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Abstract

Quantum cryptography could well be the �rst application of quantum me-
chanics at the individual quanta level. In this paper I shall describe the theory
of quantum cryptography and how to perform quantum cryptography over an
optical �ber communications link. This seminar reviews how quantum physics
allows information coding in classically unexpected ways. Quantum logic gates
and key distribution are also discussed.
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1 Introduction

Human desire to communicate secretly is at least as old as writing itself and goes
back to the beginnings of our civilisation. Methods of secret communication were
developed by many ancient societies, including those of Mesopotamia, Egypt, India,
and China, but details regarding the origins of cryptology remain unknown.

Until some years ago, cryptography was restricted primarily to the military
world. Only the military had su¢ cient resources to produce mechanical devices,
such as the famous enigma which was widely used by Germans during World War
II or its American counterpart the M-209. Enigma ciphers were broken before at
Bletchley Park in England. The Bletchley Park team had to develop the electro-
mechanical tools to break these ciphers, which resulted in building the �rst digital
computer called Colossus. Thus modern cryptology was born together with com-
puter science. [1]

2 Classical cryptography

Originally the security of a cryptosystem or a cipher depended on the secrecy of
the entire encrypting and decrypting procedures. In such ciphers a set of speci�c
parameters, called a key, is supplied together with the plaintext as an input to
the encrypting algorithm, and together with the cryptogram as an input to the
decrypting algorithm. This can be written as

bEk(P ) = C; and conversely, bDk(C) = P; (1)

where P stands for plaintext, C for cryptotext or cryptogram, k for cryptographic
key, and bE and bD denote an encryption and a decryption operation respectively.

It was shown, that as long as the key is truly random, has the same length as
the message, and is never reused then the one-time pad is perfectly secure. So, if we
have a truly unbreakable system, what is wrong with classical cryptography?

There is a snag. It is called key distribution. Once the key is established, sub-
sequent communication involves sending cryptograms over a channel. However in
order to establish the key, two users, who share no secret information initially, must
at a certain stage of communication use a reliable and very secure channel. Since the
interception is a set of measurements performed by an eavesdopper on this channel,
however di¢ cult this might be from a technological point of view, in principle any
classical key distribution can always be passively monitored, without the legitimate
users being aware that any eavesdropping has taken place.

In the late 1970s Whit�eld Di¢ e and Martin Hellman proposed an interesting
solution to the key distribution problem. It involved two keys, one public key � for
encryption and one private key � for decryption:

bE�(P ) = C, and, bD�(C) = P: (2)

3



In these systems users do not need to share any private key before they start sending
messages to each other. Every user has his own two keys; the public key is publicly
announced and the private key is kept secret. Several public-key cryptosystems have
been proposed since 1976; here we concentrate our attention on the most popular
one namely the RSA.

Suppose that Alice wants to send an RSA encrypted message to Bob (Alice and
Bob are two individuals who want to communicate secretly). The RSA encryption
scheme works as follows:

Key generation: Bob picks randomly two distinct and large prime numbers p and
q. We denote n = pq and � = (p � 1)(q � 1): Bob then picks a random integer
1 < e < � and computes the inverse d of e modulo � (gcd(e; �) = 1). This inversion
can be achieved e¢ ciently using for instance the extended Euclidean algorithm for
the greatest common divisor. Bob�s private key is � = d and his public key is
� = (e; n):

Encryption: Alice obtains Bob�s public key � = (e; n) from some sort of yellow
pages or an RSA public key directory. Alice then writes her message as a sequence of
numbers. For example she can replace each letter with a number, which represents
the location of that letter in the alphabet (in this case 1 means "A", 2 means "B"...).
This string of numbers is subsequently divided into blocks such that each block when
viewd as a number P satis�es P � n: Alice encrypts each P as

C = bE�(P ) = P emodn (3)

and sends the resulting cryptogram to Bob.

Decryption: Receiving the cryptogram C; Bob decrypts it by calculatingbD�(C) = Cdmodn = P: (4)

For example, let us suppose that Bob�s public key is � = (e; n) = (179; 571247):
He genearated it following the prescription above choosing p = 773; q = 739 and
e = 179: The private key d was obtained by solving 179d = 1mod 772 � 738 using
the extended Euclidean algorithm which yields d = 515627: Now if we want to send
Bob encrypted "SHAKEN NOT STIRRED" we replace each letter with a number
in divide whole plaintext into blocks:

180700 100413 261314 192618 170403:

Then we encipher each block Pi by computing Ci = P ei modn: The �rst block
P1 = 180700 will be enciphered as

P e1 modn = 180700
179mod571247 = 141072 = C1;

and the whole message is enciphered as:

141072 253510 459477 266170 286377 087175:
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The cryptogram C composed of blocks Ci can be send over to Bob. He can then
decrypt each block using his private key d = 515627: The �rst block is decrypted as

141072515627mod571247 = 180700 = P1:

In order to recover plaintext P from cryptogram C; an outsider, who knows C, n
and e, would have to solve the congruence

P emodn = C;

for example, in our case,

P 1791 mod571247 = 141072:

Solving such equation is believed to be hard computational task for classical com-
puters. So far, no classical algorithm has been found that computes the solution
e¢ ciently when n is large integer (say 200 decimal digits long or more). However,
if we know the prime decomposotion of n it is a piece of cake to �gure out our pri-
vate key: we simply follow the key generation procedure and solve the congruence
ed = 1mod(p � 1)(q � 1): This can be done e¢ ciently even when p and q are very
large. Thus, in principle, anybody who knows n can �nd d by factoring n: The se-
curity of RSA therefore relies among others on the assumption that factoring large
numbers is computationally di¢ cult. In the context of classical computation, such
di¢ culty has never been proved. Worse still there is a quantum algorithm that fac-
tors large numbers e¢ ciently. This means that the security of the RSA cryptosystem
will be completly compromised if large-scale quantum computation becomes one day
practical. [2]

The best known factorization algorithm can factor a number n in time t: t �
e1:9(lnn)

1
3 (ln lnn)

2
3 : Shor�s (quantum) algorithm, on the other hand, can factor num-

bers in time: t � (lnn)2 (ln lnn) (ln ln lnn) : This is polynomial time algorithm,
which is in practice [6]:

number of digits of the argument Classical computer Quantum computer
130 one week one week
400 109 years 1 year

On the other hand, quantum computation provides novel techniques to generate
a shared private key wih perfect con�dentiality, regardless the computational power
(classical or quantum) of the adversaries. Such techniques are referred to as quantum
key distribution protocols. [2]

3 Quantum cryptpgraphy

It is impossible to establish a secret key with conventional communications, and
so key distribution has relied on the establishment of a physically secure channel
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("trusted couriers") or the conditional security of "di¢ cult" mathematical prob-
lems in public key cryptography. However, provably secure key distribution becomes
possible with quantum communications. In this procedure the key is distributed
over the quantum channel and not the encrypted message. That is why we need two
channels between Alice and Bob. One public channel for transmission of encrypted
messeage or cryptogram and another channel which, is called quantum channel, and
used for key distribution. Hence, a more accurate name is quantum key distribution
(QKD). The most obvious security feature of QKD is that it is impossible to "tap"
single quantum signals in the conventional sense. The eavesdropper�s activities pro-
duce an irreversible change in the quantum states ("collapse of the wavefunction")
before they are retransmitted to the intended recipient. These changes will intro-
duce an anomalously high error rate in the transmissions between the sender and
intended recipient, allowing them to detect the attempted eavesdropper. [1]

3.1 Basic concepts in quantum computation

Consider the two binary strings: 011; 111: The �rst one can represent, for example,
the number 3 (in binary) and the second one the number 7:

A qubit is a quantum system in which the Boolean states 0 and 1 are represented
by a prescribed pair of normalised and mutually orthogonal quantum states labeled
as fj0i; j1ig: The two states form a "computional basis" and any other state of the
qubit can be written as a superposition �j0i + �j1i for some � and � such that
j�j2+ j�j2 = 1: A qubit is typically a microscopic system, such as an atom, a nuclear
spin, or a polarised photon. A collection of n qubits is called a quantum register of
size n:

We shall assume that information is stored in the registers in binary form. For
example, the number 6 is represented by a register in state j1i
j1i
j0i: A quantum
register of any size can also store individual numbers simultaneously. If we take
the �rst qubit and instead of setting it to j0i or j1i we prepare a superposition
1=
p
2 (j0i+ j1i) then we obtain

1p
2
(j0i+ j1i)
 j1i 
 j1i � 1p

2
(j011i+ j111i) � 1p

2
(j3i+ j7i) :

This means that this quantum register, when measured, can store number 3 or 7,
each with the probability of 50%.

These preparations, and any other manipulations on qubits, have to be per-
formed by unitary operations. A quantum logic gate is a device which performs a
�xed unitary operation on selected qubits in a �xed period of time and a quantum
network is a device consisting of quantum logic gates whose computational steps are
synchronised in time. The outputs of some of the gates are connected by wires to
the inputs of others. The size of the network is the number of gates it contains.

The most common quantum gate is the Hadamard gate, a single qubit gate H
performing the unitary transformation known as the Hadamard transformation. It
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is de�ned as

bH =
1p
2

�
1 1
1 �1

� bHjx >= (�1)x jxi+ j1� xi: (5)

The matrix is written in the computational basis fj0i; j1ig and the diagram, on
the right side of the matrix representation (previous page), provides a schematic
representation of the gate H acting on a qubit in state jxi; with x = 0; 1:

We will need another single qubit gate- the phase shift gate � de�ned as j0i ! j0i
and j1i ! ei�j1i, or in matrix notation:

b� = � 1 0
0 ei�

� b�jxi = eix�jxi: (6)

The Hadamard gate and the phase gate can be combined to construct the following
network (of size four), which generates the most general pure state of a single qubit:

\��
2
+ �

� bHd(2�) bHj0i = cos �j0i+ ei� sin �j1i: (7)

Consequently, the Hadamard and phase gates are su¢ cient to construct any unitary
operation on a single qubit. [2]

3.2 Quantum key distribution

To understand QKD we must �rst move away from the traditional key distribu-
tion, we should have in mind a more symmetrical starting point, in wich Alice and
Bob initially generate their own, independent random number sets, containing more
numbers than they need for key material that will ultimately share. Next, they
compare these sets of numbers to get a shared subset, which will become the key
material. Alice prepares a sequence of tokens, one kind of a "0" and a di¤rent kind
for a "1", and sends a token to Bob for each bit in her set. Bob proceeds through
his set bit-by-bit in synchronisation with Alice, and compares Alice�s token with his
bit, and replies to Alice telling her whether the token is the same as his number (but
not the value of his bit). With Bob�s information Alice and Bob can identify the
bits they have in common. They keep these bits, forming the key, and discard the
others. If one of Alice�s tokens fails to reach Bob this does not spoil the procedure,
because it is only tokens that arrive which are used in the process.

The obvious problem with this procedure is that if the tokens are classical objects
they carry the bit values before they are observed by Bob, and so they could be
passively monitored by Eve (an eavesdropper). However, we shall now see that it
is possible to generate a secure key if the tokens are quantum objects. We shall
describe the B92 QKD protocol in terms of the preparation and measurement of
states in a two-dimensional Hilbert space such as that of a particle with spin 1=2.
The spin operators �1; �2; �3; obey the algebra

[�i; �j ] = 2i"ijk�k; (8)
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Figure 1: Key distribution in quantum cryptography. The key is transmited over
the secure or quantum channel. [3]

and we may introduce a basis of states with spin-up (j"i) or spin-down (j#i) along
the z-axis:

�3 j"i = j"i (9)

�3 j#i = � j#i

satisfying the orthonormality relations. From these states we can also make eigen-
states with spin-up or spin-down along the x-axis:

�1 j!i = j!i (10)

�1 j i = j i ;

where j!i = 1p
2
(j"i+ j#i) and j i = 1p

2
(j"i � j#i) :

A measurement in quantum theory is a projection operator in Hilbert space. A
measurement for spin-down along the z-axis is represented by projection operator
P: The result of a measurement P on a state j	i is given by the "collapse of the
wavefunction". Thus, the outcome of a measurement in quantum mechanics is, in
general, only predictable with some probability.

For the B92 protocol Alice has two non-orthogonal state preparations: j"i or
j!i ; and Bob can make two non-orthogonal measurements: Pj#i or Pj i: The "pass"
probabilities of the various preparation-measurement combinations are given in this
table:
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j"i j!i
Pj#i 0 0:5

Pj i 0:5 0

In the �rst step of the B92 protocol (see Figure 2) Alice and Bob generate their
own independent sets of random numbers. In step 2 they proceed through their sets
bit-by-bit in sychronisation, with Alice preparing a state for each of her bits:

bit state
0 j"i
1 j!i

Alice sends each state over a quantum channel to Bob. The quantum channel is
a transmission medium that isolates the quantum state from interactions with the
environment. Bob takes a measurement of each state he recieves, according to the
value of his bit:

bit measurement
0 Pj i
1 Pj#i

and records the result ("pass"= Y, "fail"=N).

Figure 2: First step of the B92 protocol, where Alice and Bob generate their sets of
random numbers. [3]

Note that Bob will never record a "pass" if his bit is di¤erent from Alice�s, and
that he records a "pass" on 50% of the bits that they have in common. In Figure
2 we see that for the �rst and fourth bits Alice and Bob had di¤erent bit values, so
that Bob�s result is de�nite "fail" in each case. However, for bits two and three, Alice
and Bob have the same bit values and the protocol is such that there is a probability
of 0:5 that Bob�s result is a "pass" in each case. Of course, we cannot predict which
one will be a "pass", but the chances are that one will pass and the other fail. In
step 4 Bob sends a copy of his results to Alice (but not the measurement that he
made on each bit). He may send this information over a public channel which may
be subject to eavesdropping. But this information is meaningless for Eve, becasue
she still does not know the values of the bits. Now Alice and Bob retain only those
bits for which Bob�s result was "Y" and these bits become the shared key material.
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(For example in Figure 2 the third bit can become the �rst bit of the shared key).
They continue with this procedure untill they share enought bits, which compose
the shared key. [3]

3.3 Eavesdropping on B92

We shall now approach the B92 protocol from Eve�s perspective to see why it is
secure. So, we should set out in detail what it is that Eve wants to accomplish,
what knowledge she may supposed to have, and what she can do to the quantum
and public channels. Eve could simply stop any communications between Alice and
Bob by disrupting the quantum channel. But the scenario that we should have in
mind is that it is much more rewarding for Eve to acquire information about Alice�s
and Bob�s communications without being detected. We shall assume that Eve knows
the possible state preparations and measurements available to Alice and Bob, but
of course no knowledge of their initial random number sets.

We should consider what happens if Eve makes her own measurements (pro-
jections) on Alice�s states and sends the results to Bob. Eve faces an immediate
di¢ culty because the projection operators corresponding to Alice�s two state prepa-
rations do not commute;

�
Pj"i; Pj!i

�
6= 0:

We shall restrict ourselves to an illustrative example, in which Eve makes the
same projection , Pj"i; on every state that Alice transmits, recording the result as
"0" if the result is a "pass" and as a "1" if the result is a "fail". Eve then sends
the resulting state on to Bob. This tactic allows all of Alice�s "0" bits to pass this
test, but it also erroneously passes 50% of Alice�s "1" bits, giving Eve only a 66:6%
probability of correctly identifying a "0". On the other hand, Eve can with certainty
identify the 25% of Alice�s initial sequence which are the "1" states that fail her test.
But the nature of quantum measurements is such, that Eve irreversibly alters all
of Alice�s "1" states so that 50% of them are j"i-states and the other 50% are j#i-
states when they reach Bob. Now, if Bob tests either of these states with his "0"-
measurement there will be a 50% probability that the state will pass, which is in
con�ict with 0% probability of this happening for Alice�s j!i state, in the absence
of eavesdropping. There is a bias introduced into Bob�s results: more than 50% of
his results are "0"s.

The result of Eve�s activities is that she has only reliably identi�ed Alice�s "1"s,
at the expense of introducing an error between Alice�s and Bob�s key material. Thus,
Alice and Bob can sacri�ce a portion of their key to test the error rate. If the rate
is found to be high, they will know that Eve has been listnening and they would not
use the key material.

Perhaps the most obvious way to implement the QKD quantum channel is with
single-photon polarisation states, such as the preparation of vertical and linear-
diagonal or right-handed-circular polarisations, and the measurement of horizontal
linear and linear-diagonal or left-handed-circular polarisations. [3]
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3.4 Phase encoded systems

However, another set of single-photon states, which we shall call "phase" states, have
the algebraic properties required for quantum cryptography. If Alice and Bob use the
phase angles (�A; �B) = (0; 3�=2) for their "0" bits (respectively) and (�A; �B) =
(�=2; �) for their "1" bits they have an exact representation of B92. They both have
identical interferometers with a short path and a long path with one output port of
Alice�s interferometer optically coupled to one of the input ports of Bob�s. In this
interferometers we have two beamspliters, and two mirrors. Between the mirrors in
each interferometer we have phase modulators.

Figure 3: A time-multiplexed version of the interferometer constructed from two
smaller interferometers. [3]

A photon injected into one of the input ports of Alice�s interferometer from the
pulsed laser source ("L" in Figure 3) therefore has a 50% probability of entering
Bob�s interferometer, in a wave packet that is a superposition of two pieces that are
seperated in time by �T: One component corresponds to taking the short path, and
delayed component is the one which took the long path. On entering Bob�s inter-
ferometer each component of the wave packet is again split into a short component
and a long component, so that at each output port there are three "time windows"
in which the photon may arrive. The �rst of these corresponds to the short-short
propagation, which is followed after a delay of �T by the central component com-
prising the short-long and long-short propagation, and �nally, after a further time
�T; the delayed time window corresponds to the long-long- propagation. There is
no interference in short-short or long-long propagations, so the probability that the
photon arrives in either of these time windovs is 1=16 (we assume 50/50 beamsplites
and lossless mirrrors). Because Alice and Bob can control their long paths with their
adjustable phases �A or �B; respectively, the probability that the photon emerges
in the central time window at the detector ("D" in �gure 3) in the output port is

P =
1

16
(1 + cos (�A � �B)) : (11)
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Note that within a factor of four (only a quarter of all photons reach the detec-
tor, other are lost in second beamspliter in each interferometer) this expression is
almost identical with photon arrival probability for the version of B92. The "pass"
probabilities are smaller here, but ratios of the probabilities are the same. Thus, by
sacri�cing a factor of four in data rate, this interferometers can be used to implement
the QKD based on single-photon interference.

Figure 4: Shematic representation of the optical system. [3]

Instead of beamspliters it is more convenient to use 50=50 �ber couplers (�gure
4). Each coupler has two input and two output legs: a photon entering on one leg
has 50% to emerge from either of the output legs. No mirrors are required because
the output �ber legs from the �rst coupler convey the photons to the input legs of
the second coupler via a long �ber path or a short path. One of the output legs of
Alice�s interferometer is connected by a long optical �ber path to one of the input
legs of Bob�s interferometer. Finally photons emerge from one of the output legs
of Bob�s interferometer into a �ber that is connected to the cooled detector. We
also included an air-gap in Alice�s short path so as to adjust the lengths of the two
interfering paths to be equal.

A lineary polarised singel�photon is generated by electrical pulse. The electrical
pulse is also the start signal for the time-interval analyzer. The detector acts as the
stop signal. The detector send electrical pulse to the time-interval analyzer when
the photon is detected. This is how we can get arrival times for photons. Figure
5 shows a time spectrum of photons arrival times. The seperation of the di¤erent
paths is clearly visible, as the width of the laser pulse. The unequal height of the
short-short and long-long peaks is due to the attenuation in the phase modulators.
The photons "lost" in the prompt or the delayed time windows are useful to test for
highly invasive Eve [7].

To turn this optical system into a QKD device we place it under the control of two
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Figure 5: Time-of-arrival spectrum of single photons propagating through the �ber
interferometer of Figure 4. The leftmost peak corresponds to photons that travelled
by both short paths. The number of the photons in the central peak varies with the
di¤erence of the phases in each interferometer because of interference between the
short-long and long-short paths. [3]

personal computers: one to control the overall timing and to set Alice�s phases, and
the other to set Bob�s phases and record his results (see Figure 6). The computers
are linked together, forming the public channel, in order to initialize their activities
and to perform the results-transfer step of the QKD. A key sending procedure starts
with Alice�s and Bob�s computers �rst generating independent sets of random bits.
Key sending starts under the control of Alice�s master timer. During this time the
voltage on each phase modulator is set. When the laser is pulsed the detector gate
is opened and the output of the detector in the central time window records the
result. The procedure is then repeated with the next bit, and so on. At the end of
this procedure, Bob�s computer has a �le recording the bit number, the bit value
and whether the detector �red or not ("hit" or "miss"). Then Alice�s computer
receives over the public channel a �le from Bob of the "hit" or "miss" status for
each bit number. The probability for "hit" is denoted by the equation (11).With
this information Alice and Bob retain only the bits corresponding to "hits" which
become the key material. More sets of bits are generated and sent until a long
enough key is built up to encrypt the message that is to be sent. [3]
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Figure 6: Shematic representation of the complete QKD system. Computer control
systems prepare and measure single photons, produced at the laser "L" and detected
at the detector "D", using the optical system of Figure 5. The reconcilation of the
results occours over public channel between the two computers. [3]

4 Practical implementations of QKD

For photons the quantum communication channel can either be free space or optical
�bers-special �bers or the ones used in standard telecommunication. The commu-
nication channel is thus not really quantum. What is quantum are the information
carriers. Perhaps the most obvious way to implement the QKD quantum channel is
with single-photon polarization states. Light is guided in optical �bers thanks to the
refraction index pro�le n(x; y) across the section of the �bers. Over the last 25 years,
a lot of e¤ort has been made to reduce transmission losses- initially several dB per
km, and nowadays the attenuation is as low as 2 dB/km at 800 nm wavelength, 0.35
dB/km at 1320 nm, and 0.2 dB/km at 1550 nm (see Figure 7). Unit dB actually

means: dB = 20 log10
�
A
A0

�
: Here A denotes the amplitude of the signal and A0 the

amplitude of the reference signal. For example 6dB means that the ratio between
the amplitudes of the signal and the reference signal is approximately 1

2 : So the unit
dB=km tells us the reduction of the signal over the distance of one kilometer.

Although telecommunication based on optical �bers is very advanced nowadays,
such channels may not always be available. Hence, there is also some e¤ort in
developing free space communication systems-not only for classical data transmission
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Figure 7: Transmission losses versus wavelength in optical �bers. Electronic tran-
sitions in SiO2 lead to absortion at lower wavelenghts, exitations of vibrational
modes to losses at higher wavelenghts. Superposed is the absorption due to Rayleigh
backscattering and to transitions in OH groups. [3]

but for quantum cryptography as well. Transmission over free space advantages
compared to the use of optical �bers. The athmosphere has a high transmission
window at a wavelength of around 770 nm (see Figure 8) where photons can easily
be detected using commercial high e¢ ciency photon counting detectors. Furthemore,
the athmosphere is only weakly dispersive at these wavelengths. It will thus not alter
the polarization state of a photon. [4]

Figure 8: Transmission losses in free space. Note that there is a low loss window at
around 770 nm. [3]
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5 Conclusion

Quantum cryptography could be the �rst application of quantum mechanics at the
single quanta level. Experiments have demonsrated that keys can be exchanged over
distances of a few tens of kilometers (see for example Figure 9) at rates at least of
the order of a thousand bits per second. There is no doubt that the technology
can be mastered and the question is not whether quantum cryptography will �nd
commercial applications, but when. Present quantum crptography is still very lim-
ited in distance. These days public key systems occupy the market and every so
often, classical ciphersystems are broken. This would be impossible with properly
implemented quantum cryptography. We can look forward to an exciting future for
QKD with many possibilities for future theoretical, experimental and applied phisics
research.

Figure 9: Geneva and lake Geneva. The optical �ber cable used for quantum cryp-
tography experiments runs under the lake, between the town about 23 km north of
Geneva, and the centre of the city. [4]
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