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Abstract

This seminar focuses on weak measurement with post-selection that introduces the so-called weak
value, which is an experimentally accessible complex quantity that possesses non-intuitive behavior. The
general measurement process and with an example is described. Properties of the weak value and its
uses are discussed. The experimental support of the theory is provided and its applications are reviewed.
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1 Introduction

In this seminar we shall examine the theory of quantum measurement. First we will describe the process
of measuring a quantum state in detail. We will then introduce the concept of weak measurement which
provides less information about the wave but has other benefits. In the realm of weak measurement we will
observe some bizarre results.

It is very important to adjust our expectations about measurement theory. Even though we will describe
the measurement process in more detail than merely stating the projection postulate, the fundamental
measurement problem of quantum mechanics still remains. In the scope of this theory we cannot explain the
projective nature of measurements, the Born rule or the wave function collapse. There is still a gap between
the quantum world and our classical experience that is addressed by interpretations of quantum mechanics.
We will not be dealing with this problematics in this seminar as we will be focused on describing interaction
between the observed quantum system and the measurement device. This way we will be able to study the
effects of measurement on the observed system, regulate the strength of interaction and still procure the
necessary measurement statistics.

We will see in chapter 4 that the motivation behind weak measurements is not merely in the curiosity
of a hopeless quantum enthusiast but in a powerful experimental application.

2 Quantum Measurement Theory

2.1 The Setup

We will study the measurement process as described by Bohm [1]. Let S be the observed quantum system
andM the measurement device. Let the measurement device be dependent on a canonical variable q and lets
denote its conjugate momentum p. It is common to call q the pointer as per von Neumann’s nomenclature
[2]. We can imagine the measurement device having a pointer and a gauge. The concept of pointers should
be taken abstractly, as we only demand the pointer variable to be an observable that is directly accessible
via classical measurement (e.g. position, not spin). The measurement device doesn’t need to be an actual
physical apparatus, it is rather a concept to help us grasp the measurement theory, and depends on the
experimental setup. As we will see it is actually unnecessary for the measurement device wavefunction to be
localized in q for a good measurement.

Our goal is to introduce correlations between the measured system and the apparatus in such way that
we can deduce the sought after properties of the measured system through the apparatus only. Ideally we
want the probability distribution of the apparatus in q space (or alternatively p space) to be a sum of well
localized distributions around values of q (or p) that correspond to different eigenvalues of the measured
observable. This way a pointer observed at a certain position will give us knowledge with large certainty
about the post-measurement state of the quantum system and the corresponding eigenvalue of the observable.
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We assume that the states of the observed system and measurement device are not entangled prior to
interaction. Let HS be the Hamiltonian of the measured system, HM be the Hamiltonian of the measuring
device and Hint(t) be the interaction Hamiltonian which is non-zero only for a finite time. Before the
measurement the systems are independent and they each evolve according to their own Hamiltonian. When
we couple the systems and let them interact at t = 0 the total Hamiltonian acting on the composite system
is S ⊗M is

H = HS +HM +Hint(t). (1)

We will now make a harmless assumption that the time of interaction is sufficiently small that Hamiltonians
will alter the state of the system very little. We therefore neglect them and only deal with the interaction
Hamiltonian.

2.2 The Interaction

Let A be the operator that acts on S and corresponds to the observable we are trying to measure. We let
the systems interact in the time interval [0, T ] and introduce real normalized function g(t) which is non-zero
only during the time of interaction. For the HS and HM to be negligible one wants for T to be small, i.e. for
the measurement to be impulsive. There are two main approaches to writing the measurement Hamiltonian
- one requires us to measure q to get good measurement data, the other requires us to measure p. We will
focus on the latter as it will be relevant when studying the Stern-Gerlach experiment in chapter 2.4. An
appropriate interaction Hamiltonian has the form

Hint = −µg(t)Aq. (2)

Here µ is a constant factor that regulates the strength of the interaction. We could have, within reason, used
analytic functions of the operators instead of using them bare, but since measuring an analytical function of
a hermitian operator is just another hermitian operator we can just make them be the measured observables
and save the ink. The unitary time evolution operator evaluated at any t > T takes the form

U(T ) = e−i
∫ T
0
Hintdt = eiµAq. (3)

Appropriate units are assumed. Let us have an initial state of the system |ψ〉 =
∑
i ciχ(p) |ai〉, where |ai〉 are

the eigenstates of A with eigenvalues ai and χ(p) the measurement device wavefunction in p representation.
The state of the system after the interaction will be

U(T ) |ψ〉 = eiµAq
∑
i

ciχ(p) |ai〉 =
∑
i

cie
iµaiqχ(p) |ai〉 =

∑
i

ciχ(p− µai) |ai〉 . (4)

Note that ai is a scalar while q is still an operator. We remember that, since q is the canonical conjugate of
p, eikq will generate a shift of the wavefunction in p space for k.

The effect of the interaction is now obvious. The wavefunction of the device gets displaced differently
for each different eigenvalue of the observable and its amplitude is proportional to the probability amplitude
of the corresponding component of the measured state.

It is of great importance to be aware that after such interaction we still need to perform strong mea-
surement on the measuring device to get information about q or p. According to the postulates of quantum
mechanics, such measurement projects the initial state (in our case after the interaction) onto an eigenspace
of the observable that is randomly chosen obeying the Born rule. With our setup we only transferred the
projective measurement process from the quantum system itself to the measurement device. We will see the
usefulness of this approach in the following chapters.

Right after we measure p via classical means, the p will be well defined and the observed quantum
system will be affected depending on the strength of correlation between the systems. In the Copenhagen
interpretation one would say that the state has collapsed. This is irrelevant for our discussion, for reasons
that will become apparent we are only interested in probability distributions.

Note that if we chose to put p into the Hamiltonian instead of q we would get displacement of the
wavefunction in q-space rather than p-space.

2.3 Weak Measurement

A sensible choice for χ(p) is a Gaussian wavepacket. If the absolute differences between displacements
µ|ai − aj | are much larger than the uncertainty of the wavepacket σp then the measurement is a strong one
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and correlation between S and M is strong. We can with large certainty know that a value of p measured
around µai will in fact correspond to post-measurement state |ai〉. On the contrary, if the overlap between
neighbouring Gaussians is large, the measurement is called a weak one. Such a measurement can be achieved
by making the initial σp large or by making the interaction weaker by making µ smaller. When performing
a weak measurement we can never get as much information about the system as when performing a strong
measurement. Suppose we observe the momentum p to have value of µai. Due to large overlap between
neighbouring peaks we cannot be sure whether this measurement means truly indicates that the observed
system is in post-measurement state |ai〉. However, not all is bleak. Even with arbitrarily large σp we can
determine the expectation value of A with arbitrary precision, provided we preform enough measurements
on a large ensemble of identically prepared systems. This is due to the fact that uncertainty falls with 1/

√
N

where N is the number of measurements. By the definition expectation value is completely independent of
σp. Because the interaction is weak its disturbance to the observed system is much lesser than with strong
measurement and herein lies one of the uses of the weak measurement.

2.4 The Stern-Gerlach experiment

We will apply the described formalism to the Stern-Gerlach experiment. The setting is usual: neutral
particles with spin-1/2 fly into a inhomogeneous magnetic field which splits the up and down components
of the wavepacket. Here our observed quantum system S corresponds to spin-1/2 Hilbert space with basis
|↑〉 , |↓〉, and our “measurement device”M corresponds to the spatial wave function of the particle. The two
are initially uncorrelated. While this might seem odd at first, the formalism works and we will see that it
makes sense.

We Taylor expand the magnetic field to the first order and neglect x and y components. The interaction
Hamiltonian is

Hint = −µσz(1 + αz), (5)

where the constants are appropriately chosen. We can quickly see the similarity with eq. 2. The measured
observable is σz and the pointer observable q is z. Values ai are the eigenvalues of σz, 1 and −1. We
assume that the particle is localized well enough that we can, without much error, assume it flies through
the apparatus for a time T .

For simplicity we assume the spin of the incoming particle doesn’t have a component in the y-direction.
If we parametrize the incoming particle’s spin with the polar angle θ then according to eq. 4, the post-
interaction state will be

|ψ′〉 = eiµχ(p− µα) cos
θ

2
|↑〉+ e−iµχ(p+ µα) sin

θ

2
|↓〉 . (6)

We see that the up component is given a momentum boost upwards and the down component is given a
momentum boost downwards.

It might be surprising that it is momentum and not position that is being displaced. The resolution
is that we only use measurement of position as means of measuring momentum. After the interaction the
wave function is subjected to its kinetic Hamiltonian and a displacement in momentum will give boost the
packet in position space as per Ehrenfest’s theorem. We must therefore leave the particle to evolve on its
own until we are satisfied with the separation of both up and down components in position space.
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Figure 1: The Stern-Gerlach experiment scheme showing the centers of both deflected beams. The particles
receive a boost of momentum in the Stern-Gerlach device that then deflects each component accordingly in
position space. The screen must be distant enough for the packets to become sufficiently separated, taking

their position uncertainty in account. Figure copied from [3].

3 Weak Measurement with Post-Selection

In this chapter we will describe some bizarre behavior surrounding weak measurements as it was first derived
by Aharonov, Albert and Vaidman [4]. It turns out that with appropriate setup, it seems that the expectation
value of, for example, spin-1/2 can be made arbitrarily large. For such results we must include a second
measurement apparatus. We need to somehow be able to perform a post-selection on the state after the
initial interaction. In formal language, we only want to observe the component of the post-interaction state
that belongs to a certain subspace of the complete Hilbert space. This is realized by performing a strong
measurement on a quantum system that has weakly interacted beforehand, thus projecting the state onto
the subspace of our choice.

3.1 The Weak Value

We want to observe the certain components of the post-interaction state, so we perform a dot product with
a chosen |φf 〉 from the S space.

χf (p) = 〈φf | eiµAq |φ〉χ(p) (7)

When χ(p) is a packet curve with large σp (which is the case with weak measurement), we can linearize the
exponent

χf (p) ≈ 〈φf |φ〉 (1 + iµqAw)χ(p). (8)

We introduced the weak value Aw of A

Aw =
〈φf |A |φ〉
〈φf |φ〉

. (9)

Aware that we’re still doing only a first order approximation, we can turn the linear function back into an
exponential.

χf (p) ≈ 〈φf |φ〉 eiµqAwχ(p) = 〈φf |φ〉χ(p− µAw) (10)

We emphasize again that this only holds true for sufficiently weak interactions. The uncertainty σp has to
be larger than displacement µAw.

Note that the weak value can be very big and even complex. Both real and imaginary part of the
weak value can be obtained experimentally, since one roughly results in pointer momentum displacement
and the other in pointer position displacement [5]. In the first order, the weak value (or more precisely, its
real component) will be the expectation value of p, provided we measure only the accordingly post-selected
states. It is of considerable interest that, in principle, the weak value is not bound even when the observable’s
spectrum is.

3.2 The Stern-Gerlach in-depth

We have derived that using post-selection, extreme expectation values can be achieved. The intuition behind
this lies on very weak grounds. To remedy this, we will do a study on a series of two Stern-Gerlach devices
without resorting to linearizing the time-evolution operator. Let the first Stern-Gerlach device have the
magnetic field gradient in z direction and let the particle travel through it in y direction. We add a second
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Figure 2: 〈σz〉 for Ω ∈ {0, 0.5, 0.95, 0.995, 1}

Stern-Gerlach device which deflects particles in x direction for post-selection. Instead of modelling it like
the first one, we will assume this one performs strong measurements. Lets choose to project particles on the
direction of |σ′〉, which denotes a spin that points in −x direction. We are looking for χ′(p) = 〈σ′|ψ′〉 where
we remember the post-interaction state |ψ′〉 from eq. 6

χ′(p) ∝ eiµ cos
θ

2
χ(p− µα)− e−iµ sin

θ

2
χ(p+ µα). (11)

Note that χ′(p) is not a normalized amplitude. If we assume is an even function χ(p) with mean 0 we can
write the expression for the mean value of χ′(p),

〈p〉 = µα
cos θ

1− Ω sin θ
, (12)

where Ω denotes the overlap between the ’up’ and ’down’ components multiplied by cosµ

Ω = cosµ

∫
χ∗(p+ µα)χ(p− µα)dp (13)

and is assumed to be real. Ω is a measure of strength of interaction, as it roughly tells us how large the
uncertainty is compared to the offset.

We remember that the displacement in p space is connected with the measured value of the σz via
factor µα, so that it is sensible to say that, considering only the post-selected particles, 〈p〉 = µα 〈σz〉. In the
limit of Ω→ 0 the measurement is a strong one and 〈σz〉 is confined within [−1, 1] as one would intuitively
expect. In the limit of Ω→ 1 the measurement is a weak one and allows for outrageous expectation values.
But even in the weak limit there is a relatively narrow interval of θ that allows for very large values (see
Figure 2) It can be seen in a few lines of calculation that 〈σz〉 in the weak limit coincides with the weak
value as defined in eq. 9

σz,w =
〈σ′|σz |σ〉
〈σ′|σ〉

=
cos θ

1− sin θ
. (14)

The source behind this odd behavior is the normalization in the denominator. We have chosen not to
work with the whole wave function but rather just a part of it. To interpret this part probabilistically we
have to normalize it. The extreme values appear when θ is around π/2 i.e. when 〈σ′|σ〉 is close to 0. It is
when there is a very small probability of particles deflecting in our chosen direction where unusual behavior
is observed.

We have neglected the effects of spreading on the particle’s journey to the screen as well as when passing
through the device. While the exact distribution is certainly altered, the concept remain and so does the
behavior of the weak value.
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4 Experimental Verification and Applications

Some highly significant and diverse uses have been found for weak value in experimental settings. On one
side of the spectrum the concept using the complex nature of weak value can be utilized to measure the full
wave function directly, avoiding tomography. Usually one would repeatedly have to measure a very large
array of observables and reconstruct the wave function from the probability distribution. Using weak values,
one can access the wave function directly. Consider weakly measuring the observable |x〉〈x| on the state |ψ〉
and post-selecting the momentum eigenstates |p〉. According to eq. 9 the weak value of such an observable
is

xw =
〈p|x〉 〈x|ψ〉
〈p|ψ〉

=
eipxψ(x)

φ(p)
. (15)

ψ(x) and φ(p) are the wave functions in position and momentum space respectively. We see that one can,
with only very minor post processing, access ψ(x) in strong contrast to tomographical approach. This
principle has been experimentally realized in various settings, for example determining the wave function of
a photon [6, 7], a 27-dimensional orbital-angular-momentum state vector [8] and has even been generalized
to mixed states [9]. Needless to say this method has great potential in the field of quantum computation.
Weak value showcases its complex prowess also in measuring expectation values of non-Hermitian operators
[10].

As we can see from eq. 12 the weak value of the measured obseravble is multiplied by a factor that
depends on the magnetic field gradient. Because the weak value can be made to be very large, a very small
magnetic field gradient can result in a very large offset on the actual screen. The process can therefore
be used to amplify very subtle evolution parameters so that we aren’t limited by small resolution of the
actual measuring apparatus. This has been indeed experimentally utilized in many settings to measure
small angular, temporal, frequency, velocity and temperature shifts as well as beam deflection [11].

We shall take a look at a simple example of an experimentally realizable setup described in [11]. Consider
a Gaussian laser beam that first goes through a collimating lens and then through a half-wave and a quarter-
wave plate. In Figure 3 a) the beam goes directly through a polariser that performs post-selection. A CCD
is used to measure the position dependant beam intensity. In Figure 3 b) a birefringant crystal is placed
between the plates and the polariser. The crystal spatially separates the horizontal and vertical components
of the incoming beam. An appropriate lens is after the crystal to image the transverse position on the
output face of the crystal onto the CCD. For measuring the weak value of polarisation the crystal should
offset the beams only very slightly so that they can still interfere with each other. With the right choice of
the orientations of all the elements in the setup a distribution that reflects the real part of the weak value
can be detected on the CCD. A similar setup can be made to measure the imaginary part of the weak value.

Figure 3: A simple setup for measuring the weak value of polarisation. Figure copied from [11].
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5 Conclusion

We have (within our scope) defined the concept of a measurement and coupled it with post selection to come
to physically significant results. We have described an experimentally plausible setup in detail and studied
the unusual results in detail. Above all it should be clear that the concept of weak value is not simply a
bit of quantum-mechanical curiosity but is a non-trivial tool that plays an increasingly significant role in
experimental setups. Besides the practical use, there is also much theoretical interest in the implications of
the weak value [12, 13].
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