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Abstract

150 Year Stter the discovery of quaternions, Hamilton's conjecthet
quaternions are a fundamental language for physics islteded and shown
to be essentially correct, provided one admits complex mumin both
classical and quantum physics, and accepts carrying almmgntricacies
of the relativistic formalism. Examples are given in claasidynamics,
electrodynamics, and quantum theory. Lanczos’s, Eiristeamd Petiau’s
generalizations of Dirac’s equation are shown to be veryradly formulated
with biquaternions. The discussion of spin, isospin, andswgantization is
greatly facilitated. Compared with other formalisms, laitgrions have the
advantage of giving compact but at the same time explicinfdas which
are directly usable for algebraic or numerical calculation



Notations

In general scalars, vectors and quaternions are repredantke following types :

e Scalars (elements @ or C) :
Preferably lower case Roman or Greekb, ¢, a, 3...

e \ectors (elements dk? or C? ) :
Any arrowed charactew, B,V ,d, 7, ...

e Quaternions (elements &if or B) :
Preferably upper case roman or greek:B, C, A, ...

Please distinguish :

e B electromagnetic field bivectorB = [0; E + iB]
e B magnetic induction vector (arrowed)

e B algebra of biquaternions (‘mathbb’ font as f&rC, andH)

Square brackets are used to emphasize that bracketedtopsa(dig.,[x] for a
variable, or] | for an operand within an expression) are quaternions, @pesent
quaternions alscalar; vector| pairs :

o [z] =s,7]

Angle brackets are used to emphasize that bracketed deanttg.,(S), are
scalars, or to restrict quaternions to their scalar part :

o (s+1)=s

Please note the use of the following operators :

e () or ()~ quaternion conjugation (bar or minus)

e ()* imaginary conjugation (star)

e ()~ order reversal or ordinal conjugation (tilde) :(AB)~ = BA

()
()

e ()™ biconjugation (plus)
()
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e ()~ transposition (transpose):(i Z) — (g E)

e Ao B scalar part of quaternion$B: Ao B = (AB) = S[AB]
e A A B vector part of quaterniondB: A A B = V[AB]

e () proper time total derivative (dot)(:) = o —=10)

With ¢ the velocity of light (we use generally the convention= 1) the most
important four-dimensional physical quaternions are :

o four-position : X' = [ict; 7]

four-gradient :V = [52; 2] = [0jur, V]

=

four-velocity : U = ~[1; —if]

energy-momentumpP = [E; —icp)

generalized momentumll = [H; —ic7]|

-

electromagnetic four-potentialA = [V'; —iA]

e charge-current density.J = [p; —z’]’]
Lorentz transformation quaternions operators are ‘méthbaracters :

e Spinor-rotation :R() = exp(560ad)[| = [cos(%@);sin( 0)ad][ ]

N[

1
2

e Spinor-boost B() = exp(i§b)[ | = [cosh(¥);isinh($)b][ ]
e Spinor-Lorentz :L() = BR| |

Quaternionic and quantum mechanical scalar products :

e Angle “bra” and “ket” delimiters are used to emphasize thgeaof symbols
over which a scalar part is calculated :

(A|B) = (AB) = S[AB]

e Formal quantum mechanical Hilbert spaces’s scalar preduetemphasized
by using double “bra-ket” symbols, i.€,..)) instead of(...). E.Q.:

@llo) = [[[1@vercow

where()* is biconjugation, not Hermitian conjugation denoted by
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1 Introduction

For a contemporary physicist, the name Hamilton is primaagsociated with
what is known as the "Hamiltonian" formulation of dynamiaslthough math-

ematically equivalent to other formulations such as theraagian formalism,

Hamilton’s method provides a description of a classicalesysvhich has the con-
siderable advantage that the problem can easily be "qealtize., generalized
from classical to quantum physics. For this reason, in atllheoks, the operator
H appearing on the right-hand side of the Schrédinger wavateiu

0
i U = HU (1)

is called the "Hamilton operator"” or, simply, the "Hamiltan."

On its own, this formulation of dynamics discovered by Haamlin 1834
(which allows problems of optics and problems of mecharicke worked out
interchangeably) is enough to put Hamilton among the gseateysicists of all
times, at least at the level of Newton or Maxwell, and not aryfrom Einstein.
At this Conference, however, we celebrate another majaoudery of Hamilton:
the invention of quaternions in 1843.

But quaternions were not Hamilton’s only important disagvan algebra:
complex numbers were first. Indeed, in 1835, Hamilton hazbaly found a math-
ematically appealing and consistent way of interpretiregggb-called "imaginary
numbers." By considering pairs of ordinary numbers, andhdefia suitable mul-
tiplication rule, he showed that all operations that couddniiade with ordinary
numbers could also be made with his number doublets.

However, as it often happens in the mysterious process teail'discovery,”
Hamilton had a peculiar mentalimage in his mind when he wiagiting of algebra:
While he imagined geometry of a science of "space," he coadeilgebra as the
science of "pure time" [1], and therefore understandinggimary numbers meant
for him coming closer to understanding the essence of tirhes;Jwhen Hamilton
was thinking of algebra, his mental image was that of a plstsian image of
somebody whose ambition is to discover the laws of inanimatere and motion.

Therefore, when after many unsuccessful attempts Hanfiltalty succeeded
in generalizing complex numbers to quaternions (which iregior their repre-
sentation not just two but four ordinary numbers) he definibelieved to have
made a very important discovery. This conviction, howekiamilton would not



include in his scientific writings. But in his correspondef@nd in his poetry,
Hamilton made it plain that he really thought he had discestesome synthe-
sis of three-dimensional space, the vector-part, and tthree scalar-part of the
guaternion.

The astonishing fact is that indeed quaternions do foreshd@ur four-
dimensional world, in which space and time are united intingls entity, the
space-time world of Einstein’s Relativity” [Ref.2, page6l3 In effect, as sci-
ence advances, more and more evidence accumulates, shbatmgsentially all
fundamental physics results can easily and comprehensékgxpressed in the
language of quaternions. If that is so, then the often-matleism that Hamilton
had “exaggerated views on the importance of quaternionsf.fRpage 140] was
ill-founded. And therefore, contrary to what is often satdmilton was right to
have have spent the last twenty-two years of his life stuglgihpossible aspects
of quaternions.

However, what Hamilton did not know, and could not have knaims time, is
that quaternions would only become really useful in apied theoretical physics
when problems are dealt with in which relativistic and quamteffects play an
essential role. In such problems, in effect, it is not so ntheh'real quaternions”
Hamilton was studying that are useful, but the so-catliggiaternionswhich are
obtained when every four components of the quadruplet éoeved to become
complex numbers. This is not to say that Hamilton’s work oal guaternions
was vain. Quite the contrary: most algebraic propertieseaf quaternions that
Hamilton so carefully studied can be carried over to biguabas.

But, for the more practical purposes of non-relativistioon-quantum physics
and engineering, it is true that operations with quatermiare not sufficiently
flexible. We are therefore in a fortunate position today #fi@r the simplification
of the somewhat cumbersome notations used by Hamilton, weedtaur disposal
the modern vector notation introduced by J.W. Gibbs. Uskmg hotation, we
can now work with quaternions much more easily than with Htam's original
notation? In particular, either we separate the quaternion into é$ss@nd vector
parts, separating or mixing freely "scalars" and "vect{8"or use it as a whole,
especially when we deal with the fundamental aspects oféieal physics, as in
this paper.

My letter relates to a certain synthesis of the notions ofdiand Space, ...” Cited in Ref.1,
page 149.

2“And how the One of Time, of Space the Three, Might in the ChaiSymbol, girdled be.”
Cited in Ref.1, page 192.

3When using the modern vector notation with quaternions itmportant to keep in mind

Gibbs'’s redefinition of the sign of the scalar product - b = —(@b) = —d o b = —S|ab]



Hence, if we now anticipate what we will develop in the seqaeld jump
to our conclusion, we are indeed going to show that while @uains are not
the panacea for solving all possible physical or mathermbpicoblems, they do
nevertheless provide an extraordinaryly powerful framdgwor any problem in
which some four-dimensional or quantal aspect of our playsworld intervenes.

That this is so, and why it is so, is mysterious. As Wignerssteel in his
often quoted article entitled "The Unreasonable Effeciass of Mathematics in
the Natural Sciences" [4], the biggest mystery is, possihig fact that once a
particularly efficient mathematical scheme has been foondhie description of
some often crude physical experiment, it turns out that Hreesmathematical
tool can be used to give an amazingly accurate descriptiam lafge class of
phenomena. This is what we have discovered: once the bigiateformalism
is taken seriously as a language for expressing fundamehyaical laws, it so
happens that more and more phenomena can be predicted dy gemgralizing
the accepted results while staying within the frameworkguaternions.

To do so, one has however to follow a few simple guide-lines:. iRstance,
the time variablet"# should always be written as a pure imaginary number and,
consequently, derivation with respect to time should aB/\kaaeywrittenC%. Hence,
the fundamental space-time variaBleand the corresponding four-gradiénwill
always be written as

X = lict; 7] (2)
=[%;%] : (3)

A second rule is that there should be himlden":"; in other words, that the
imaginary unit 7" should always be explicit, and that imaginary conjugation
should always apply to all:"s. This means that contrary to the convention of
some physicists [3,5] one should not use the so-called "Hienm' or "Pauli-
units," but only the real quaternion units defined by Hamiltwhich together with
the scalar " have the advantage to form a closed four-element group;wisi

not the case with the "Pauli-units."

If these two rules are followed, one discovers that therenes and only one
"i" in physics and in mathematics; that imaginary conjugatan always be
given a consistent interpretation (either in classical@rgum physics); and that
while "i"® is necessary in quantum theory, is also a very useful symbol in
classical physics because it often contributes to distghgguantities which are of

a different physical nature.

40r "ict," wherec is the velocity of light, to make explicit that the time andasp variables
have different physical dimensions.
50r, more precisely, a "complex structure" [6].
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To conclude this introduction, let us summarize our maimpaf quaternions
are used consistently in theoretical physics, we get a celngmsive and consistent
description of the physical world, with relativistic andaquum effects easily taken
into account. In other words, we claim thdamilton’s conjecturethe very idea
which motivated more then half of his professional life,,i.the concept that
somehow quaternions are a fundamental building block opttyesical universe,
appears to be essentially correct in the light of contenmydaaowledge.

2 Some definitions and properties of
guaternion automorphisms

Let us review some definitions and properties of the fourdogsaternion linear
automorphisms, i.e., the non-trivial involutionsIdf the field of quaternions, or
B the algebra of biquaternions.

The first two arejuaternion conjugationwhich reverses the sign of the vector
part, andimaginary conjugationwhich replaces the scalar and vector parts by
their imaginary conjugate

Q—Q =I[s;-1] , (4)
Q—Q =[s"v] . ()

Quite often in practic¢ ) and( )* are used in combination. Following Hamilton’s
usage of the prefix biwe call this third involutiorbiconjugatior? and use for it
the symbol( )* _

Q— QT =[s"—v]=(Q)" . (6)
In the same spirit we call a complex vector a bivector (rathan a "six-vector"),

but we will refrain from using the term "biscalar" suggestad Hamilton for
complex numbers.

Using these three involutions we have the following defoms:

e Qisascalarif = Q e () is a vector ifQ = —Q
e QisrealifQ*=Q e () isimaginary ifQ* = —Q
e Qisbireal ifQ* = Q e () is antibireal ifQ* = —Q

SRather than "Hermitian conjugation,” symkgl’, as it is often improperly called.



When operating on a quaternion expression, quaterniorugatipn reverses
the order of the factors. Thus

AB=BA and (AB)" =BTA" . (7)

The last non-trivial involutionprder reversal(or ordinal conjugatior), is more
subtle and requires some explanations for which it is besdtton to Hamilton’s
"Elements of Quaternions,” and more specifically to a noteeddy C.J. Joly in
1898, at the end of section ten [7, Vol.1, p.162].

Starting from the set of quadruplets of real or complex nusilibe quaternion
algebra is obtained by requiring their product to be assweiaand the division
to be feasible always, except possibly in some singularscaséhen, writing

two quadrupletsd and B as scalar-vector doubletfs; a] and [b; 0], and using
contemporary vector notations, their product has thevotig explicit form

[a;a@[b;b] = [@b+pd-b; ab+ab+qaxb] . (8)
The two constantg andq are related by the equation
¢ +p*=0 (9)

which shows that there is some residual arbitrariness wieéinidg the product
of two quadruplets. For instance, takipg= —1, ¢ can be equal to either
+1 or —1. On the other hand, taking = +1, ¢ may be+i or —i. Thus,
the choicep = +1 corresponds to the Pauli algebra. But, as we have already
said, we will keep Hamilton’s choice, = —1, which is also more fundamental
because it corresponds to the Euclidian metric in the cageadfquaternions,
and to Minkowski's metric in the case where the four-dimenal space-time
position vector is written as in formu(&). Moreover, with Hamilton’s choice, the
imaginary conjugate of a product is equal to the productefrtraginary conjugate
of the factors: this dispenses of special rules which areetiomes necessary when
using "Pauli units.”

In short, the arbitrariness in the sign pfs connected with the signature of
the metric, and the choice of the metric determines the dignamd the usage of
"i" when defining physically meaningful four-dimensional gtiges. In effect,
since the square of the norm of a quaterniors by definition its product by its
conjugated quaternion, we ha\|?> = AA = a? + p|v]? . Therefore, for a given
signature, the choice of the signois immaterial because one can always multiply
the vector part of all quaternions by"In order to get the desired signature.

’Such special rules are necessary in the standaiddtrices" formulation of Dirac’s theory
because they are based on the Pauli matrices which contalgelraic,/(—1) which should not
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The arbitrariness in the sign a@f is due to the non-commutativity of the
quaternion product. Indeed, changing the order of the factandB is equivalent
to changing the sign af. The involution associated with the changing of this sign
is called "order reversal" (or simply "reversal") and isidaated by the symbol
()~. When biquaternions are used to represent physical gigstitspace-time,
sinceq is the sign associated with the vector product, there is seatonnection
between order reversal and space inversion. However, aignto the case of
p, there appears to be no invariant overall criterion to deéid the sign ofg.®
Therefore, in accordance with the principle of relativiage has to make sure that
fundamental physical entities are "order-reversal cewdti(or simply "ordinal
covariant"), i.e., that they do not arbitrarily depend oa $iign ofq.

In this respect a last point is of importance: whereas thblpro of signature
is common to all formalisms, order reversal is specific taguaons and Clifford
numbers’, and therefore something that should be carefully consitieteen any
Clifford algebra is used in physics. For this reason, bezaasersal was not
properly considered — for instance, in defining fundamenaintities as "ordinal
invariant" — many authors using quaternions in physics imagewith problems.
Indeed, as we will see, reversal plays an essential role winigng fundamental
equations of physics.

3 Irreducible representations of biguaternions:
Spinors and bispinors.

Before going to the physical applications, let us remindtifaiit proof) some
elementary theorems concerning the irreducible decortiposiof biquaternions.

(1) Any real quaterniori = R* such thaiR|> = 1 can be written
R = exp(5a) = [cos(5);sin(5)d] (10)
whereq is a real number called the angle and unit vector called the axis.

() Any bireal quaterniomB = BT such tha{B|? = 1 can be written

- -

B = exp(i§b) = [cosh(%);isinh(})b] (11)

8This observation relates to the experimental fact thatemiihe flows in only one direction,
space is not oriented.

%"Order reversal" is related (but in general not identicaljreversion"”, one of the three basic
involutions defined on any Clifford algebra.
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wherey is a real number called the rapidity ahc unit vector called the
boost directiort®

(1)  Any biquaterniony with non-zero norm, i.eJQ|* # 0, can be written

(V)

(V)

@ =cRB (12)

wherec is a complex numbelk a normed real quaternion, atia normed
bireal quaternion.

Any biquaternionS with zero norm, i.e.[S|? = 0, in which cases is called
singulart!, can be written as a product of three factors

Q =rRo (13)

wherer is a real numberR a normed real quaternion amda primitive
nullquat

o = 1[1;i] (14)
wherer/ is a real unit vector and has the property of being adempotent
ie.,o0?=o.

Multiplying a nullquat from one side by any biquaternion dawt change
its primitive nullguat.

Since two real parameters are needed to fix the direction oftavecctor, we

see from(10) and(11) that three parameters are necessary to represent a normed

real or bireal quaternion. Similarly, a general biquatennil2) requires eight
parameters, while six suffice for a nullquas).

Theorem (V) provides the basis for defining spinors in theieuon formal-

ism.

In effect, for a given primitive nullquat, the left- (or right-) ideal forms

a four parameter group that is isomorph to the s%)iapinor group [9]. As a
consequence, we have thpin% decomposition theoremvhich establishes the
link between Dirac’s bispinors and biquaternions:

(VI) Relative to a given primary nullquat, any normed biquaternion Q can be

written as abispinor, i.e., as the sum of two conjugatsginors
Q = R10' + RQE (15)

whereR;, R,, are two real quaternions.

10A bireal biquaternion is called minquatby Synge [8].
1A singular biquaternion is calledraullquatby Synge [8].
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4 Relativity and quaternionic tensor calculus

Usually, when special relativity is introduced, one doestaf algebra in order to
work out the somewhat complicated formulas of Lorentz ti@msations. Even

when quaternions are used for this purpose, the proof of qnev&ence of the

quaternion formulas with the usual ones is rather com@at§t0]. In the present
paper, our intention is to develop the fundamental concapdspresent the main
results without giving the details of the proofs.

We start therefore from the fundamental ideas of relatiagvariance, and
tensor calculus which are that all observers are equividemtriting the physical
laws, and that all meaningful physical quantities shoulehaell defined trans-
formation properties when going from one observer to amathel? Hence, if
Hamilton’s conjecture is correct, i.e., if indeed biquatens can be used as ele-
mentary building blocs of theoretical physics, any meafuihghysical quantity
should be writable as a simple explicit quaternion expogssihich should have
the same form in alteferentials'® In other words, the components which in or-
dinary tensor calculus are represented by symbols sutf!,ﬁ;asrvhere the various
indices show how the physical quantity varies in a changefefential, should be
replaced by quaternionic monomi&xsRST... where the indices are replaced by
some convention making thariance* of each factor in the monomial explicit.

Let us take, for example, the general Poincaré transfoomdaiw. This is a
change of referential which corresponds to the affine foncti

Q' = AQB + C (16)

where (a priori)A, B andC are any kind of quaternion expressions.Aland B
are functions of the four-position vectdf, and the translation terdi is zero, we
have a local Lorentz transformation, andlibnd B are independent of a global
Lorentz transformation.

The most basic tensor quantity is obviously tber-vectorsuch as, for exam-
ple, the space-time vectdt given in formula(2). Four-vectors have the following
variance

V' =LVLT (17)

where/ is restricted, by Einstein-Minkowski’s condition

VV = V'V’ = invariant scalar (18)

12For an enlightening introduction to tensor calculus andetation to quaternions see [11].
See also Ref.2 page 140.

13).e., “reference frames” (gallicism).

14).e., “transformation law” (gallicism).
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Using (17) we see that this condition implie§L = £*£* = 1. Thus, the
quaternionl which represents the most general Lorentz transformasanply

a biquaternion of unit norm. By theorem IV, such a transfdramacan therefore
be decomposed into a product whé&es a rotation and3 a boost. To find the
explicit form of the boost, we applyl7) to the velocity four-vectot/. Then,

transforming from the rest-frame (in whi¢h= 1) to a moving frame, we find

U = BB* = BB =~[1; —if] (20)

where = #/c is the relative velocity of the moving frame and= (1 — 32)~1/2
the Lorentz factor. We see therefore that the Lorentz be@skind of quaternionic
square-root of the four-velocity.

But, the four-vector is not the most simple non-trivial coaat quantity.
Hence, for aspinor, there are four possible transformation laws (or eightne o
takes order reversal into account)

SI=LS , S,=SL , S,=rLSy , S,=8.L" . (21)

In fact, as itis immediately seen, these four types of vaearare the counterparts
to the four basic variances of tensor/spinor calculus: reetr co-variance, dotted
or undotted indices. But, here, the last three can be deducadthe first by
means of the automorphisn$, ()*, and()*. This leads directly to the general
idea of quaternionic tensor calculus: any time some conaf@ur-dimensional
guantity is introduced, the only possible new variance iy wiatain is the result of
operating with one of the three basic involutions, posstioi;mbined with reversal
()~. Multiplying these quantities, and alternating the vacies by making use of
quaternion conjugation, one obtains more complicatedtsnsg-or example,

T = V[V, V3] (22)

is a six-vectot® which has the varianc@’ = £*TL*. In fact, sincel*L* =
LL = 1, the scalar partV;15) of 11V, is an invariant, while its vector part
T=ViAV,isa complex vector such as, for example, the electromagfieki
bivectorB = E + iB3.

Of course, when changing referential, besides the progestormations such
as(16), there are also the so-called improper ones which involeeespor time-
reversal, complex conjugation, and order-reversal. Thagebe taken care of in
the quaternion formalism, using in particular the four basvolutions, so that, in
the spirit of relativity, covariance can also be insurechwespect to them. For

15Similarly to the concept ofour-vector the concept o$ix-vectorrefers to a variance, not just
to the fact that such objects are necessarily bivectorshwiwe six real components.
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example, in the case of tensors constructed by multiplying-fectors of odd
parities, a tensor that is order-reversal invariant wbabe of odd parity.

In summary, as long as one remains within four-dimensiopats-time and
works with biquaternions, it is possible to achieve the sameer and flexibility
as with ordinary tensor/spinor calculus without having @nipulate explicitly a
large number of indices. This is possible in the realms dfilspecial and general
relativity [12].

5 Classical dynamics and Hamilton’s principle

Classical mechanics is a domain in which Hamilton himselfii many brilliant
applications of real quaternions. Just think, for examplehis very elegant
and general resolution of the Kepler problem, in which thatgnion formalism
leads directly to the conservation of angular momentum enithed misnamed
"Runge-Lenz" vectot®

Here, however, we will consider the classical dynamics ofsiesn of point
particles,without specifying a priori whether it is a relativistic or non-riastic
problem. The fundamental concept is then the "Hamiltofittjch is a scalar
function of time, positiori, and canonical conjugate moment@mThis Hamil-
tonian functionH can be merged together with the canonical momentum into one
bireal quaternion that we call tHeur-Hamiltonian

I = [H(t,&,7); —i7(t,7)] . (23)

For example, for a system point particles in a time indepenhdgternal field 1
is the sum

whereP,, = [E,; —icp,] is the energy-momentum of each partigigtheir electric

—.

charge, and! = [V; —i 4], the external electromagnetic four-potential.

The equations of dynamics can then be expressed in a numegusfalent
forms, the simplest one being possibly #eion postulatevhich states that the
four-Hamiltonian derives from an invariant scalar funotithe actionS(¢, %) :

VS =ill . (25)

16See Ref.7, Vol I, art. 419, pages 298-299. The angular mameand Runge-Lenz vectors
are denoted by ande, respectively.
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SincesS is a scalar, operating on both sides withand taking the vector part we
find -

VAIlI=0 . (26)
This is, written in quaternions, the condition fdil to be a total differential, or,
equivalently, forll to be an exact one-form, i.e.,

f@ﬂnzo (27)
which, for any given two fixed point; andX5, is the same adamilton’s principle
Xo .
6/ (dX1) =0 . (28)
X1

Moreover, for a system in which/ does not depend explicitly on timé7) is
also fully equivalent tatHamilton’s equation®f motion:

f:iﬂ, ﬁ:—iH. (29)
dx
The sequence of transformations we have gone through mhyikea succession
of trivialities. This, in fact, is not the case. Had we not plg 7" in front of
7 in (23), we would not have been able to work out these results. Mereov
while all expressions are formally covariant, they are tmaswhether we assume
the kinematical expression f@? to be relativistic or not. Hence, although we
have done nothing more than rewriting well known results see that complex
guaternions provide a compact and convenient frameworkriting the equations
of Hamiltonian dynamics, and that the resulting expresseme automatically in
relativistic covariant form. It is the same with Maxwell's@ations: as will be
recalled in the next section, writing them down in compacatgtnionic form
requires the use Quaternions.

To show what happens if we introduce relativity suppose fangple that we
apply (25) to a single particle. The fourth component, i.e., time orgpeds no
longer an independent variable. For instance, we have nevetativistic identity
|P|? = m? and(25) can be rewritten as

(iVS + eA)(iVS + eA) =m?* . (30)

This isHamilton-Jacobs equation for a particle in an electromagnetic field.
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6 Maxwell's equations and quaternionic analyticity

After the casting of Lorentz transformations into quatemiorm, one of the first
modern applications of biquaternions was the rewriting afiell’s equations in
1911 by Conway [13], and in 1912 by Silberstein [14], as

VA=B , VB=-4rJ (31)

whereA = [V, —iA] is the electromagnetic potential arid= [p, —ij] the source
current density. This very compact form allows many caloikes to be done very
effectively. In particular, as shown by Silberstein in 19t energy-momentum
tensor of the electromagnetic field, i.e., Maxwell’s streasrgy tensor, has a very
simple explicit quaternionic form [15]

4xT() = §B~(1B = ~3B*(|B (32)

where the free spade corresponds to the position of a quaternionic argunient.
When this tensor is used to calculate the flow of energy and emtumm through
some given hypersurface, the result is automatically ¢artand there is no "4/3
problem" as with the obnoxious Poynting vector [16]. Moreowsing(31) to
calculate its divergence, one immediately obtains Lorgiitzce equation

P=T(V)=-YJB+B~J)=—-F(J) (33)

which shows that the quaternion form of the electromagnigic tensoris
F() = Y([]B + B~[]), a physical object which should not be confused with

the electromagnetic fieldivector B = E + iB, or its reverseB~ = E — iB, a
non-trivial distinction first made in 1955 by Kilmister [17]

A most interesting idea suggested by Maxwell’s equatiortgigternion form
was developed by Lanczos [18] in his PhD thesis of 1919. lacefiMaxwell’'s
second equation in vacuurW,B = 0, is the direct generalization of the Cauchy-
Riemann analyticity condition from two to four dimensiofisis therefore natural
to envisage classical electrodynamics as a biquaterrfietd¢heory in which point
singularities are interpreted as electrons [19]. In thigedhe field at some point
X is calculated by means of the appropriate generalizatidDanfchy’s formula
in which the integration contour becomes an hypersurfae) surrounding the

point
=53 ///deZB Y) (34)

1"This convention, due to Hamilton and promoted by Conway am#&[8], generalizes Dirac’s
“bra—ket” notation to biquaternions. Its value stems frdma $peed of calculation which derives
from the simplicity of the composition rule: Ja" ® b[ |’ = ab[ |V’a’ . Moreover, it provides a
clear distinction between “numbers” (or “vectors)) and “fonctions” (or “operators™®)| | .
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whereR = ) — X and|R|?> = RR. This generalization of complex analysis has
been extensively studied by Fueter in the case of real quates [20] and more
recently extended to biquaternions and higher dimensiGlifébrd algebras [21].
This formalism can now very efficiently be applied to stamdaroblems, such as
the calculation of retarded potential and fields [22].

7 Spinors in kinematics and
classical electrodynamics

Spinors are increasingly often used in classical physidsralativity [23]. How-
ever, possibly the first significant use of spinors in cladguhysics was made
in 1941 by Paul Weiss [24], the patrticularly brilliant firshP student of P.A.M.
Dirac. By "significant” we mean that Weiss’s applicationgjoaternions was not
just rewriting an otherwise known result in quaternion forim fact, Weiss gave
an independent interpretation and derivation of an impontdysical law: the
Lorentz-Dirac equation.

Weiss’s starting point was the fact that the quaternion &ism provides
explicit formulas which are difficult to obtain by the ordigamethods of analysis.
For instance, in kinematics, taking the square root of the-felocity as in(20)
is the same as making the spinor decomposition of the folocitg. An explicit
formula for the four-acceleration is then obtained by tgkime total proper-time
derivative on both sides

Z=U=BB" , Z=U=BAB" (35)

where, as shown by Weiss, the invariant real vecfors the acceleration in
the rest-frame. Similarly, since null-four-vectors capleitly be formulated with
biquaternions, one has explicit formulas for the light-€and retarded coordinates

X — Z = 2isBsB* (36)

wheres is the invariant retarded distance from the position of tharge Z to
the space-time point’, ands an idempotent such d$4) with 7 pointing from
ZtoX.

In his paper, Weiss does not speak of spinors. On the contrargnakes it
clear that his decomposition has nothing to do with Dirdi&pinors But what
he does is exactly the kind of spinor decomposition we usaytaelg., in general
relativity.
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Weiss’s application is to show that in this formalism the flolvenergy and
momentum through a hypersurface surrounding a point cham@ditrary motion
can be calculated exactly using Silberstein’s form of thexMell tensor(32).
He then proceeds to find the world-lines for which the energymentum flow is
stationary, and discovers that the resulting equation dfanas nothing but the
Lorentz-Dirac equation [25]

mcU = 2ie*(UUU +U) — Le(UB + B*U) . (37)

8 Lanczos’s generalization of Dirac’s equation:
Spin and isospin.

About one year after Dirac discovered his relativistic waggiation for spir%
particles, Lanczos [26] published a series of three agigtewhich he showed
how to derive Dirac’s equation from the more fundamentalpbed biquaternion
system?

VA=mB , VB=mA . (38)

Obviously, Lanczos was inspired by his previous work wittatgunions [18].
Indeed, comparing with{31), it is clear that(38) can be seen as Maxwell's
equations with feedback, and that, following Lanczos [2R]s feedback can
be interpreted as a distinctive feature of massive pasticldowever, there is a
problem. In Dirac’s equation, the wave function is a fouragmnent bispinor,
while A and B are biquaternions with four complex components each. Fttisd
"doubling” problem that puzzled Lanczos a lot, as well agrthwvho later tried to
cast Dirac’s equation in quaternion form [28].

The first step towards a Dirac bispinor is to postulate thahd B have spinor
variances, i.e., that’ = LA andB’' = L£* B, which leaves the possibility of making
a gauge transformation, i.e., a right-multiplication byneoarbitrary biquaternion
G. Then, to get Dirac’s spié field, Lanczos had to make the superposition

D= Ao+ Bz . (39)

Hereo is an idempotent such d$4) with, for definitivenessy = e, the third
quaternion unit. Comparing witfl5), we see that has the effect of projecting
out half of A, which added to another half of the complex conjugate@ ofives

18We write m for mc/h takinge = h = 1 for simplicity. Note that Lanczos could have taken
the reverse of38) as his fundamental equation: AV =mB~ , B~V =mA . (387)

18



a Lorentz covariant superposition that obeys the wave exquat
VD =mD%iez . (40)

This equation, to be called th&irac-Lanczos equatigris precisely equivalent to
Dirac’s equation. It will be rediscovered by many peoplepamticular by Girsey
[29] and Hestenes [30]. While equivalent to other possiblent, (40) has the

considerable didactic advantage of making "spin" explititdeed, the vector on
the right-hand side shows that Dirac’s equation singlesouwrbitrary but unique
direction in ordinary space: thepinquantization axis.

Using this equation, it is easy to construct and study th@wuarcovariant
quantities which are important in quantum electrodynamiEsr example, the
conserved probability current is= DD, and Tetrode’s energy-moment tensor
is

T() = (([IV)D)iesD* — Dies(D* (V) = (A[)DD* . (41)

However, the superpositiof39)is not the only one leading to a spijnfield
obeying equatiori40). As shown by Girsey in 1957, {B9) represents proton,
theneutronis then [31,32]

N = (AG — B*o)ie; . (42)

Hence, Lanczos’s doubling is nothing lsspin Girsey’s articles had a tremen-
dous impact [27] and inspired ideas like chiral symmetry #relsigma model
[32]. Indeed, "internal" symmetries such as isospin ardigk@nd trivial in
Lanczos’s double equatiof38), while only space-time symmetries are explicit
in Dirac’s traditionald x 4 matrix formulation or the biquaternionic formulation
(40). Unfortunately, except in his PhD dissertation, Girsey enad reference
to Lanczos’s work, and Lanczos never learned that he hadigatied isospin in
1929 already!

Since the fundamental fields afeand B, while D and N are the physically
observed ones, itis of interest to find the most general giagsformations ont
and B which are compatible with the superpositidi9) and(42). In fact, these
transformations form a group that was discovered in anatbwatext by Nishijima
[33] and which has the following explicit representation

Gy = oexp(ia) + Texp(iff) . (43)

By direct calculation, one finds that whilé and B transform undeiGGy, D
transforms asxp(—esa) and N asexp(—es(3), respectively, so that the system
(38) describes two particles of equal mass but different eleatarges, such
as the proton and the neutron. Hence, by just trying to writad® equation
in quaternions, one is automatically led to discover thestexice ofisospin a
fundamental feature that indeed is found in nature.
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9 Proca’s equations and the absence of
magnetic monopoles

When we wrote Maxwell’'s equatiof31) we made the implicit assumptions=

A~ i.e., thatA was a ordinal invariant fundamental four-vector. If we tignn
to put a mass term on the right of the second Maxwell equatiod, therefore
introduce a "feedback" to get the wave equation for a masgivel field, we find
that Maxwell’'s equations have necessarily to be generhtizéhe following form

VAA=B , (44"
(VB+B"V)=m’A . (44"
This is, written in biquaternions, the correct spin 1 wavaattpn discovered in

1936 by Proca [34]. As with Dirac’s equation it is easy to wiit quaternions the
conserved current and the energy-momentum tensor

2J=A"B+BTA+(...)” (45)
87T () = BT[|B+m*AT[JA+ (...)~ (46)
where(...)~ means that the expression has to be completed by addingvérsee

of the part on the left. Hence, the current and the energy-embam are bireal
and ordinal invariant four-vectors, as it should be.

Now, just as we derived Dirac’s equation from Lanczos'’s ¢éiqua38) by
making the superpositiof89), Proca’s equatiori44”) can also be derived from
(38) by adding the second Lanczos equation to its reverse equdfithis is so,
what then is the meaning of the equation obtained by sulbigacainczos’s second
equation from its reverse, assuming that the poteritial ordinal invariant

VB—-B"V =0 ? (47)

Obviously, this is just the part of Maxwell's equation whbecifies that there are
no magnetic monopoles! Hence,libnczos’ssystem(38) is taken as théunda-
mental equatiofrom which Dirac’s and Proca’s equations are derived, Mdbksve
equation is obtained by taking the? = 0 limit in (44), and (47) insures the
absence of magnetic monopoles.

However, if we would have assumed thét= — A~ instead ofA = +A~,
we would have found another fully covariant field equationlyaiffering from
Proca’s by the fact that a minus-sign would replace the pigs-in(44”): in fact,
the correct equation for a massive pseudo-vector parfidierefore, as shown by
Gursey in his PhD thesis [29], the wave-equations of allesaatd vector particles,
and of all pseudo-scalar and pseudo-vector particlesuatelggenerated cases of
Lanczos’s fundamental equati@ss).

20



10 Einstein-Mayer: electron-neutrino doublets
in 1933!

When he wrote his 1929 papers on Dirac’s equation, Lanczeswith Einstein
in Berlin. In 1933, Einstein and Mayer (using semi-vect@adprmalism allied
to quaternions) derived a sp%ﬁield equation (in fact, a generalized form of
Lanczos’s equation) predicting that particles would comdaublets of different
masses [35,36]. The idea was that the most general Lagrafaiguaternionic
fields, to be called the Einstein-Mayer-Lanczos (EML) Lagyian, should have
the form

L= S[AWA Y BYVB — (AYBE* + BTAE)+ ()Y . (48)
whereFE € B. The field equations are then
VA=BEt | VB=AE (49)

which reduce to(38) when £ = m. In the general case, the second order
equations forA or B become eigenvalue equations for timass(the m factor
appearing in the argument etp im(FEt — p - ) of plane wave solutions. This
generalization is obtained by the substitutiohs — AE andBm — Bm in the
Lagrangian leading t¢38). Therefore, mass-generation is linked to a maximally
parity violating field.

There are two basic conserved currents: the probabilityeotit/, and the
barycharge currenk

J=AA"+BB* , K =AEA'+BEBT . (50)

KeepingFE constant,/ is invariant in any non-abelian unitagl/(2) @ U (1) gauge
transformation of4 or B.1° On the other handi is only invariant for abelian
gauge transformations which also commute withi.e., elements of the general
Nishijima group(43) such that®’ andoc commute.

Of special interest are the cases in whichs also a global gauge field. The
first such gauge is whef is idempotent. One solution @#9) is then massive
and the other one massless: an electron-neutrino doublég nost general
local gauge transformations compatible wi#o) are then elements of the unitary
Nishijima groupUy (1, C) combined withonenon-abelian gauge transformation
which operates on eithef and A, or E and B, exclusively. This leads directly to
the Standard model of electro-weak interactions [37].

%In biquaternions, these transformations have the 6 = [ J¢’® exp(16a) .
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The second fundamental case is whéns real: £ = E*. The eigenvalue
equation is degenerate and the two masses are equal. As blyd@iirsey [32],
equation(49) describes a nucleonic field, non-locally coupled to a psecalar
sigma-pion field.

Again, as in the examples shown in the previous sections, ilktaris con-
jecture seems to be realized. Einstein-Mayer’s genetadizé49) lifts the mass
degeneracy of Lanczos’s original equati®g) and leads to electron-neutrino
doublets and weak interaction on one hand, and to prototraredoublets and
strong interaction in the form of the well known charge-ipeisdent pion-nucleon
theory, on the other hand [27].

11 Petiau waves and the mass spectrum of
elementary particles

One of the central problems of contemporary physics is tlestipn of the origin

of the mass of the elementary particles. As we have seen pbgcrag the mass
term in Lanczos’s equation by some biquaternionic paramEgtestein has been
able to show that elementary particles come in doubletsftdrdnt masses. In
fact, in 1930 already, Lanczos wondered whether a theonhiolwthe mass term
is replaced by a variable would not simultaneously solvepitublem of mass
quantization and that of infinities in field theory [38].

Well, as nobody after Einstein and Mayer seemed to have thkenzos’s
suggestion seriously, one had to wait until 1965 (aboutithe wwhen Gell-Mann
and Zweig proposed the idea of quarks) for somebody to ratritie concept. This
year, in complete independence from mainstream resedrelfrench physicist
Gerard Petiau wrote a system of equations which may prgase? a solution to
the problem of the mass of the electrons and quarks [39].

Although Petiau was thinking in very general terms, congndecomplicated
couplings between patrticles of various intrinsic spins gasy with quaternions to
write his fundamental equation in the case of s})particles [35]. It just amounts,
in the spirit of Lanczos’s feedback idea, to adding a thirdagmpn to Einstein’s
system(49) in order to close it:

VA=BC |,
VB = AC | (51)
VC = AB .
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Here A and B are the usual Lanczos sp%n‘ields, and the scalar an additional
Einstein-Mayer field of spin 0. Because the system is nowetlpg becomes
non-linear, and the solutions are much more constrainedith any usual linear
type of wave equations.

For instance, the single-periodite Broglie waveghat quantum mechanics
associates with a particle become double-peridtitau waveqd40]. Instead
of being linear combinations ofin(z) and cos(z) functions, these waves are
superpositions of elliptic functionsi(z, k), cn(z, k), etc. Avery appealing feature
of Petiau waves is that their dependence on the modulupoitdes between pure
de Broglie waves (fok: = 0) and pure solitonic waves (fdr = 1): a beautiful
realization of the wave/particle duality of qguantum medban Moreover, both
the amplitudes and thegroper masgthe p factor appearing in the argument of
sn(u(Et — p'- ), k), for example) will be quantized.

The most interesting thing, however, is happening whenrdeoto quantize
the system, the Hamiltonian function is constructed. Tgkilor example,A
as the fundamental field Petiau showed that, in terms of tkeifitegrals, the
Hamiltonian has the very simple form [39]

H = Cou*k? (52)

wheref is the modulus of the elliptic function, the proper mass, and, some
constant. The exciting thing is that the Hamiltonian, angstthe total energy in
the field (i.e., for a single particle, thegfective magsscales with the fourth power
of .

In effect, in 1979, Barut discovered a very good empiricahfola for the
mass of the leptons [41]. Assuming that a quantized selfggnef magnitude
3a~'M.c*N*, whereN = 0,1,2,..., is a new quantum number, be added to the
rest-mass of a electron to get the next heavy lepton in theeha, 7, ..., Barut
got the following expression (where= 1/137)

M(N) = M,(1+ 3a7" ni nt) . (53)

The agreement with the data of this rather simple formulargrssingly good, the
discrepancy being of orden—3 for ; and10~2 for 7, respectively [42]. In order
to get the masses of the quarks [43], it is enough to take éomihss of the lightest
quarkM, = M./7.47 . Again, as can be seenTiable 1the agreement between
the theoretical quark masses and the "observed" massegagqod, especially
for the three heavy quarks.

Since we have just se¢h2) that the energy of a Petiau field is scaling with the
fourth power, we are inclined to think that there might indlbe a fundamental link
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between such non-linear fields and the theory of the massaska@und electrons.
If this is so, what about the factor 7.47 ?

There are two non-trivial exceptional cases for elliptiedtions: the harmonic
casek = sin(}), and the equianharmonic cages sin({;). Itis very plausible
to associate the former with leptons, and the latter withrkgialndeed, in either
case, the corresponding elliptic functions exhibit sevaraque symmetry and
scaling properties, which come from the fact that in the clemplane their poles
form a modular aggregate with or 7 symmetries. Since according to (52) the
masse is proportional té?, the electron to quark mass ratio is then equal to
[sin(F)/ sin(5)]* ~ 7.47 .

But this is now very close to pure speculation, and in any oaste frontier
of contemporary research [43]. Nevertheless, it is intarggo see how far, just
following Hamilton’s conjecture, one can go in the direatiof a unified picture
of fundamental physics.

Table 1

N electron masses guark masses

Barut’s Barut’s

formula Data formula Data
0|e 0.511 0.511| u 0.068 0-8
1\ 105.55 105.66 | d 14.1 5-15
2|7 1786.1 1784.1 | s 239 100 - 300
3 10294 ? C 1378 1300 -1500
4 37184 ? b 4978 4700 - 5300
5 t 13766 ?
6 31989 ?

Comparison of electron and quark masses in Mé\alculated with Barut's
formula (53) to measured masses from Ref. [42]. (Note added in 1996: The
observation of a sixth quark of mass in the range of 160'00020'000 MeV/é

has been reported at the begining of 1995.)

12 Quaternions and guantum mechanics

Some of those who have been following us on this upwards stitting from
Hamilton’s principle and ending with a possible solutiortlie problem of quark
masses, might be surprised that just a short section isatedito quaternions and
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guantum mechanics. To these we say — in the spirit of Hanid{particle-wave
duality — that everything we have done can easily be recdbeijargon of "wave
mechanics," so that, in this perspective, we have been dpiagtum mechanics
all along.

In effect, the quantum predicate is no so much in the field ggusmwe have
been discussing in this paper, than in the interpretatiahefield’s amplitudes
(the "wave functions": complex number in the non-relatigisase, biquaternions
in the relativistic one). As Feynman clearly stated in aeevof the principles
of quantum mechanics: “It has been found that all processdarsobserved
can be understood in terms of the following prescription:eVeryprocesshere
corresponds aamplitude with proper normalization the probability of the process
is equal to the absolute square of this amplitude” [Ref.44epl].

Take, for example, the Dirac-Lanczos equati¢d), rewritten here in the case
where there is an external electromagnetic fi¢ld

VD = (mD* + eAD)ie3 . (54)
Comparing with (1), we see that the Hamiltonian is the follugpvoperator
H() = =V[] —m[|*ie; — €Al Jies . (55)

Then, following Feynman’s prescription, we have to noraelihe amplitudeD.
Since the probability current is the conserved four-ve£ldrt, a suitable norm is

oy = [[[ v o) -1 (50

where the dummy operatoil™ may be replaced by the operator corresponding
to the physical quantity whose expectation value is to beutaled. Hence once
the above prescription has been accepted as a postulatesmat much mystery
left in quantum theory, and it is straightforward, at leasprinciple, to give the
quantum interpretation of the field equations presentelddmptevious sectior?.

At this point, itis worth mentioning that in the past decadéa of a silent rev-
olution has been occurring with respect to quantum theoiyrelasingly, quantum
and classical theories are seen as part of the same theanyt #@ws that wave
mechanics can be formulated withdu{45], Lamb suggests that Newton could
have invented wave mechanics [46], and several major iigagins show that
the whole apparatus of the so-called "second quantizatibfields is redundant
[47]. Indeed, as is trivially shown in the way Lanczos’s eipra(38) generalizes

201t is remarkable that it is the use of complex conjugatiordpressions such as the Hermitian
product(56) that distinguishes quantum theory from classical physics.
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Maxwell’'s equation [31], Maxwell’s theory can be intergrdias a quantum theory
without . For instance, calculating by means of Silberstein’s gnergmentum
tensor(32) the electromagnetic field’s energy-momentum density,®t threntz’s
force density(33), is the same as applying the quantum ri#i€). Moreover, the
Hamiltonian is simply the operataif () = L(V[] — []V) just like in Good’s
quantum interpretation of Maxwell’s theory [48].

What, is then the main contribution of biquaternions to quantheory? Pos-
sibly, the clear disentanglement of'"and "h," the two elements which have
been traditionally associated with quantum mechanics.edddlooking at the
Schrédinger equatiofl ), these two elements appear together as a combined fac-
tor. In Lanczos equation [38], however," "appears in the scalar part of the
four-gradientV, and/ in combination with the mass on the right-hand side had
we not used the conventign= 1. Thus, if Hamilton’s conjecture is true;™is
definitely associated with "time" (i.e., Hamilton’s intivié conception of imagi-
nary numbers) et?i" is associated with "mass" or, more precisely, with theiplart
aspect of waves, i.e., lumps of energy localized in spac&$}9

It remains, in conclusion, to stress that the power of Hami#t conjecture
seems not to have shown its limits yet. By this we allude to ribenerous
investigations in "quaternionic quantum mechanics" whielie occurred since
the birth of wave mechanics.

Indeed, not to mention the work of Lanczos [26,38], quaterit and other
more general algebraic generalization of quantum meckdrdce been actively
studied since 1928 already [50]. The best known sequel sovtbrk is possibly
what Jordan [51] started in 1932 and which culminated in &medus article [52]
in which the first "Jordan algebra" was described. To givalatexample of the
breadth of research in these early days, we mention thalhéweyt of operators in
quaternionic Hilbert spaces was the subject of a PhD thesi®35, and that the
name "Wachs space” was proposed for such spaces [53].

A new impetus was given in the 1960’s, mainly after the workha group
around Finkelstein and Jauch [54] at CERN, followed by &HB6], up to the
synthesis soon to be published by Adler [56]. All these dawelents contemplate
the possibility that the complex numbers of contemporargngum theory may
have to be replaced by quaternions or biquaternions in soare fandamental
theory. However, it may well be that Nature is satisfied witmplex number as
the fundamental scalar field, and that in this respect aesiagli commutative:™
is enough and playing some essential role that the currgraremental situation
seems to favor [57,58].

26



13 Conclusion

The physics is in the mathematicdtucture not in theformalism What are then
the advantages of using a formalism such as Hamilton’s égqui@ns?

e Biquaternion arevhole symbold.e., they compound between one and eight
real numbers which belong to a single (or a few related) tequsantity(ies)
so that many formulas written in biquaternions are simplantheir standard
matrix, tensor, or higher rank Clifford numbers countetparn general,
they enable to dispense of at least one level of tensor indacel quite often
to reduce a few indices tensor to a single entity.

e Biquaternions arexpressivgi.e., being elements of the simplest non-trivial
Clifford algebra they provide neat and explict formulas mafiform, which
are therefore directly amenable to symbolic or numerickdutation, with
pencil and paper, or with a computer.

e Biquaternion formulas arsuggestivei.e., they often indicate the correct
way of generalizing a result, or how to relate seemingly pedelent results.

e Biquaternions provide anifying formalisme.g., they enable a fully con-
sistent use of complex numbers in both classical and quaphysics; they
lead to expressions that are very similar in both Galileath laorentzian
relativity; they are very effective in formulating the plgs of the current
"Standard model" of fundamental interactions [27,35]; etc

However, some words of caution are in order: Since biquatesnare whole
symbols it is important to take care of the problems spedlijyi@ssociated with
such symbols. For instance, in order that biquaternionesgion have a well
defined tensor character they have to be constructed fromeelary biquater-
nions that have such a character. Moreover, special caegjisred because of
noncommutativity and of the need for biquaternion expaessd beordinal co-
variant. For example, the truly correct form of Maxwell's equatiossniot the
Conway-Silberstein expressiosl ), but the gauge and ordinal invariant system

VAA=B |, (57)
2(VB+ B~V) = —4rJ (57"

which like Proca’s equationgl4) does not require the supplementary conditions
(VA)y =0,A= A~,J =J~,ie., the Lorentz gauge and the requirements that
and.J are ordinal invariant biquaternions. Itis is preciselydese such problems
were not properly understood and cured that biquaternaitesif at the beginning
of the twentieth century, to become a widespread languagahfgsics.
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