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Abstract
A shallow potential well in a near-perfect quantum wire will bind a single electron and behave
like a quantum dot, giving rise to spin-dependent resonances of propagating electrons due to
Coulomb repulsion and Pauli blocking. It is shown how this may be used to generate full
entanglement between static and flying spin-qubits near resonance in a two-electron system via
singlet or triplet spin filtering. For a quantum wire with many electrons, the same pairwise
scattering may be used to explain conductance, thermopower and shot noise anomalies,
provided the temperature/energy scale is sufficiently high for Kondo-like many-body effects to
be negligible.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The scattering of propagating electrons from a single bound
electron in a hydrogen atom was first solved over 75 years
ago by Oppenheimer [1] and Mott [2] who showed that,
due to the indistinguishability of electrons and the mutual
Coulomb repulsion between the propagating electron and the
bound electron, the scattering was strongly dependent on
total spin, with resonances at different energies for singlet
and triplet configurations. With the remarkable progress in
semiconductor device fabrication, quantum wire and quantum
dot structures may now be fabricated which enable the
scattering of propagating electrons from a single bound
electron to be studied. We can regard such a system as a one-
dimensional analogue of the H-electron scattering system but
at a much lower energy scale. In this paper we shall consider
such mesoscopic systems and their potential for studying spin-
dependent scattering effects including how they differ from the
three-dimensional case, how spin-dependent scattering might
be utilized, and review the experimental evidence for the
predicted effects.

We shall consider device structures which are near-perfect
in the sense that transport between source and drain contacts is
coherent and the effects of electron–electron scattering is not
masked by strong disorder scattering or incoherent scattering
due to phonons. This may be achieved in practise with
high-quality gated two-dimensional electron sheets (2DES) at
low bias and sufficiently low temperatures in which only the

lowest subband, or channel, is occupied. The technology
of such devices based on GaAs has reached a high level
of maturity following the pioneering work on conductance
quantization in point contacts [3, 4] through to gated quantum
dot structures in which single electrons may be captured and
moved from one location to another utilizing time-dependent
gate potentials [5, 6] or the propagating confinement potential
provided by surface acoustic waves [7]. Although we shall
consider explicit examples based on such ‘soft-confined’
structures the effects that we describe are generic and may in
principle also be observed in hard-confined structures such as
etched or directly grown quantum wires [8–11] or molecular
structures, semiconducting carbon nanotubes for example,
in which electrons may be either confined by gates [12]
or by fullerenes inside the nanotube, the so-called peapod
structures [13]. The potential advantage of such hard-confined
devices is that the increased confinement, with sub-nanometre
length scales in two or even all three dimensions, give
corresponding enhanced energy scales with the possibility of
observing at least some of the effects at elevated temperatures,
up to room temperature. However, with the present state of the
technology, we are still some way from controlled fabrication
of clean devices with good ohmic contacts.

The paper is organized as follows. In the next section we
shall consider the problem of the scattering of a propagating
electron from a bound electron in a quantum wire and
show how this may be utilized to generate entanglement.
In the next section, the results are generalized to the case
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of many electrons in the wire, scattering from a single
bound electron. We then show how this gives rise to
conductance anomalies, the so-called 0.7 and 0.3 anomalies,
as a consequence of spin-dependent scattering. The basic
solutions of the scattering problem are then used to explain
anomalies in thermopower, thermal conductance and shot
noise. We conclude with a discussion of many-body effects
expected at low temperatures, particularly the Kondo effect,
and how they may be incorporated into the basic framework
based on spin-dependent two-electron scattering.

2. Two-electron problem and entanglement

In this section we establish a generic model for a one-
dimensional quantum wire containing a small region where
a single electron may be bound and consider the problem of
the scattering of a second electron propagating in the wire.
At one extreme, this may be a near-perfect quantum wire
with a very shallow confining potential which, for example,
might occur within a point contact constriction in a 2DES
in a semiconductor. As we have suggested before [14–16],
the origin of the confining potential may be some fluctuation
due to remote defects or gates or, in very clean systems,
may be due to the single electron itself, a possibility that has
received some recent support both theoretically [17, 18] and
experimentally [19]. The potential well may also be created (or
enhanced) with a narrow strip-gate perpendicular to a quantum
wire such as in a carbon nanotube [20]. Examples are shown
schematically in figure 1. We may refer to this confined region
as an open quantum dot since it is not defined by explicit
barriers, the restriction to one bound electron being enforced
purely by the Coulomb interaction. We do not need to know the
explicit cause or the details of this weak confining potential, the
only requirement is that it is sufficiently weak to allow only one
bound electron. In the opposite extreme we may have a well-
defined quantum dot with explicit barriers as, for example,
produced in 2DES devices [5, 6] and carbon nanotubes [12].
A further possibility is that the quantum dot is actually a
physically separate entity from the quantum wire, such as
would occur in a carbon nanotube peapod in which one or
more fullerenes inside the nanotube contain a single electron in
their highest occupied molecular orbitals. It is well known that
the current–voltage characteristics of devices fabricated from
such systems can be quite different. Near-perfect quantum
wires show conductance steps at multiples of 2e2/h, whereas
quantum dot based devices give rise to Coulomb-blockade
and the characteristic ‘diamond’ plots of conductance as gate
and source–drain voltages are varied. In this paper we argue
that in the narrow regions of parameter space where these
systems begin to conduct they have similar behaviour which
is a consequence of spin-dependent scattering enforced by
the mutual Coulomb repulsion between two electrons in the
quantum dot region, coupled with Pauli exclusion when the
spins are parallel.

A general Hamiltonian for the two-electron problem has
the form

H = − h̄2

2m

[
∂2

∂x2
1

+ ∂2

∂x2
2

]
+ v(x1)+ v(x2)+ V (x1, x2). (1)

Figure 1. Schematic of various realizations of a near-perfect
quantum wire. (a) A cylindrical and (b) a rectangular wire with a
bulge. (c) A gated straight wire. (d) Quantum point contact.

In this equation we assume sufficiently high confinement that
only the lowest non-degenerate transverse mode (channel) is
occupied and the two electrons move in the effective one-
electron potential, v(x), with effective-mass m. This is not a
serious restriction and corrections due to occupation of higher
transverse mode, either due to thermal excitation or inter-
channel coupling, may readily be accounted for perturbatively.
The analysis and results may be extended to cases where there
is degeneracy but we will not consider them here since our
main aim is to emphasize the generic effects in the simplest
and most direct way. The one-electron potential accounts
for potential fluctuations due to disorder or smooth potential
changes due to external gates, for example in a quantum
dot structure where they would model barriers. We shall be
particularly interested in near-perfect wires for which v(x)
represents a shallow potential well (open quantum dot) that
will bind a single electron, but not two electrons. The
Coulomb interaction between the two electrons, V (x1, x2),
may be derived explicitly by starting with the usual 3D form
and integrating over the lowest occupied transverse mode.
The resulting expression, to a very good approximation,
takes the simplified form V (x1, x2) = e2/4πεε0r , where
r = √

(x1 − x2)2 + λ2 is the effective separation and λ is a
parameter that characterized the transverse confinement, e.g.,
λ ∼ d for a circular wire of diameter d [14].

We now consider the two-electron scattering problem in
which a single electron is first introduced into the quantum
wire and becomes bound in the quantum dot region. The
confining potential for this electron is determined completely
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by the one-electron potential v(x). To be specific, we shall
mainly consider a quantum wire with material parameters
appropriate to GaAs, i.e. m = 0.067m0 and ε = 12.5, and
a potential profile with v(x) = −v0 cos2 πx/L for −L/2 <
x < L/2 and zero otherwise. One motivation for studying this
problem is the rapidly emerging field of quantum information
processing in which a major goal is the generation of
entanglement the controlled exchange of quantum information
between propagating and static qubits. Purely electron
systems have potential as entanglers due to strong Coulomb
interactions and although charge-qubit systems suffer from
short coherence times, spins in semiconductor quantum wires
and dots are sufficiently long-lived for spin–qubits to be
promising candidate for realizing quantum gates involving
both static and propagating spins [21–25]. Electron entanglers
have been proposed using a double dot, exploiting the
singlet ground state [26]; the exchange interaction between
conduction electrons in a single dot [27, 28]; and the exchange
interaction between electron spins in parallel surface acoustic
wave channels [29]. Measurement of entanglement between
propagating electron pairs has also been proposed using an
electron beamsplitter [30]. A further motivation for solving
the two-electron scattering problem is that the solutions may
be used directly in expressions for conductance and other
transport quantities, which we consider in section 3.

Before presenting detailed numerical results, consider the
expected general features when a spin-up propagating electron
interacts with a bound electron in some arbitrary state on the
Bloch sphere, i.e. cos(ϑ/2)| ↓〉 + eiφ sin(ϑ/2)| ↑〉. In practise
this situation may be realized, at least in principle, by a system
in which single spin-polarised electrons are introduced into the
wire through a turnstile injector. This first electron is then
allowed to relax into the ground state of the quantum dot region
and its spin is subsequently manipulated on the Bloch sphere
using microwave pulses. The second spin-up electron then
scatters from this bound electron. It is important to realize that
this two-electron state before scattering is unentangled and is
not an eigenstate of the Hamiltoninan equation (1). It may be
written,

�in = cos(θ/2)�↑↓ + eiφ sin(θ/2)�↑↑, (2)

where

�σσ ′ = eikx1ψ0(x2)χσ (σ1)χσ ′(σ2)

− eikx2ψ0(x1)χσ (σ2)χσ ′(σ1). (3)

Here ψ0 is the bound-state wavefunction for the quantum dot
region and χσ (σ1,2) is a spin-1/2 spinor for an electron with
spin σ1,2.

During the scattering process the two electrons interact
resulting in reflection or transmission. The scattered
component resulting from �↑↓ in equation (2) can be
either spin-flip or non-spin-flip scattered with corresponding
amplitudes rsf, rnsf, tsf and tnsf for reflection and transmission.
Spin-flip scattering is due to an exchange interaction
between bound and propagating electrons. This is not a
direct interaction between spins of the electrons since the
Hamiltonian equation (1) does not contain any explicit spin–
spin terms. It arises purely because of the antisymmetry

of the two-electron wavefunction and their mutual Coulomb
repulsion. The transmitted component is

�trans = cos(θ/2)[tnsf�↑↓ + tsf�↓↑] + eiφ sin(θ/2)�↑↑ (4)

with a similar expression for reflection.
After scattering, the propagating electron will be reflected

or transmitted and, asymptotically, will have the same
magnitude of momentum, k, leaving the bound electron again
in its ground state, provided the kinetic energy of the incoming
electron is chosen to be less than the binding energy of the
bound electron. It is convenient and instructive to express
these amplitudes in terms of eigenstates of the Hamiltonian,
which have definite total spin since [H, S2] = [H, Sz] = 0.
For 2 electrons the eigenstates are either singlets or triplets
with �00 = (�↑↓ − �↓↑)/

√
2, �10 = (�↑↓ + �↓↑)/

√
2,

�11 = �↑↑, and �1,−1 = �↓↓. Substituting these expressions
into equations (2), (3) and (4) we see directly that,

tnsf = t1 + t0
2

and tsf = t1 − t0
2

, (5)

where t0 and t1 are the singlet and triplet transmission
amplitudes, respectively. Both the reflected and transmitted
waves show spin entanglement after scattering provided
cos(ϑ/2) and the amplitudes for spin-flip and non-spin-flip
scattering, rsf, rnsf, tsf and tnsf are non-zero. Furthermore, fully
entangled states occur when ϑ = 0 and |rsf| = |rnsf| or |tsf| =
|tnsf|. It follows directly from this that one way of achieving
maximum entanglement would be via either a singlet or triplet
resonance. More precisely, if either |t0| = 1, |t1| = 0, or |t1| =
1, |t0| = 0 then the transmitted state will correspond to full
entanglement between the transmitted electron and the electron
remaining in the quantum dot. This has a simple physical
interpretation. The initial (unentangled) state is the sum of a
singlet state and an Sz = 0 triplet state and only one of these
components is transmitted or ‘filtered’. Since either a singlet
or a triplet state is fully entangled, such filtering via resonance
produces a fully entangled static-flying spin–qubit pair with
probability 1/2. Furthermore, the reflected state would also
be fully entangled but with the complementary component.
In this way the initial unentangled state is divided into its
fully entangled singlet and triplet components, separated by
transmission and reflection.

In practise it is not immediately obvious that such
resonances will occur in quantum wires and in any case, the
transmission of the complementary component is not expected
to be precisely zero so the question arises as to whether perfect
entanglement can still be achieved. In fact, the two-electron
system in which there is a shallow quantum well will always
have at least a singlet resonance.

This two-electron system has at least a singlet resonance
(|t0| = 1) at some energy for which the triplet state is off
resonance (|t1| � 1), as may be seen from explicit solutions of
the scattering problem. We may choose the shallow effective
potential, v(x), such that there is only a single one-electron
bound state. For example, with a well-depth of 26 meV
and a width of ∼20 nm (figure 2) there is a single bound
state at energy εb = −12 meV. The bound electron has a
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Figure 2. A shallow potential well v(x) (full line) and the
corresponding Hartree potential seen by a second electron of
opposite spin (dashed line). The single resonant bound state, εb, and
quasi-bound singlet state, ε0, within the double barrier structure are
also indicated. The dotted line is the Coulomb repulsion energy due
to bound electron and the dashed–dotted line represents shallow
potential well v1(x) corresponding for the results from figure 3(b).

long-range Coulomb interaction with the propagating electron
and, when combined with the well potential, gives rise to a
double barrier structure which has a singlet resonance energy
at approximately ε0 ∼ εb + U , where εb is the energy of
the lowest bound state and U = 15 meV is the Coulomb
matrix element for two electrons of opposite spin occupying
this state. This is also shown in figure 2 where we have plotted
the Hartree potential due to the bound electron, vH(x), i.e. the
self-consistent potential seen by the propagating electron in
the ‘frozen’ potential due to the bound electron of opposite
spin. For wider wells a second bound state is allowed and
this will give rise to a triplet resonance (and a further singlet
resonance) at higher energy. The singlet–triplet separation
may be controlled by changing the width and depth of the
well whilst maintaining the condition that only one electron
be bound. With increasing well-width (and decreasing well-
depth) the singlet–triplet separation reduces and eventually the
resonances overlap.

At the lowest (singlet) resonance, |tsf| ≈ |tnsf| ≈ 1
2

and the state is close to being fully entangled when spins are
initially antiparallel (cos(ϑ/2) = 1). Similarly, in reflection,
|r0| ≈ 0, |r1| ≈ 1 and |rsf| ≈ |rnsf| ≈ 1

2 , which is also
close to being fully entangled. The precise condition for full
entanglement in transmission, when the triplet component is
not precisely zero is ϑ = 0, |t1 + t0| = |t1 − t0|. This may
be seen directly from the form of asymptotic outgoing states.
When the scattered components are not fully entangled, we
need a quantitative measure of entanglement which reduces to
unity for fully entangled states and zero for unentangled states.
Such a measure is the concurrence which, for the pure states
considered here, takes the form [31]

C = 2|〈�|�↓↓〉〈�|�↑↑〉 − 〈�|�↑↓〉〈�|�↓↑〉|, (6)

where � is the scattered component in either transmission
or reflection. We can see immediately from this expression
that C = 1 for fully entangled states, such as a singlet or
Sz = 0 triplet state, and zero for an unentangled state, such as
� = �↑↓. Substituting equation (4) into (6), the concurrence

becomes

C = 2 cos2(ϑ/2)|tsf tnsf|
cos2(ϑ/2)[|tsf|2 + |tnsf|2] + sin2(ϑ/2)|tsf + tnsf|2

. (7)

Further illustration of this behaviour is seen by solving
the scattering problem explicitly for specific cases. Numerical
solutions for symmetrized (singlet) or antisymmetrized (triplet)
orbital states yield directly the complex amplitudes t0, r0, t1, r1

from which the amplitudes for spin-flip and non-spin-flip
scattering may be calculated using equation (5).

In figure 3(a) we plot the singlet and triplet transmission
and reflection probabilities, showing a single maximum of
unity for the transmission. We also plot concurrence, which
reaches a maximum value very close to the corresponding
singlet resonance, occurring when the spin-flip probabilities
are equal and approximately 1

4 in both transmission and
reflection. In figure 3(b) we show results for a shallow
potential well of depth 12 meV and width ∼40 nm. With
these parameters there are two single-electron bound states
at energies −8 and −10 meV. This gives both a singlet and
a triplet resonance, the latter corresponding to one electron
in the lowest bound state and the other in the higher bound
state which becomes a resonance obeying Hund’s rule under
Coulomb repulsion, with a further singlet resonance outside
the energy window for elastic scattering. We see that there
are two unitary peaks of concurrence in transmission with the
second close to, but clearly discernible from, the peak of the
rather broad triplet resonance.

Thus we have shown that spin entanglement and exchange
of quantum information occurs via the Coulomb interaction
when a propagating electron interacts Coulombically with a
single bound electron in a shallow potential well in a one-
dimensional semiconducting quantum wire. The degree of
entanglement may be controlled by kinetic energy of the
incoming electron and the shape of the effective potential
well and unitary concurrence occurs near a singlet or triplet
resonance. Potential realizations of such a system are
semiconductor quantum wires and carbon nanotubes.

We conclude this section by describing the differences
between the case of a near-perfect quantum wire, or open
quantum dot, described above and a ‘real’ quantum dot defined
by barriers. The presence of barriers, which in practise may
be produced by further gates in 2DES systems, give the well-
known single-electron tunnelling resonances when the kinetic
energy of the incoming electron is resonant with a quasi-bound
state in the quantum dot. The first resonance occurs when there
is no energy cost for a single electron for hop onto or off the
dot and the charge on the dot fluctuates between 0 and 1, with
no real bound state. There is no such single-electron regime
in the quantum wire case for which there is a real bound state
that will bind one electron. In the case of the quantum dot,
a second single-electron tunnelling regime occurs when the
depth of the potential well is increased so that one electron is
now in a real bound state and a second electron of opposite spin
may resonantly tunnel on and off the dot at energy U higher
than the bound state, where U is the intra-dot Coulomb matrix
element. This also occurs in the quantum wire case but here
the barriers arise solely from the Coulomb repulsion between
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Figure 3. (a) Singlet and triplet transmission probabilities (TS = |tS|2), spin-flip and non-spin-flip transmission probabilities and
corresponding concurrence C for confining potential v(x) from figure 2. (b) Results for a shallower and longer potential, corresponding to
v1(x) from figure 2.

the two electrons. One consequence of this is that at higher
energies than the resonance, after an initial dip the transmission
tends smoothly to unity, as shown in figure 3, whereas in the
dot case the conductance remains low away from resonance.
However, in other respects the two systems behave in a similar
way, giving full entanglement near a two-electron resonance.

3. Many-electron problem and transport anomalies

Close to the conduction edge in a near-perfect quantum wire
we again conjecture that a single electron becomes bound in a
shallow potential well, or open quantum dot, along the wire.
This then gives rise to spin-dependent scattering of conduction
electrons and since we are close to the threshold for conduction
it is reasonable to assume that the system will be dominated
by sequential pairwise scattering. At each scattering event,
total S, Sz are conserved since, by assumption, there are no
explicit spin terms in the Hamiltonian. Hence, when the spins
are parallel their direction cannot change in the scattering
process. On the other hand, there will be both spin-flip or
non-spin-flip scattering when the two electrons initially have
opposite spin. This is a consequence of the effective exchange
interaction between the spins, resulting from the Coulomb
interaction and Pauli exclusion. As shown in the previous
section, this is particularly pronounced when we are close to
either a singlet or a triplet resonance for which a transmitted
electron (with transmission probability 1/2) is fully entangled
with the bound electron left behind, i.e. the scattering process
acts as a spin filter of the initial state with equal probabilities
of spin-flip and non-spin-flip transmission. More generally, if
we sum over all incident electrons near the Fermi energy then,
using the pairwise scattering solutions derived in the previous
section, we may derive expression for transport quantities. We
expect anomalies in these quantities when the Fermi energy
is close to either a singlet or a triplet resonance. For the
former, approximately 1/4 of electrons are transmitted since
half of them have spin parallel to the bound electron and
of the remaining half, with spin antiparallel, approximately
half are transmitted (singlet spin filter). This gives a total
transmission of order 1/4 when Fermi energy is close to the
singlet resonance energy. On the other hand, close to a triplet
resonance (at higher energy than the singlet resonance), of
order 3/4 of the electrons are transmitted. In what follows, we

argue that these spin-dependent resonances are the main source
of the transport anomalies observed in near-perfect quantum
wires.

3.1. Conductance anomalies

In the spirit of the Landauer–Büttiker approach [33], we may
determine the current in a quantum wire or point contact from
transmission probabilities. From equations (4) and (5), the
total transmission probability for an incident spin-up electron
interacting with a bound spin-down electron is

T↑↓ = |tsf|2 + |tnsf|2 = 1
2 (|t0|2 + |t1|2). (8)

This is the same as the transmission probability for a
propagating spin-down electron interacting with a bound spin-
up electron, T↓↑. When both propagating electrons have the
same spin the transmission probability is that of a triplet
component, i.e., T↑↑ = T↓↓ = |t0|2. Summing over all
electrons in source and drain leads, with equal probabilities
that the bound electron is initially spin-up or spin-down, gives
directly the generalised Landauer–Büttiker formula [14],

I = 2e

h

∫ (
1

4
T0 + 3

4
T1

)
( fL − fR) dε, (9)

where TS = TS(ε) are the energy dependent singlet or triplet
transmission probabilities for S = 0 and S = 1, respectively.
fL,R = {1 + exp[(ε − μL,R)/kBT ]}−1 is the usual Fermi
distribution function corresponding to left and right lead,
respectively, with temperature T and the Boltzmann constant
kB.

When the wire is connected to metallic source–drain
contacts, electrons will flow into the wire region provided that
the Fermi energy in the contacts is higher than the lowest
allowed eigen-energy in the wire. As the Fermi energy is raised
from below the conduction band edge in the wire (via a gate not
considered explicitly), at least one electron will become bound
in the shallow-well region of the wire. The number of bound
electrons depends on both the Fermi energy and the relative
depth and width of the well. As we have already stated, the
parameters are chosen such that only one electron is bound.
In figure 4 we show plots of the conductance G = dI/dV
where V = −(μL − μR)/e is the voltage difference between
the leads, for two typical wires. Similar results are obtained for
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Figure 4. The conductance as calculated from equation (9) at T = 1
and 10 K for two different wires with thickness a = 10 nm:
(a) L = 40 nm and v0 = 19 meV; (b) L = 50 nm and v0 = 13 meV.

wires with thickness, a, up to a ∼ 50 nm, beyond which the
single-channel approximation becomes less reliable as electron
correlations become increasingly important [34]. The main
feature of these results is that there are resonances in both
singlet and triplet channels and these give rise to structures in
the rising edge to the first conductance plateau for G ∼ 1

4 G0

(singlet) and G ∼ 3
4 G0 (triplet), with G0 = 2e2/h. The

system is therefore in the regime where the incident electron
sees a double barrier which will have some resonant energy
for which there is perfect transmission. A more detailed
analysis has to account for spin and this may be understood
by gradually switching on the Coulomb interaction. For the
present choice of parameters, and also a range of parameter sets
which correspond to a very shallow well, there are two bound
states for one electron. With no interaction both electrons
may thus occupy one of 4 states (3 singlets and a triplet).
If we now switch on a small Coulomb interaction then the
lowest two-electron state will be a singlet, derived from both
electrons in the lowest one-electron state. We may regard
one electron as occupying the lowest bound-state level and the
other electron of opposite spin also in this same orbital state
but energy U higher, where U is the intra-‘atomic’ Coulomb
matrix element, as in the Anderson impurity model. As
the Coulomb interaction is increased, U eventually exceeds
the binding energy and this higher level becomes a virtual
bound state giving rise to a resonance in transmission. An
estimate of the energy of the virtual bound state is given by
the Anderson Coulomb matrix element with both electrons
in the one-electron orbital. For even weaker confinement in
which the length L of the quantum dot exceeds the effective
Bohr radius of the electrons, the resonant bound states become
strongly correlated with the electron density tending to peak
at opposite ends of the dot region in order to minimize their
electrostatic repulsion energy. This situation could occur in
carbon nanotubes, for example, where the Bohr radius is
very small [20]. For such quantum dots there is a low-
lying singlet–triplet pair isolated from higher-lying singlets
and triplets. Thus we again have a single singlet resonance
and a single triplet resonance that dominates the conductance
near threshold.

In summary, within this simple formalism has been shown
that quantum wires with weak longitudinal confinement can
give rise to spin-dependent, Coulomb-blockade resonances
when a single electron is bound in the confined region, a
universal effect in one-dimensional systems with very weak

longitudinal confinement. The positions of the resulting
features at G ∼ 1

4 G0 and G ∼ 3
4 G0 are a consequence of

the singlet and triplet nature of the resonances.

3.2. Thermopower

The formalism applied above can be extended to include
electrical and heat currents through a region between two leads
with different temperatures and chemical potentials [35, 36].
With T +
T , μ+ eU for the left lead and T , μ for the right
lead, we get the electric current je and the heat current jQ

Ie = 2e

h

∫ (
1

4
T0 + 3

4
T1

)

 f (ε) dε, (10)

IQ = 2

h

∫
(ε − μ)

(
1

4
T0 + 3

4
T1

)

 f (ε)dε, (11)

with


 f (ε) = f (ε, μ + eU, T +
T )− f (ε, μ, T ). (12)

The Seebeck thermopower coefficient S was for various
systems discussed in [36, 37]. It measures the voltage
difference needed to neutralize the current due to the
temperature difference between the leads. In the linear
response regime the thermopower is in our model given by [38]

S(μ) = U


T
= − 1

eT

K1(μ)

K0(μ)
, (13)

where

Kn(μ) = −
∫
(ε − μ)n

(
1

4
T0 + 3

4
T1

)
∂ f (ε, μ, T )

∂ε
dε. (14)

Equation (13) is formally the same as the Mott–Jones formula
for simple metals [39] and generalized for a system with
stronger electron–phonon interactions in [40].

In figure 5(a) the conductance is shown for a wire with
a bulge for different temperatures. The effect of temperature
is accounted only through the temperature of the Fermi
function in equation (12). Here the energy is measured
from the threshold of the conductance. In this case both,
singlet and triplet resonances contribute. In figure 5(b) the
thermopower is presented for the same range of temperatures.
In the thermopower curve the dominant structure at lower
temperatures comes from the singlet resonance, though the
triplet resonance is still clearly discernible. At higher
temperatures the triplet structure is washed out first, in contrast
to the conductance result, figure 5(a). The thermopower
of one-dimensional wires has been measured [41, 42] and
more recently, further anomalies related to ‘0.7 anomaly’ in
conductance were reported [37]. The authors of [37] observe
a dip in S(μ) at energies corresponding to the anomaly in
G(μ). However, the logarithmic derivative with respect to
the gate voltage of the measured G exhibits a much deeper
minimum than the dip in the measured S(μ), which remains
well above zero even at the lowest temperatures. This clearly
shows that a simple non-interacting formula is not valid in
this low-temperature regime. Apart from the small corrections
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Figure 5. (a) Electrical conductance G(μ), (b) thermopower S(μ), and (c) thermal conductance κ(μ) for circular wire with parameters
a = 10 nm, L = 60 nm, v0 = 12 meV. Other parameters and the numerical method is as in [14]. The dashed line in (c) represents
Wiedemann–Franz law result for T = 4 K. The traces for different T are offset vertically for clarity.

to the logarithmic approximation to S, our results are in
agreement with the findings of [37]. That is, the calculated
thermopower is in good agreement with experiment except at
low temperatures where we also predict a deep minimum. This
discrepancy at low temperatures may well be a many-body
Kondo-like effect contained within our model (equation (18))
but not within the two-electron approximation we have used
here. At very low temperatures, a Kondo-like resonance is
expected [43], for which many-body effects would dominate
with a breakdown of formula equation (13).

3.3. Thermal conductance

The linear thermal conductance is the heat current divided
by the temperature difference between the leads when the
chemical potentials are adjusted to give no electrical current.
From equations (10)–(14) we see that this is related to the
transmission probabilities by,

κ(μ) = 2

hT

(
K2(μ)− K 2

1 (μ)

K0(μ)

)
, (15)

which for low temperatures simplifies to the Wiedemann–
Franz law

κ(μ) = π2k2
BT

3e2
G(μ). (16)

In figure 5(c) κ(μ) is shown for T from 0.2 to 3.8 K. A
comparison of figure 5(a) with (c) shows good agreement with
the Wiedemann–Franz law at lower temperatures but there is
increasing deviation at higher temperatures in the resonance
region. For comparison, the dashed line in figure 5(c)
shows the corresponding linear approximation result, i.e. the
Wiedemann–Franz law. One of the most striking features of
these plots is that κ(μ), calculated from equation (15), exhibits
an anomaly at higher energies than the corresponding anomaly
in conductance, a prediction which is open to experimental
verification.

Within the framework of the Landauer–Büttiker approach
thermal transport coefficients can be calculated for near-perfect
semiconductor quantum wires, which extends the work on
spin-dependent conduction anomalies. Thermopower and
thermal conductance show anomalies, related ultimately to
the Coulomb interaction between a localized electron and
the remaining conduction electrons. We have shown that
the lower energy singlet anomalies in thermopower are more
pronounced. These should be clearly observable in wires

which show the corresponding conductance anomalies, such as
the narrow ‘hard-confined’ wires reported in [44], or in gated
quantum wires under high source–drain bias where the singlet
anomaly is clearly observed [45].

3.4. Shot noise and 0.7 anomaly

Recent high accuracy shot noise measurements enabled the
extraction of the Fano factor in ballistic quantum wires [46].
The Fano factor F is a convenient measure of the deviation
from Poissonian shot noise. It is the ratio of the actual
shot noise and the Poisson noise that would be measured in
an independent electron system [47]. This factor is, in our
model [48],

F =
∫ [T0(1 − T0)+ 3T1(1 − T1)]( fL − fR)

2 dε∫
(T0 + 3T1)( fL − fR)2 dε

. (17)

This expression and equation (9), are based on the results
of a two-electron scattering between a single bound electron
and a propagating conduction electron with a summation
over all conduction electrons near the Fermi energy. This
approximation is only valid at temperatures above the Kondo
scale in this system [49], as discussed in [34]. Equation (17)
directly reflects the fact that singlet and triplet modes do
not mix in this pairwise interaction approximation, resulting
in contributions to the noise that add incoherently with the
probability ratio 1:3 for singlet and triplet scattering.

The conductance G(μ) and Fano factor F(μ) are plotted
versus μ in figures 6(a) and (b), with (d) and (e) showing the
Fano factor F versus G for various temperatures and in the
linear response regime, μ = μL ∼ μR. The dotted lines
show zero-temperature boundaries for the allowed values of
F , under the assumption of validity of equation (17) in the
limit T → 0 and the unitarity condition for the transmission
probabilities, 0 � TS � 1. Equation (17) is not strictly
valid in the limit T → 0 due to many-electron effects which
start becoming important at low temperatures. Thus this zero-
temperature limit should be regarded as a limiting behaviour
that would occur in the absence of such many-body effects.
The Fano factor exhibits two distinctive features. Firstly, there
is a structure for G/G0 < 0.5 corresponding to the sharp 0.25
singlet conductance anomaly. The second distinctive feature
is in the region 0.5 < G/G0 < 1 and corresponds to the
dip in singlet channel just above the singlet resonance and
also partially to the triplet channel resonance. In our previous
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Figure 6. Results for a cylindrical quantum wire with a symmetric bulge for all parameters as in figures 3(b) and (c) of [14]. In panels (a) and
(b) the conductance (full lines) and the Fano factor are presented. Panels (d) and (e): Fano factor as a function of G (full line) and unitarity
limits (dotted line). The energy dependence of the Fano factor and conductance for a left-right asymmetric confining potential (in resonance
TS < 1), (c), and Fano factor as a function of conductance, (f). Energy and temperature scale is here in the units of single–triplet energy
difference J .

work we assumed a symmetric confining potential fluctuation,
giving perfect transmission probabilities at resonance energies.
However, in real systems left-right symmetry will not be
perfect, especially if the fluctuation is of random origin, and
also under finite source–drain bias. In these cases TS < 1 even
on resonance. Such an example is presented in figures 6(c),
(f). In this case the structure of F(G) is less pronounced,
consisting of kinks at G/G0 � 0.5 and G/G0 � 0.75. This
behaviour is a consequence of the absence of a pronounced
triplet resonance and a dip in the singlet channel as mentioned
above. Such a situation is typical for very weak confining
potential fluctuations, where the triplet resonance is far in the
continuum. The structure at G/G0 � 0.5 has the same origin
as the ‘0.25 structure’ in conductance, a direct consequence of
a sharp singlet resonance.

4. Many-body effects

Although the generic model we have used (equation (1)) is
quite simplistic, it probably captures most of the essential
physics. The many-electron generalization of equation (1) may
be obtained directly by expressing the Hamiltonian in second-
quantised form using the solutions of the one-electron problem,
including both bound states in the well and unbound states in
the wire. The resulting Anderson-like Hamiltonian [50] for the
case of shallow well only, i.e. not quantum dot barriers, takes
the form [16, 34],

H =
∑

k

εknk + εd nd +
∑
kσ

(Vkndσ̄ c†
kσ dσ + h.c.)

+ Und↑nd↓ +
∑
kk′σ

Mkk′ nd c†
kσ ck′σ +

∑
kk′

Jkk′ Sd · skk′ . (18)

Here U is the Hubbard repulsion, Vk is the assisted hopping
term, Mkk′ corresponds to scattering of electrons and the direct
exchange coupling is Jkk′ . Spin operators in equation (18)

are defined as Sd = 1
2

∑
σσ ′ d†

σσ σσ ′dσ ′ and skk′ =
1
2

∑
σσ ′ c†

kσσ σσ ′ck′σ ′ , where the components of σ are the usual
Pauli matrices. A similar model has been proposed in [49].
Although the Hamiltonian, equation (18), is similar to the usual
Anderson Hamiltonian [50], we stress the important difference
that the kd-hybridization term above arises solely from the
Coulomb interaction, whereas in the usual Anderson case it
comes primarily from one-electron interactions. These have
been completely eliminated above by solving the one-electron
problem exactly. The resulting hybridization term contains
the factor ndσ̄ , and hence disappears when the localized
orbital is unoccupied. This reflects the fact that an effective
double barrier structure and resonant bound state occurs via
Coulomb repulsion only because of the presence of a localized
electron. The above Hamiltonian is difficult to solve at low-
energy/temperature, being in the class of many-body Kondo-
like problems. However, as with the Kondo problem, we expect
pairwise scattering solutions to capture the essential physics
above the effective energy/temperature where condensation
phenomena becomes important. It is this higher temperature
scale that we have considered in this paper and the results
presented are entirely equivalent to scattering solutions of
the above Anderson-like model in the pairwise scattering
approximation. We must await further research to fully
elucidate low-temperature phenomena where it seems likely
that the Kondo effect, that is clearly observed in conduction
through quantum dots, will be generalized to account for the
suppression of conductance anomalies in the low-temperature
regime [49, 51].

5. Summary and conclusions

In this paper we have mainly focused on a generic model of a
near-perfect quantum wire which contains a shallow quantum
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well which behaves like an open quantum dot that captures a
single electron. We have not investigated in detail the actual
causes of such a weak effective potential wells but point out
that they may well be due to quite different sources in different
experiments, e.g. thickness fluctuations, remote impurities
or gates, electronic polarization, or some other more subtle
electron interaction effect. The main point is that because the
effective potential well is shallow, it will bind one and only
one electron and the subsequent spin-dependent scattering of
a conduction electron from this bound electron can be used to
induce entanglement between them. This is a consequence of
resonant bound states arising from the Coulomb interaction.
When this is combined with Pauli exclusion it gives rise
to singlet and triplet resonances and the generation of
entanglement may be interpreted as a filtering process in
which either the singlet or triplet component of the initial
unentangled state is reflected with complementary component
being being transmitted. This same process is also responsible
for transport anomalies when many conduction electrons (near
the Fermi energy) scatter from a single bound electron. This
is again a filtering effect in which 1/4 of incident electrons
are transmitted when the Fermi energy is close the singlet
resonance energy and 3/4 are transmitted close to the triplet
resonance energy. The universal anomalies in conductance
and thermopower are a direct consequence of this and occur
for a wide range of circumstances in almost perfect quantum
wires. This universal behaviour also occurs in quantum dots
with ‘real’ barriers which will also exhibit singlet/triplet spin-
filtering and associated entanglement generation. However,
for these cases the resonances will be much sharper reflecting
the well-known Coulomb-blockade effect. If we imagine
gradually increasing the quantum dot barriers from zero then
the anomalies in conductance will evolve into single-electron-
tunnelling resonances in the coherent transport regime, thus
providing a unified picture of spin-dependent transport in
quantum wire and quantum dot structures.
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