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Abstract
We study the effective pseudo-Casimir

Q.1

interaction forces mediated by a nematic
liquid-crystalline film bounded by two planar surfaces, one of which imposes a random
(disordered) distribution of the preferred anchoring axis in the so-called easy direction. We
consider both the case of a quenched as well as an annealed disorder for the easy direction on
the disordered surface and analyze the resultant fluctuation-induced interaction between the
surfaces. In the case of quenched disorder, we show that the disorder effects appear additively
in the total interaction and are dominant at intermediate inter-surface separations. Disorder
effects are shown to be unimportant at both very small and very large separations. In the case
of annealed disorder its effects are non-additive in the total inter-surface interaction and can be
rationalized in terms of a renormalized extrapolation length.
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1. Introduction

Confined liquid crystals (LCs) have attracted much attention
and are important from fundamental as well as applied perspec-
tives [1]. Because of long-range (critical) correlations implied
by the LC elastic Hamiltonian [2], the anchoring of the liquid
crystal molecules adjacent to the confining substrates has
significant effects on the properties of the confined material.
These effects can range from the changes wrought in the nature
of the structural phase transitions of the confined LC material
to changes in the behavior of the correlation functions [3, 4].
In a geometry where the director describing the medium deep
in the LC phase is uniform and thus the elastic energy is zero,
thermal fluctuations can show up through creating an effective
inter-surface interaction [5, 6]. These interactions have been
dubbed pseudo-Casimir because of the similarities with elec-

tromagnetic (EM) Casimir–van der Waals interactions [7, 8]
also related to the long-range (critical) fluctuations of the EM
fields [5]. While the phenomenology of the pseudo-Casimir
interactions in confined LC slabs is quite rich [9–14] and
can include interesting variations as in the case of nematic
polymers [15], they usually scale with the thermal energy,
being consequently small and therefore not easily detectable.

However, in recent years there have been extensive the-
oretical investigations into model systems that would more
closely mimic real experimental conditions. In this respect
models that consider natural inhomogeneities in sample prepa-
ration affecting the shape of the boundary surfaces as well as
the surface anchoring energy are particularly relevant and have
been introduced in the context of EM Casimir interactions [6]
as well as in the context of confined LC slabs [4]. The boundary
surface disorder induced by these inhomogeneities has been
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recently studied in great detail specifically within the context
of Coulomb fluids and randomly charged surfaces [16–23].
They have been shown to cause a pronounced effect on the
interactions between these disorder inducing surfaces mostly
via the coupling between the thermal fluctuations and the
surface-induced disorder. This coupling leads, after an appro-
priate averaging depending on the nature of the disorder [18],
to additional free energy terms that depend on the separation
between apposed surfaces. This disorder-induced interaction
can be sometimes larger than the standard Casimir interaction
and should thus be at least in principle easier to detect. While
most of the works on disorder-induced interactions have been
limited to the Coulomb systems, there is no reason why the
same type of phenomena should not be observable in other
systems, characterized by critical correlations.

Here, we therefore investigate the effects of disorder
in the homeotropic easy direction at the bounding surfaces
of a nematic LC film [24, 25] on the interaction between
them. Describing the surface disorder fields with a simple
Gaussian distribution for the homeotropic easy direction (with
an assumed width or variance) allows us grosso modo to
capture the orientational anchoring disorder present at het-
erogeneous surfaces. We consider both types of disorder: the
quenched type as well as the annealed type, and derive the
corresponding interaction free energies after the appropriate
averaging over the disorder degrees of freedom. The coupling
between the latter and the fluctuating fields is modeled within
the Rapini–Papoular surface interaction phenomenology [26].
In the case of annealed disorder, we obtain an effective free
energy for the fluctuating director field which takes a standard
pseudo-Casimir form [9–14] but with a renormalized anchor-
ing energy, while in the case of quenched disorder, we find
that the disorder in the homeotropic easy direction leads to a
distinct additive term besides the pseudo-Casimir contribution
in the total interaction free energy. This is very similar to the
general state of affairs in the context of Coulomb systems
under imposed external disorder in the monopolar charge
distribution on bounding surfaces [19]. In the present context,
however, we show that the disorder effects are important only
at an intermediate range of separation between the bounding
surfaces and vanish for both very large and very small separa-
tions; this makes the easy direction disorder characteristically
different from the charge disorder effects, which dominate
only at large separations. The conclusion is then that the
quenched disorder creates an additive contribution, which
is dependent on the disorder variance and can be thus as
large as the disorder parameters allow it to be, whereas the
annealed disorder leads to a non-additive modification of the
fluctuation-induced interaction between the bounding surfaces
and is thus fundamentally limited in its magnitude even for
large disorder variances.

The organization of the paper is as follows. In section 2,
we present details of our model and the formalism employed
to calculate the interaction free energy due to the LC director
fluctuations in the presence of a disordered boundary. In
section 3, we analyze the results in the case of quenched
disorder and then turn to the case of annealed disorder in
section 4. We conclude our discussion in section 5.

Figure 1. Schematic view of a nematic LC film confined between
two plane-parallel surfaces at separation distance d. The top surface
exhibits a degree of orientational disorder around the mean
homeotropic anchoring orientation (normal to the surface), whereas
the lower plate is characterized by a uniform (strong) homeotropic
anchoring.

2. Model and formalism

We consider a nematic LC film in a hybrid cell geometry
bounded by two flat, plane-parallel surfaces located at the
positions z = 0 and d along the normal axis to the surfaces
(there is no LC field outside the surfaces)—see figure 1. The
substrate at z = 0 is assumed to impose a strong homeotropic
anchoring, such that the nematic phase can be characterized by
a uniform mean director field n0 = z. The preferred anchoring
orientation of the director field, or the so-called easy direction
e, on the substrate at z = d is assumed to be disordered as
we shall specify later. The strength of the anchoring on this
substrate, denoted by W, is assumed to be finite. The Frank’s
continuum elastic energy for the bulk phase is then given by

Hb = 1
2

Z

dr [K1(r · n)2 + K2(n · r ⇥ n)2

+ K3(n ⇥ r ⇥ n)2], (1)

where n is the nematic director field, r = (x, z) with x = (x, y)

being the lateral Cartesian coordinates, and K1, K2, and K3 are
the splay, twist, and bend elastic constants, respectively [1].
In what follows, we shall use the so-called one-constant
approximation by assuming that K1 = K2 = K3 = K .

Here, we are interested in small fluctuations �n(r) around
the mean-field value of the director n0(r) = ẑ. Up to the
second order, the fluctuation field can thus be written in
terms of two fluctuation modes (corresponding to the mass-
less modes that result from spontaneous breaking of two
continuous rotational symmetries in nematics [1]) as �n =
(nx , ny, �1 +

q

1 � n2
x � n2

y) ' (nx , ny, �n2
x/2 � n2

y/2), and

hence, n = n0 + �n ' (nx , ny, 1 � n2
x/2 � n2

y/2). Thus within
the effective one-constant approximation, the bulk elastic
energy, equation (1), assumes the form

Hb = K
2

Z

dr [(rnx )
2 + (rny)

2]. (2)

The interaction of the nematic director with the substrate
at z = d is taken into account through the Rapini–Papoular
surface energy model of a quadratic form [26]

Hs = �W
2

Z

d2x (n · e)2. (3)
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The easy direction e(x) is now assumed to have a random
distribution around the preferred or the mean easy direction
e0 = ẑ. For the sake of consistency, we assume that the
deviations from this preferred direction are small, i.e., the
lateral components ex and ey are small while ez ' 1. In spher-
ical presentation e = (sin ✓ cos �, sin ✓ sin �, cos ✓), the latter
approximation implies that the easy direction on the disordered
surface exhibits small deviations in the polar angle ✓ from
the constant homeotropic anchoring (see figure 1). Thus, at
the leading order, the surface Hamiltonian (considering the
fluctuations around the broken-symmetry ground state n0 = ẑ

and up to an irrelevant constant) reduces to

Hs = W
2

Z

d2x [n2
x + n2

y � 2(nx ex + ny ey)], (4)

where ei (x) = ex (x) and ey(x) (for i = x, y) are treated
as statistically independent random fields with zero mean
value hei (x)i = 0 and equal two-point correlation function,
i.e., hei (x)e j (x

0)i = c(x � x

0)�i j . The latter implies that dis-
order has a translationally invariant correlation in lateral
directions along the anchoring surface at z = d. Specifically,
we shall assume that the probability distribution of these fields
is given by a Gaussian probability distribution function as

P[ei ] = C exp
⇢

� 1
2

Z

d2x d2x 0 ei (x)c�1(x � x

0)ei (x
0)
�

,(5)

where C is a normalization constant.
For any given configuration of the easy direction fields,

the partition function of the system can be calculated via

Z[ex , ey] =
Z

✓

Y

i=x,y

Dni

◆

exp(�� H [{ni }; ex , ey]), (6)

where � = 1/(kBT ) with kB and T being the Boltzmann
constant and the temperature, respectively, and H = Hb + Hs
is the full Hamiltonian of the system. Clearly, the partition
function is a functional of the disordered easy direction fields
and the free energy of the system is obtained after taking a
proper ensemble average over all possible realizations of these
fields. In order to do this, one should distinguish between
different types of disorder, such as quenched or annealed
disorder [27, 28] (or even partially annealed disorder [18]
which will not be considered in this work).

In the quenched disorder model, the random distribution
of the easy direction fields is frozen over the surface at z = d .
Hence, one should calculate the average of the sample free
energy, �kBT lnZ[ex , ey], over the disorder fields [27, 28] in
order to obtain the thermodynamic free energy of the system,
i.e.,

F = �kBT hlnZ[ex , ey]i, (7)

where h· · · i = R

⇣

Q

i=x,y Dei P[ei ]
⌘

(· · · ). In the annealed
disorder model, on the other hand, the disorder fields are
assumed to be thermalized with the bulk degrees of freedom
and should be thus treated on the same footing (physically,
this can correspond to a situation where the surface contains

anchoring sites with preferred easy axes that can thermally
fluctuate as well). Hence, in the annealed case, one should
take the average of the partition function itself in order to
obtain the free energy as

F = �kBT lnhZ[ex , ey]i. (8)

In what follows, we shall first focus on the quenched disorder
model, which is the case of interest in this work, and then
briefly consider also the case of annealed disorder.

3. Quenched disorder

The disorder average in the quenched model, equation (7), can
be performed using the standard replica ‘trick’ [27, 28] by
making use of the following relation:

hlnZi = lim
m!0

hZmi � 1
m

= @mhZmi��m!0. (9)

Note that the two modes, nx and ny , are degenerate, and that
the partition function (6) can be factorized as Z[ex , ey] =
Q

i=x,y Z[ei ]. Thus, since the two easy direction fields are
statistically uncorrelated and have identical probability distri-
bution functions, we can drop the subindex i and calculate the
free energy for one single mode and in the end multiply the
free energy by a factor of 2. After taking the Gaussian integrals
over the disorder fields, the ‘replicated’ partition function is
obtained as

hZmi =
Z

✓ m
Y

↵=1

Dn↵

◆

exp(�� Hrep[{n↵}]), (10)

where

� Hrep[{n↵}] = �K
2

X

↵

Z

dr (rn↵)2

+ �W
2

X

↵,�

Z

d2x d2x 0 n↵(x)
⇣

�↵��(x � x

0)

� �W c(x � x

0)
⌘

n�(x0), (11)

which clearly couples different replicas of the system through
the last term.

In order to proceed, we use the fact that the statistical
properties of the system, as defined above, are translationally
invariant in lateral directions and thus introduce the Fourier
transform for in-plane coordinates. In this way we find:

Hrep[{n↵(q, z)}] =
X

↵,�

X

q

⇢

K A
2

Z d

0
dz
�|@zn↵(q, z)|2

+ q2|n↵(q, z)|2��↵� + W A
2

n↵

�

q, d)(�↵�

� �W c(q)
�

n⇤
�(q, d)

o

, (12)

where A is the surface area, q denotes the wavevector conjugate
to lateral space x, and c(q) is the Fourier transform of c(x � x

0)
given by c(q) = R

d2x c(x � x

0) e�iq.(x�x

0). We shall further
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assume that the disordered easy direction fields have an
isotropic correlation function that implies c(q) = c(q).

The replicated partition function equation (10) then fol-
lows as

hZmi =
Y

q

Z

 m
Y

↵=1

Dn↵(q, d)

!

⇥ e
� �W A

2
P

↵,�

n↵(q,d)(�↵���W c(q)+ K
W q coth(qd)�↵� )n⇤

� (q,d)

, (13)

which can be evaluated straightforwardly by using the standard
path-integral methods [9–13, 29]. We thus find

hZmi = e� 1
2 ln det G�1

, (14)

where the elements of the matrix G�1 for each mode q are
given by

G�1
↵� = �K Aq cosh(qd)�↵�

+ �W A
⇣

�↵� � �W c(q)
⌘

sinh(qd). (15)

Taking the logarithm of this expression [30] then gives

ln G�1
↵� = ln(�K Aq cosh(qd) + �W A sinh(qd))�↵�

+ 1
m

ln
✓

1 � m(�W )2c(q) sinh(qd)

�K q cosh(qd) + �W sinh(qd)

◆

I↵� ,

(16)

where I↵� is a matrix with all elements equal to one.
Finally, the total free energy of the system (up to an

irrelevant bulk term) is obtained using equations (9) and
(14)–(16) as

�F =
X

q



ln(�K Aq cosh(qd) + �W A sinh(qd))

� (�W )2c(q) sinh(qd)

�K q cosh(qd) + �W sinh(qd)

�

, (17)

where the contribution of both director modes has been taken
into account.

It is evident that the free energy of the system consists of
two additive terms �F = �F0 + �Fdis, where F0 is the stan-
dard pseudo-Casimir interaction due to nematic fluctuations
in a film (bounded by a surface with infinite anchoring on
z = 0 and another surface with finite anchoring energy W at
z = d) [5, 9] and the second term, Fdis, is due to the quenched
statistics of the easy direction (on the z = d surface). The
explicit form of the pseudo-Casimir term is given by

F0

A
= kBT

2⇡

Z 1

0
q ln

✓

1 + q � `�1

q + `�1 exp(�2qd)

◆

dq, (18)

while the disorder contribution is obtained as

Fdis

A
= � K

2⇡`2

Z 1

0

c(q)q dq
q coth(qd) + `�1 , (19)

where ` = K/W is the extrapolation length and we have used
the continuum representation of the Fourier mode summation

by using
P

q

= A
R

d2q/(2⇡)2. Also the irrelevant terms due
to the free energies of the bulk and surfaces are omitted from
the free energy.

We thus find that the effects of quenched disorder
in the easy direction appear in an additive form in the
free energy. This closely resembles the behavior seen in
Coulomb fluids bounded by disordered charge distributions
[16, 17] or indeed also in vacuo between disordered charge
distributions [19–23], where the quenched disorder effects
also appear in an additive form. This property however
does not hold in general; for instance, for a nematic film
with quenched disordered anchoring energy, we find a more
complicated non-additive behavior which will be discussed
elsewhere [31]. Also we note that the disorder contribution
to the free energy equation (19) is intrinsically not limited in
magnitude and can vary depending on the disorder parameters.
This is fundamentally different from the annealed case that
exhibits an intrinsic upper bound (see below).

3.1. Effective interactions

The effective interactions between bounding surfaces mediated
by nematic fluctuations are thus modified by an additive
contribution when the easy direction exhibits a quenched
random distribution on one of the anchoring surfaces. The
corresponding inter-surface force can be obtained by differ-
entiating the free energy with respect to the inter-surface
separation, d, as

f = �@F/@d = f0 + fdis. (20)

The pseudo-Casimir force f0 reads

f0

A
= kBT

⇡

Z 1

0

q2 dq

1 + q+`�1

q�`�1 e2qd
, (21)

while the force due to the quenched disorder follows as

fdis

A
= K

2⇡`2

Z 1

0

c(q)q3 dq
[q cosh(qd) + `�1 sinh(qd)]2 (22)

= 2K
⇡`2

Z 1

0

c(q)q3e2qd dq

(1 + q+`�1

q�`�1 e2qd)2(q � `�1)2
. (23)

In order to determine the asymptotic behavior of the
interaction force, we shall first consider the special case of
an uncorrelated disorder with c(x � x

0) = c0�(x � x

0), or in
Fourier representation c(q) = c0, where c0 is the variance
of the easy direction distribution, which has a dimension of
(length)2.

In the limit of small inter-surface separations, d ⌧ ` (or
relatively large extrapolation lengths), the integrations in the
force expressions can be performed explicitly. Hence, for the
pseudo-Casimir force, equation (21), we find the standard
universal form

f0(d ⌧ `)

A
' kBT

3⇣(3)

16⇡d3 , (24)

4
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where ⇣(3) = 1.202 0569 . . .. The force is repulsive and di-
verges as 1/d3 as d ! 0. The force generated by the disorder,
equation (23), is obtained in this case as

fdis(d ⌧ `)

A
' K c0 ln 2

2⇡`2d2 , (25)

which is clearly non-universal and depends on the disorder
variance and the elastic constant K (the latter may be expressed
in terms of the molecular length a as K ⇠ kBTNI/a where TNI is
the temperature of isotropic–nematic phase transition [1]). The
disorder force is thus repulsive at small separations as well but
diverges as 1/d2. The disorder effects are therefore expected
to become important for sufficiently large separations

d > dl ⌘ 3⇣(3)kBT `2

8K c0 ln 2
. (26)

In the limit of large inter-surface separations, d � ` (or
relatively small extrapolation lengths), the pseudo-Casimir
contribution falls off in a universal fashion exhibiting an
attractive force component as

f0(d � `)

A
' �kBT

⇣(3)

4⇡d3 . (27)

The disorder contribution in this regime remains repulsive and
decays as

fdis(d � `)

A
' 3⇣(3)K c0

4⇡d4 . (28)

It thus turns out that the disorder would be dominant for
separations

d < du ⌘ 3K c0

kBT
. (29)

From the foregoing discussion, we conclude that the ef-
fects of quenched, uncorrelated easy direction disorder are ex-
pected to be relevant in the intermediate regime of separations
dl < d < du . This behavior is shown in figure 2 (top curve)
where we have used c0 = (kBT/2K )` ⇠ a`/2. According
to the above estimate, the effect of disorder dominates for
0.4 . d/`. 1.5 (note that the extrapolation length can vary in
a wide range of values, e.g., ` ⇠ a � 103a, where a ⇠ 1 nm is
the molecular size). As seen in the figure, there is a crossover
zero-force separation above (below) which the total force is
attractive (repulsive); this is in fact the distance where the two
surfaces form a stable equilibrium bound state.

It is also interesting to note that the presence of easy
direction disorder enhances the total interaction force at small
separations, shifts the crossover distance to larger values (and
thus tends to destabilize the bound state), and suppresses
the attractive regime at intermediate to large inter-surface
distances.

Note that, in general, the disorder in the easy direction may
display a finite correlation length ⇠ [32]. As a simple model,
we can adopt a short-ranged correlation function c(x � x

0) =
c0 K0(x/⇠)/(2⇡⇠2), where K0 is the zeroth-order modified

Figure 2. The rescaled total force per unit area p = `3� f/A is
shown as a function of the rescaled inter-surface separation d̃ = d/`
for the case of a quenched easy direction disorder with variance
c0 = (kBT/2K )` and correlation length ⇠/` = 0, 0.5, 1, 10 from top
to bottom. The solid curve shows the rescaled disorder-free force,
equation (21).

Figure 3. The rescaled total force per unit area p = `3� f/A is
shown as a function of the rescaled inter-surface separation d̃ = d/`
for the case of a quenched uncorrelated easy direction disorder
(⇠ = 0) with different rescaled disorder variances �K c0/` = 0, 0.01,
0.1, 1 from bottom to top. The solid curve shows the rescaled
disorder-free force, equation (21).

Bessel function of the second kind. In Fourier representation,
the disorder correlation function takes a Lorentzian form

c(q) = c0

⇠2q2 + 1
. (30)

The effects of disorder correlation can be examined by in-
serting this form of the correlation function in equation (22)
or (23). As seen in figure 2, the strength of the (repulsive)
disorder-induced force diminishes as the disorder correlation
length is increased. As a result, the bound state between the
two surfaces occurs at smaller separations.

A similar trend is found when the variance of the easy di-
rection disorder is varied. As seen in figure 3, upon decreasing
the variance c0 the effective interaction force decreases and
approaches the disorder-free limit.

4. Annealed disorder

As noted before, in the case of annealed disorder, the free en-
ergy is calculated from the relation F = �kBT lnhZ[ex , ey]i.

5
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Figure 4. The rescaled total force per unit area p = `3� f/A is
shown as a function of the rescaled inter-surface separation d̃ = d/`
for the case of an annealed easy direction disorder with variance
c0 = (kBT/2K )` and correlation length ⇠/` = 0, 1, 2, 5, 10, 20
from top to bottom. The solid curve shows the rescaled disorder-free
force, equation (21).

The disorder-averaged partition function hZ[ex , ey]i follows
simply by setting m = 1 in equation (13). The total free energy
of the system in the annealed case is thus obtained as

�F =
X

q

ln(�K Aq cosh(qd) + �Weff(q)A sinh(qd)), (31)

where the disorder leads to a renormalization of the anchoring
energy to an effective form given by

Weff(q) = W
�

1 � �W c(q)
�

. (32)

This translates furthermore to an effective q-dependent extrap-
olation length given by

1
`eff(q)

= 1
`

⇣

1 � �K
`

c(q)
⌘

. (33)

The total force between the surfaces is then obtained straight-
forwardly as

f
A

= kBT
⇡

Z 1

0

q2 dq

1 + q+`�1
eff (q)

q�`�1
e f f (q)

e2qd
. (34)

Obviously the result for annealed disorder significantly differs
from that obtained in the case of quenched disorder. In the
latter case, the disorder leads to an additive contribution to
the total free energy (equation (20)), while in the former case,
we find a non-additive form, where the disorder effects are
inseparable from the pseudo-Casimir effects.

Also, as is obvious from the above expression, the force
is bounded by two limits characterized by `eff(q) ! 1 and
`eff(q) ! 0. In both cases the force per unit area is finite and
we then in general have

3⇣(3)

16⇡d3 >
� f
A

> � ⇣(3)

4⇡d3 . (35)

In the context of the thermal EM Casimir effect the lower
bound would correspond to the case of an ideally polarizable,

Figure 5. The rescaled total force per unit area p = `3� f/A is
shown as a function of the rescaled inter-surface separation d̃ = d/`
for the case of an annealed uncorrelated easy direction disorder
(⇠ = 0) with different rescaled disorder variances �K c0/` = 0,
0.001, 0.01, 0.1, 0.5, 1 from bottom to top. The solid curve shows
the rescaled disorder-free force, equation (21).

Figure 6. The rescaled total force per unit area p = `3� f/A as a
function of the rescaled inter-surface separation d̃ = d/` is shown
for the two cases of uncorrelated annealed (top) and quenched
(bottom) disorder in the easy direction with variance
c0 = (kBT/2K )`.

i.e. metallic, surface. Casimir interactions between metals are
indeed an upper bound for the strength (magnitude) of the
Casimir interactions proper. In general equation (34) is of
exactly the same form as obtained in the EM case for surfaces
carrying a correlated dipolar layer [33].

The strength of the disorder contribution again decreases
upon increasing the disorder correlation, figure 4, and decreas-
ing the variance, figure 5. It is however interesting to note that,
for a given set of parameters, the total interaction force in the
annealed case is found to be more repulsive (less attractive)
than that in the quenched case (see figure 6).

5. Conclusion

In this work, we have investigated the effective fluctuation-
induced force between two planar boundaries that confine
a nematic liquid-crystalline film in the situation where one
of the bounding surfaces imposes a random distribution for
the preferred anchoring axis (easy direction) of the nematic
director field. We have treated both cases of quenched (with a

6
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frozen disordered distribution for the easy axis) and annealed
disorder (with a random but thermalized distribution of the
easy direction). It is shown that in the quenched case the total
interaction free energy is decomposed into two separate (ad-
ditive) contributions, namely, a standard disorder-free pseudo-
Casimir interaction and a disorder-induced contribution which
is proportional to the variance of the disorder distribution. This
latter quantity can be tuned to enhance or suppress the disorder
effects independently of the pseudo-Casimir effect. In contrast,
in the annealed case the disorder effects cannot be dissociated
from the pseudo-Casimir interaction so that the whole effect
can be expressed by an effective pseudo-Casimir interaction
free energy but with a renormalized extrapolation length. The
free energy in this case is bounded by two standard universal
limiting laws (see equation (35)) and, therefore, the disorder
effect (for weak or strong disorder variance) is also bracketed
by these limiting laws.

In both cases of annealed and quenched disorder, we
have shown that the easy direction disorder leads to a more
repulsive interaction force at small separations as compared
with the (disorder-free) pseudo-Casimir force. Also it leads to
a shift to larger values of the crossover position where the force
vanishes, that is, the (stable) bound state between the surfaces
becomes less stable.

We should also note that according to equation (33) the
effective extrapolation length can in principle become negative
unless c(q)  ccr, where ccr = `/�K is the critical strength of
the disorder correlations. This implies that there is a regime
in the parameter space where disorder completely destabilizes
the system and is thus outside the confines of the methodology
of the present theoretical framework. For the simple case of
an uncorrelated disorder c(q) = c0, or in general for c(q) of
the type shown in equation (30), the destabilizing effect of
disorder is avoided for all modes provided that c0  ccr. If
we then use K ⇠ kBT/a, we end up with c0 . a`. As c0
measures the variance of the disorder in the easy direction
this condition gives an estimate of the maximum polar angle
fluctuations of the easy direction that would still not destabilize
the system and is given by h✓2i = c0/a2 . `/a. This is a
reasonable assumption since `/a can take a wide range of
non-zero values for a finite anchoring. We therefore expect that
the requirements for the positivity of the effective extrapolation
length, giving rise to a stable solution in the presence of
annealed disorder, hold in most realistic situations.

While characteristic properties of disorder-induced inter-
actions in confined LCs are to some extent similar to the
general behavior found in systems with monopolar charge
disorder in the context of EM Casimir effect or Coulomb
fluids [16–23], the analogy should not be taken too far as
our results also show some fundamental differences between
this latter case and the confined LCs. The differences mainly
stem from vectorial versus scalar description but also from the
nature of the surface coupling between the fields in the two
cases. The easy direction disorder turns out to become impor-
tant in general only in an intermediate range of inter-surface
separations—or, in other words, for intermediate strength of
the anchoring energy—and becomes negligible (relative to the
pseudo-Casimir contribution) both for very small and very

large separations. This is obviously contrary to the behavior of
a disordered Coulomb system, where the effects of charge dis-
order become gradually more important as the disorder builds
up and eventually dominate at large separations. Our results
thus clearly point to differences between the disorder effects in
these two types of systems that are both characterized by criti-
cal correlations but the details of their description and surface
coupling are different. The disorder effects are therefore not
portable outside the exact nature of the system even if thermal
and disorder correlations have the same qualitative behavior.
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[9] Ziherl P, Podgornik R and Žumer S 1998 Chem. Phys. Lett.
295 99

[10] Ziherl P, Podgornik R and Žumer S 1998 Phys. Rev. Lett. 82
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