a two-stage (b) implementation.
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Figure 15. The three-stage pipeline architecture of the ternary
majority voting gate.

The ternary logic functions AND and OR can be expressed
in general multi-valued logic form as

y = AND(x1, x2) ≡ min(x1, x2),

y = OR(x1, x2) ≡ max(x1, x2),
(10)

where x1, x2, y ∈ {−1, 0, 1}. Using x1, x2, and y as the
logic values corresponding to states of input cells X1 and X2

and output cell Y, the behaviour of the QCA, when obeying
the two preconditions, complies almost completely with the
ternary AND and OR logic functions. Indeed the truth table
reveals only two erroneous output states: OR(−1, 1) =
AND(1,−1) = D (see figure 14). In [7], Lebar Bajec et al
presented a QCA composed of three majority voting gates,
which implements the ternary AND and OR logic functions
completely. However, in view of the number of required cells,
it is quite space consuming. Indeed, even when disregarding
interconnections of the individual majority voting gates, the
number of required cells tripled with respect to the binary
QCA.

Following the idea of adiabatic pipelining we here present
two QCAs constructed by using the same number of cells as
for the binary majority gate, which as a bonus allow input
flexibility (i.e. each of the three inputs can be chosen as the
selector of the QCA’s behaviour).

The first continues with the basic idea of Lebar Bajec
et al, i.e. it is directly derived from the binary majority voting
gate by simple substitution of bQCA cells for tQCA cells,
thus preserving the architecture of the binary majority voting
gate. A thorough analysis of the QCA’s behaviour using the
quantum-mechanical model revealed that a possible source for
invalid outputs is the cornering relation of the three inputs. The
only two invalid output states are generated when the three
inputs are symmetrical; in states A, B, A or B, A, B, respectively.

The solution’s concept is thus to first compute the
intermediate result and only then transfer it to the output cell.
More precisely, first compute the minimum of the remaining
two inputs when the third is in state A and the maximum when
it is in state B and then safely transfer this value to the output
cell [25]. The approach can be easily implemented using a
three-stage pipeline architecture (see figure 15). The input cells
are assigned to clocking zone 0 (i.e. controlled by signal C0),
the internal cell to clocking zone 1 (signal C1), and the output

Table 1. The full range of possible input states and the resulting
outputs for the pipelined ternary majority voting gate. The lighter
marked (orange) outputs represent erroneous output cell states. Note,
however, that these occur only when states C and D are applied as
inputs simultaneously.

cell to zone 2 (signal C2). This ensures that when the inputs
are in the hold phase the internal cell is in the switch phase
(i.e. slowly transiting to a state that is in accordance with the
states of all three inputs) and the output cell is in the relaxed
phase. When the internal cell is in the hold phase the output
cell is in the switch phase, whereas the input cells are in the
release phase. This ensures that during the output cell’s highest
‘activity’ the influence of the input cells will be minimal (in
fact their states will be close to neutral).

A thorough inspection of the truth table (table 1), while
maintaining the precondition about state D, reveals that the
QCA now behaves as a ternary majority voting gate. The
output reflects either the state that has been present at the
majority of the inputs or state C if the majority cannot be
determined (e.g. in the case of input combination A, B, C).
Further analysis reveals that, due to this, the choice for the
selector of the gate’s behaviour is not limited solely to input
cell S, but the ternary majority voting gate computes the ternary
AND between the remaining two inputs whenever the third is
in state A and ternary OR whenever it is in state B.

When designing complex structures the restriction of state
D being allowed only as an internal state limits wires to odd
lengths, and this might at times prove to be quite challenging.
The pipelined ternary majority voting gate, as a plus, behaves
correctly even when this precondition is not obeyed. Indeed, if
one follows the initial logical value assignment (i.e. state D is
logical value 0) the QCA gives the correct output even if state
D is used as the input state. There is, however, one restriction:
states C and D must never appear as inputs simultaneously. The
described feature simplifies the design, as wires of arbitrary
length can be used as long as the lengths of interconnections
to the three inputs of the pipelined majority voting gate are all
odd or even.

Although the described QCA proves successful it uses a
three-stage clocking scheme, which could potentially introduce
the adiabatic clock signal wiring problem that could easily
destroy the advantages gained by the local interconnectivity
and the pipelined architecture. Research performed by
Tahoori et al showed that the binary majority voting gate
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Figure 16. The two adiabatic pipeline implementations of a diagonal ternary majority voting gate.

implemented using 45◦ rotated cells (i.e. as a crossing of
three 45◦ wires) results in a more fault-tolerant QCA [26].
The ternary counterpart was obtained using the same design
philosophy as before, i.e. by substitution of bQCA cells for
tQCA cells. For the tQCA cell there is no advantage when
rotating it by 45◦; however, a similar effect (i.e. alternating
states A and B) can be achieved with a diagonal arrangement
of cells. Although the obtained QCA under abrupt switching
(or single clocking zone adiabatic switching) shows erroneous
behaviour, its true advantage is manifested when a pipeline
architecture is applied. Indeed, its robustness diminishes the
number of required pipeline stages to two, thus simplifying the
clocking scheme. There exist two possible implementations.
The first (see figure 16(a)) uses signal C0 to control the input
cells as well as the internal cell and signal C1 to control the
output cell. This way the QCA begins by computing the state,
which equals the inverse of the state representing the majority
of the states present on the three inputs, all in the process
while the inputs are still being applied, and only afterwards
is the inverse of this value transmitted to the output cell. The
second implementation (see figure 16(b)) again designates the
input cells to clocking zone 0 (controlled by signal C0), but
designates the internal and output cell to clocking zone 1
(signal C1). This allows the fixing of the inputs followed by
the computation of the intermediate result and the state present
at the majority of the inputs simultaneously. Needless to say,
the resulting behaviour is the same as in the case of the three-
stage pipelined majority voting gate. Therefore we denote this
QCA as a pipelined diagonal majority voting gate.

5. Conclusion

This paper presents the basic architectural guidelines for
the design of ternary quantum-dot cellular automaton (QCA)
based processing elements. It shows that the introduction
of an adiabatic pipeline can successfully solve the problems
related to the architecture of elementary ternary logic QCAs,
i.e. the corner wire, the fan-out, the inverter, and the majority
voting gate. The assignment of appropriate clocking zones
can be further used to simplify the clocking scheme and
thus diminish the challenges related to adiabatic clock signal
interconnection. What is more, the architectures of the
proposed QCAs equal those employed for the implementation

of the corresponding binary logic functions. This opens up the
possibility of using design rules similar to those developed for
the binary QCA domain. Our current research is focused on the
development of ternary QCAs that implement a functionally
complete set of ternary logic functions. These shall represent
the key building blocks of advanced ternary arithmetic-logic
and memorizing units, the principal components of ternary
processors. It should also be noted that our numerical results
rely on quantum-mechanical calculations based on realistic
parameters appropriate for GaAs/AlGaAs, but we are well
aware of the implementation problems in possible realization
of operational devices, and for this reason the switching
dynamics and material suitability are also part of our ongoing
research.
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