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Anže Lošdorfer Božič1,a) and Rudolf Podgornik1,2
1Department of Theoretical Physics, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia
2Department of Physics, Faculty of Mathematics and Physics, SI-1000 Ljubljana, Slovenia

(Received 22 November 2012; accepted 15 January 2013; published online 15 February 2013)

Inhomogeneous charge distributions have important repercussions on electrostatic interactions in
systems of charged particles but are often difficult to examine theoretically. We investigate how elec-
trostatic interactions are influenced by patchy charge distributions exhibiting certain point group
symmetries. We derive a general form of the electrostatic interaction energy of two permeable, ar-
bitrarily charged spherical shells in the Debye-Hückel approximation and apply it to the case of
particles with icosahedral, octahedral, and tetrahedral inhomogeneous charge distributions. We ana-
lyze in detail how charge distribution symmetry modifies the interaction energy and find that local
charge inhomogeneities reduce the repulsion of two overall equally charged particles, while suf-
ficient orientational variation in the charge distribution can turn the minimum interaction energy
into an attraction. Additionally, we show that larger patches and thus lower symmetries and wave
numbers result in bigger attraction given the same variation. © 2013 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4790576]

I. INTRODUCTION

Most commonly used theoretical models of virus cap-
sids usually consider charge to be homogeneously distributed
across one or two spherical shells representing the viral cap-
sid shell.1–5 Reality is more complex, and the full 3D reso-
lution of capsid structure shows significant variation in the
distribution of charged amino acids across and along the cap-
sid, carrying a signature of the underlying symmetries of
the structure.6, 7 Local variations of charge on the capsid can
play an important role in different scenarios, from RNA-
capsid interactions,8, 9 interactions of the capsid with poly-
valent ions,10 to capsid-capsid electrostatic interactions,11 or
nanoparticle-templated assembly of virus-like particles.12

In addition, electrostatic interactions can be the stabiliz-
ing force in ionic colloidal crystals of binary mixtures of op-
positely charged particles, which have been observed both in
experiment and in simulation.13–16 In such cases, the assumed
interaction potential is usually taken to be spherically sym-
metric, facilitating assembly but also severely limiting poten-
tial symmetries of assembled crystals.17 It is thus of special
interest to investigate more general forms of the interaction
potential between colloidal particles that are often anisotropic
in shape and contain inhomogeneously distributed interact-
ing moieties.18, 19 An important example is the patchy colloids
as well as inverse patchy colloids with heterogeneously dis-
tributed interacting patches that can form a richer variety of
admissible structures.20–23 Charged patchy colloids with het-
erogeneously charged surfaces belong to the same variety of
complex colloidal particles except that in charged systems,
the interaction is usually much longer ranged than the stan-
dard bonding distances in ordinary patchy systems with lim-
ited valence.20
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Contrary to classical colloids, virus capsids, which are
the main motivation for our work, offer a number of additional
features that colloids do not possess. A few more prominent
properties are the unique, spatially-defined chemistries on
their surfaces as well as absolute monodispersity in size and
mass distributions.17 Such monodisperse viral colloids are
highly symmetrical,6, 24 with pronounced symmetry-related
variation in particle surface chemistry. These surface struc-
tural features make them a possible component material for
the production of biophotonic crystals,17, 25 non-close-packed
crystalline structures (see Ref. 11 and references therein), and
virus-like nanoparticles that promise to invigorate the search
for the perfect gene-therapy vector.26

In vitro, the interviral interaction potential is character-
ized by weak long-range electrostatic repulsion and sterically
mediated close-range attraction.17 Our focus in this work will
reside on the electrostatic part, and we will derive an ana-
lytical (closed-form) expression for the interaction-free en-
ergy between two spherical shells carrying arbitrary inho-
mogeneous surface charge distributions within the linearized
Poisson-Boltzmann (Debye-Hückel) approximation.27 This
result will enable us to analyze models of highly sym-
metric charge distributions mimicking the symmetries of
viruses within the approach recently proposed by Lorman
and Rochal28, 29 in order to describe the mass distributions in
spherical viruses.

The rest of the paper is structured as follows: In order to
introduce the setting, we first summarize in Sec. II A results
obtained in previous works for the electrostatic self-energy
of a single arbitrarily charged spherical shell in the Debye-
Hückel (DH) approximation. Building on this, we derive an
analytical expression for the electrostatic interaction of two
such shells in Sec. II B. Appendices A and B contain the de-
tails of the derivation and certain limiting cases. We first use
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the derived expression to analyze a simple model of axially
symmetric quadrupole surface charge distribution in Sec. III,
comparing some of the results with those obtained in the lit-
erature for a similar case, but with a different model.21 In
Sec. IV, we then introduce more general surface charge den-
sities with tetrahedral, octahedral, and icosahedral symmetry,
and use them to examine in more detail the electrostatic inter-
actions between shells carrying such charge distributions. We
end with a discussion and conclusions in Sec. V.

II. DERIVATION OF INTERACTION ENERGY IN
DEBYE-HÜCKEL APPROXIMATION

Throughout the paper, we will deal with electrostatics
of charged shells in a monovalent salt solution within the
framework of the linearized mean-field Debye-Hückel (DH)
theory.27, 30–32 This approximation is reasonable for suffi-
ciently small surface charge densities on the surface of the
particles, low ion valencies, high medium dielectric constant,
or high temperatures. All the requirements are in general well
fulfilled for the case of monovalent salt solutions and the sur-
face charge densities relevant for viruses or colloidal particles
considered here.

A. Self-energy of a charged spherical shell

We first briefly sum up the relevant parts in the derivation
of the electrostatic self-energy of an arbitrarily charged spher-
ical shell in a salt solution in order to introduce some concepts
important for the rest of the paper. The radius of the shell is
R and the surface charge density on the shell can be expanded
in terms of spherical harmonics,

σ (") =
∑

l,m

σ (lm)Ylm("). (1)

The requirement that the surface charge density be real im-
poses the constraint σ ∗(lm) = (−1)mσ (lm), where we have
introduced the notation m = −m. The electrostatic potential
ϕ is given by the solution of the DH equation

∇2ϕ = κ2ϕ, (2)

where κ is the inverse DH screening length of a monova-
lent 1: 1 salt with bulk concentration c0, κ =

√
8π lBc0, with

lB = e2
0/4πεε0kBT the Bjerrum length and T the absolute

temperature. The dielectric constant of water is taken to be
ε = 80.

The electrostatic potentials inside and outside the shell,

ϕI (r,") =
∑

l,m

a(lm)il(κr)Ylm("), and (3)

ϕII (r,") =
∑

l,m

b(lm)kl(κr)Ylm(") (4)

are expanded in terms of spherical harmonics Ylm(") and the
modified spherical Bessel functions of the first and second
kind,33

il(x) =
√

π

2x
Il+1/2(x) and (5)

kl(x) =
√

π

2x
Kl+1/2(x). (6)

The potential has to be continuous on the surface of the shell,
ϕI(R, ") = ϕII(R, ") for all values of ", and the surface
charge on the shell gives rise to a discontinuity of the elec-
trostatic potential on its surface in the standard form

∂ϕ

∂r

∣∣∣∣
r=R−

− ∂ϕ

∂r

∣∣∣∣
r=R+

= σ (")
εε0

. (7)

By applying the boundary conditions, we find that the solu-
tions for the potential have the same symmetry as the under-
lying surface charge density,

ϕI (r,") =
∑

l,m

C0(l, κR)
κεε0

il(κr)
il(κR)

σ (lm)Ylm("), (8)

ϕII (r,") =
∑

l,m

C0(l, κR)
κεε0

kl(κr)
kl(κR)

σ (lm)Ylm("). (9)

Here, we have defined

C0(l, x) = x Il+1/2(x)Kl+1/2(x). (10)

The electrostatic free energy in the DH limit can then be
calculated as34, 35

FDH = 1
2

∮

∂V

σ (")ϕ(R,")dS. (11)

Using the orthogonality relations for the spherical harmonics
together with the requirement that the charge density be real,
we then obtain

FDH = R2

2κεε0

4πσ 2
0

1 + coth κR

+
∑

l>0

R2

2κεε0
C0(l, κR)

∑

m

|σ (lm)|2. (12)

This result was already obtained by Marzec and Day,34 the
first term (l = 0) is simply the self-energy of a uniformly
charged shell in a salt solution.36 Details of the derivation can
be found in, e.g., Ref. 3, where it was used to derive the free
energy of a partially formed shell—a special case where the
surface charge density is a Heaviside step function in the az-
imuthal angle.

1. Rotations of the shell(s)

Given the original surface charge distribution of a shell
[Eq. (1)] in its reference frame, the expansion coefficients will
in general change with different orientations of the shell as
we rotate it. The easiest way to incorporate the rotations is
through the Wigner matrices D

(l)
m′m(ω) given in terms of the

Euler angles ω = (α,β, γ ) in the zyz notation:

D
(l)
m′m(ω) = e−ım′γ d l

m′m(β)e−ımα, (13)

where we use the definition of the small d-matrices d l
m′m(β) as

given by Rose.37 From here, the expansion coefficients of the
rotated distribution can be expressed in terms of the original



074902-3 A. Lošdorfer Božič and R. Podgornik J. Chem. Phys. 138, 074902 (2013)

FIG. 1. The system under consideration: two shells with arbitrary surface
charge densities σ (j)(") (in this case, with icosahedral and octahedral sym-
metry) and radii R are located at a distance ρ. Either or both of the distri-
butions can be additionally rotated, with the orientations given by the Euler
angles ωj . The shells are in a monovalent salt solution with bulk concentra-
tion c0 giving rise to the electrostatic screening length κ−1. The background
color of the shells represents the homogeneous charge contribution, whereas
the other tones depict the local patches of charge of opposing signs.

ones as37, 38

σ ′(lm) =
∑

m′

D
(l)
m′m(ω)σ (lm′); (14)

the rotations do not mix different wave numbers l.
Due to the way the expansion coefficients feature in the

self-energy of the shell [Eq. (12)] changing the orientation
of the shell does not influence the result. However, when we
will next consider the interaction of two such shells, different
orientations of both shells will play a role. In the rest of the
paper, we will thus denote the coefficients of the original sur-
face charge distributions of the two shells in their respective
reference frames by σ (lm, i) and those of the rotated distribu-
tions by σ ′(lm, i), while the orientations of the two shells will
be given by the Euler angles ωi .

B. Interaction free energy of two arbitrarily charged
spherical shells

Taking two charged shells as studied in Sec. II A,
we now derive the expression for their interaction energy.
The basic aspects of the method were already presented by
Langbein39 in the calculation of van der Waals forces between
molecules, and similar approaches have been used to calculate
the force and interaction energies of charged shells/colloids in
simpler40–44 and more involved21, 45–47 scenarios.

The two shells under consideration carry surface charge
densities σ (j)(") expanded as in Eq. (1); the orientations of
the two shells can be arbitrary and are given by the Euler an-
gles ωj = (αj ,βj , γj ). The shells and their respective prop-
erties are denoted by indices 1 and 2. The radii of the shells
are Rj = R, and the distance between their centers is r21 = ρ.
The vector ρ = r2 − r1 = (ρ, ξ, η) in spherical coordinates
connects the two coordinate systems. The rest of the system
properties are the same as in Sec. II A; Fig. 1 shows a sketch
of the system.

1. Electrostatic potential . . .

The solution of the DH equation for the mean electro-
static potential [Eq. (2)] can be written as a linear superpo-
sition ψ = ψ1 + ψ2, where ψ j is the electrostatic potential
of a single (jth) shell. We can divide the system into three
regions: inside the first shell (ψ in,1), inside the second shell
(ψ in,2), and outside both shells (/). The boundary conditions
are again the continuity of the potential at the surface of each
shell,

ψin,j (R−
j ,") = /(R+

j ,"), (15)

and the discontinuity of the derivative, which has to be pro-
portional to the charge on the shell,

∂ψin,j

∂rj

∣∣∣∣
rj =R−

j

− ∂/

∂rj

∣∣∣∣
rj =R+

j

= σ (j )(")
εε0

. (16)

The electrostatic potential can be expanded in terms of
modified spherical Bessel functions of the first and second
kind and spherical harmonics. We will follow the notation in-
troduced in Ref. 48 and define

ψ+
lm(r) = il(κr)Ylm(") and (17)

ψ−
lm(r) = kl(κr)Ylm("). (18)

Thus, we can write for the solution inside each shell

ψin,j (rj ) =
∑

l,m

a(lm, j )ψ+
lm(rj ), (19)

and the solution at a point r outside both shells

/(r) =
∑

l,m

[
b(lm, 1)ψ−

lm(r − r1) + b(lm, 2)ψ−
lm(r − r2)

]

(20)
due to the linearity of the DH equation. We will also use the
notation ψ±

lm(1) and ψ±
lm(2) for the potentials written in the

coordinate systems of the first and the second shell, respec-
tively.

To move between the two coordinate systems, we have
to use an addition theorem for the solutions of the modi-
fied Helmholtz equation in spherical coordinates.39 Clercx
and Schram48 give the theorem for an arbitrary relative po-
sitioning of the two shells specified by the vector ρ. However,
since all possible orientations of the two shells are already
taken into account via rotations given by the Euler angles ωj ,
we can fix their relative position to ρ = ρ ẑ. This allows us
to write a simplified version of the addition theorem from
Ref. 48,

ψ−
lm(1) =

∑

p,q

Lpq
lm (1)ψ+

pq(2), (21)

where the function Lpq
lm (1) is expressed in terms of modified

Bessel functions of the second kind and Wigner 3-j symbols:

Lpq
lm (1) ≡

∑

s

(−1)p+m(2s + 1)
√

(2l + 1)(2p + 1)

× ks(κρ)
(

l s p

0 0 0

) (
l s p

m 0 q

)
. (22)
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The theorem in the opposite direction, ψ−
lm(2) =

∑
p,q

Lpq
lm (2)ψ+

pq(1), is essentially the same, with an additional fac-
tor of (−1)s appearing in the summation over s in the function
Lpq

lm (2). Some of the useful properties of the function Lpq
lm are

listed in Appendix A 1.
Combining now the two boundary conditions in Eqs. (15)

and (16) on the surface of, e.g., the second shell, we obtain the
coefficients of the solution for the potential in the exterior and
interior,

b(lm, 2) = σ (lm, 2)
κεε0

C0(l, κR)
kl(κR)

, (23)

a(lm, 2) = σ (lm, 2)
κεε0

C0(l, κR)
il(κR)

+

+
∑

p,q

σ (pq, 1)
κεε0

C0(p, κR)
kp(κR)

Llm
pq(1), (24)

where the function C0(l, x) is defined in Eq. (10). The expres-
sions for the coefficients of the first shell are similar with 1↔2
exchanged everywhere. The procedure for obtaining the coef-
ficients is given in Appendix A 2. This completes the solution
for the electrostatic potential inside and outside the shells.

2. . . . and the interaction energy

From the solution for the DH potential, we can calculate
the free energy of the two shells as Fel = Fel,1 + Fel,2 where,
similarly as in the case of a single shell,

Fel,j = 1
2

∮

∂Vj

σ (j )("j ) ψ(rj = R,"j ) dSj , (25)

where now ψ(rj = R, "j) designates the potential of both
shells so that their electrostatic interaction energy at a dis-
tance ρ is then given as43, 49

Vint (ρ) = Fel(ρ) − Fel(∞). (26)

First, we note that the expansion coefficients a(lm, 2)
[Eq. (24)] can be written in the form

a(lm, 2) = a0(lm, 2) +
∑

p,q

b(pq, 1)Llm
pq (1) (27)

with a0(lm, 2) being the expansion coefficients one obtains
in the case of a single shell (Sec. II A). By writing out in
full both the surface charge distribution and the potential at
the shell surface in Eq. (25), we can then use the properties
of spherical harmonics to write the free energy of the second
shell in the form

Fel,2 = F
(0)
el,2 + R2

2

∑

l,m

∑

p,q

b(pq, 1)σ ∗(lm, 2)Llm
pq(1)il(κR),

(28)

where F
(0)
el,2 is now the free energy in the case of a single,

isolated shell [Eq. (12)].
In the interaction energy, these terms cancel out with the

contribution of the two shells at infinite separation, and we are

left with

Vint (ρ) = R2

2

∑

l,m

∑

p,q

[
b(pq, 1)σ ∗(lm, 2)Llm

pq (1)

+ b(pq, 2)σ ∗(lm, 1)Llm
pq (2)

]
il(κR). (29)

We can also write this expression in terms separated by their
respective wave numbers l and p, and define

Vint =
∑

l

Vll +
∑

l *=p

(Vlp + Vpl) ≡ 1
2

∑

l

Wll +
∑

l>p

Wlp.

(30)
The functions Wlp can be further simplified using some of the
properties of Wigner 3-j symbols and Bessel functions (see
Appendix A 3), finally leading to the interaction energy terms

Wlp = R2

κεε0
C(l, p, κR)

∑

m,s

(−1)l+m Re
[
σ (lm, 1)σ ∗(pm, 2)

+ (−1)l+pσ (pm, 1)σ ∗(lm, 2)
]
(2s + 1)

×
√

(2l + 1)(2p + 1) ks(κρ)

×
(

l s p

0 0 0

) (
l s p

m 0 m

)
, (31)

where we have defined

C(l, p, x) = x Il+1/2(x)Ip+1/2(x). (32)

The entire dependence on the orientations of the two shells
relative to their respective reference frames is hidden in the
expansion coefficients σ (lm, i), and upon replacing them with
the rotated ones, σ ′(lm, i), we get the interaction free energy
terms Wlp(ρ,ω1,ω2).

III. SIMPLE CASE: AXIALLY SYMMETRIC
QUADRUPOLE DISTRIBUTION

With the expression for the interaction free energy
known, we can now analyze different scenarios. First, we will
shortly discuss an example of two shells carrying axially sym-
metric quadrupole distributions, a case similar to the one con-
sidered by Bianchi et al.21 for inverse patchy colloids. There,
however, the colloids are impermeable to salt ions, unlike the
shells considered here.

The model can be described by a surface charge distribu-
tion of the form

σ (") = σ2Y20(") +
√

4πσ0Y00("), (33)

which is axially symmetric around the z axis and has two
patches of the same charge at the poles and a patch of op-
posite charge around the equator. By varying σ 0, we can also
include a homogeneous background, where we set the coef-
ficient σ (00, i) =

√
4πσ0 to ensure that the total charge is

given by Q = 4πR2σ 0. Due to the symmetry, the rotation
angles are limited and we need consider only the azimuthal
angles of the two shells, β i.

Focusing initially only on the quadrupole-quadrupole in-
teraction energy V22(ρ,ωi), we can see from the symmetry of
the problem that the most optimal arrangement of the shells in
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FIG. 2. Quadrupole-quadrupole interaction energy V22 as a function of the
intershell separation for three different configurations of the shells, pole-pole
(PP), equator-pole (EP), and equator-equator (EE). The radii of the shells are
R = 10 nm, with (a) κR ≈ 10 and (b) κR ≈ 3, and the strength of the variation
is σ 2 = 1 e0/nm2.

this case is equator-pole (EP). Thus, we consider three orien-
tational configurations (EE, EP, PP) and plot the radial depen-
dence of the interaction energy for the three cases in Fig. 2.
Similar to observations in Ref. 21, we find that the interaction
energy is most repulsive in the PP configuration, is smaller for
the EE configuration, and turns into attraction in the EP case.
With increasing κR, the scale of the interaction energy dimin-
ishes, and the interaction falls of more quickly with increasing
intershell separation. The interaction between the shells also
remains either purely repulsive, or purely attractive with re-
spect to the separation between them.

By adding a homogeneous background to the two shells,
we obtain two additional contributions to the interaction en-
ergy,

Vint (ρ,ωi) = V0(ρ) + W20(ρ,ωi) + V22(ρ,ωi). (34)

The relative contributions of the terms are governed by the
ratio σ 2/σ 0, and Fig. 3 shows how the total interaction energy
changes with respect to this ratio for the EP configuration of
the shells. The homogeneous contribution to surface charge
density σ 0 = 0.1 e0/nm2 is kept fixed and amounts to a charge
of Q ≈ 125 e0 on a shell of radius R = 10 nm, while we

1 1.2 1.4 1.6

4

2

0

2

4

Ρ 2R

V
in

t
k B

T

Σ2 Σ0

FIG. 3. Total interaction energy of two charged shells with quadrupole vari-
ation [Eq. (34)] as a function of the intershell distance for different ratios of
the quadrupole and homogeneous contributions to the surface charge density,
σ 2/σ 0 ∈ [0.45, 0.65]. Radii of the shells are R = 10 nm with κR ≈ 3, and the
shells are in the EP configuration.

vary the quadrupole component of charge on the shells. The
homogeneous background (of the same sign on both shells)
adds an additional repulsive contribution, which prevails for
small variations in surface charge density; thus, even the EP
configuration of the shells results in a repulsive interaction.
However, upon increasing the quadrupole part the interaction
becomes attractive for larger and larger distances, with the
repulsive contribution slowly vanishing.

Figure 4 shows the contribution of the different terms
in the interaction free energy [Eq. (34)] for the PP, EE, and
EP orientations of the two shells. The homogeneous term V0

contributes only a repulsive component regardless of their
orientations, whereas the cross-term W20 changes the behav-
ior of the interaction energy with respect to the shell orien-
tations. In the PP configuration, every component is repul-
sive, totalling to an even bigger repulsion than in the simpler
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FIG. 4. Total interaction energy of two charged shells with quadrupole variation Vint (full line) and the relative contributions (V0 – dotted line, W20 – dotted-
dashed line, V22 – dashed line) as a function of the intershell separation for three different orientations. As before, the radii of the shells are R = 10 nm with κR
≈ 3, with the ratio σ 2/σ 0 = 0.55.
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FIG. 5. Symmetry adapted irreducible density functions fl(") for different symmetries and wave numbers: (a) Icosahedral symmetry with l = 15, (b) octahedral
symmetry with l = 9, (c) icosahedral symmetry with l = 21, and (d) dodecahedral symmetry with l = 6. The distributions are mapped from a sphere to a plane
using the Mollweide projection.51 Warmer colors correspond to regions with positive values and colder colors correspond to regions with negative values.

quadrupole-quadrupole case. In the EP configuration, the to-
tal interaction is attractive due to the quadrupole-quadrupole
term, the cross-term being consistently repulsive. The cross-
term becomes attractive in the EE configuration, where the
quadrupole-quadrupole term is now repulsive; the latter, to-
gether with the homogeneous contribution, prevails and the
total interaction is repulsive.

IV. INTERACTION BETWEEN TWO SHELLS WITH
SYMMETRIC CHARGE DISTRIBUTIONS

In this section, we will examine electrostatic interactions
between model virus-like particles carrying surface charge
distributions with icosahedral symmetry; we will also include
octahedral and tetrahedral symmetries for comparison. In or-
der to do this, we next show how to obtain distribution func-
tions invariant under a given symmetry group.

A. Lower symmetry charge distributions: Tetrahedral,
octahedral, and icosahedral symmetry

In constructing the surface charge distribution function
possessing a given symmetry, we will use the ideas presented
in Refs. 28 and 29, with appropriately described details. The
sought-for symmetry adapted functions are obtained by con-
sidering crystallization on a sphere with symmetry reduction
from the (isotropic) 3D rotation group SO(3) to the icosahe-
dral (octahedral, tetrahedral) point subgroup Y ⊂ SO(3).50

The symmetry adapted icosahedral functions are thus
obtained by reducing the irreducible representations D(l) of
SO(3) to the icosahedral point group Y . We stipulate that the
identical representation of the point group appears at least
once in the reduction so that the resulting structure is invariant
under all symmetry operations of the icosahedral group. This
restricts the allowed wave numbers l to28, 29

lico = 6i + 10j (+15). (35)

Odd ls lack inversion symmetry, making such distributions
consistent with the asymmetry of the proteins, which consti-
tute the viral capsid.29 Even ls are included for comparison
and the corresponding distributions fit a dodecahedral geom-
etry better than the icosahedral. For octahedral and tetrahedral
groups, the same procedure yields the allowed wave numbers
loct = 4i + 6j (+9) and ltet = 4i + 6j (+3).

For a selected wave number, the explicit form of the sur-
face charge density σ l(") is then given by the basis functions
f k

l ("), k = 1, . . . , mA(l), of all mA totally symmetric repre-
sentations of the icosahedral group Y in the restriction of the
“active” irreducible representations of the SO(3). For lower
wave numbers, there is additionally only one identical repre-
sentation for each allowed wave number, mA(l) = 1, and we
have

σl(") = σlfl("). (36)

The explicit form of the symmetry adapted irreducible icosa-
hedral density function fl(") for a given wave number is ob-
tained by averaging the spherical harmonics over the icosahe-
dral symmetry group. Thus, we obtain distributions of charge
on a sphere, which have icosahedral symmetry, characterized
by an allowed wave number l:

σl(") = σl

∑

m

IlmYlm("), (37)

where the expansion coefficients are obtained with the aver-
aging procedure as

Ilm = 1
60

∑

G∈Y
D

(l)
mm′

(
G(α,β, γ )

)
. (38)

Here, G(α, β, γ ) are the symmetry operations of the icosahe-
dral group given in terms of the Euler angles and D

(l)
mm′ are the

Wigner matrices.37 The irreducible density functions for the
octahedral and tetrahedral group are obtained in an analogous
fashion. A few examples of the irreducible density functions
fl of the symmetry groups are shown in Fig. 5.
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It is important to stress that the expansion coefficients Ilm
of the irreducible density functions fl(") are completely de-
termined by the required invariance under the point group and
the only free parameter left is σ l. The coefficients are purely
real for even l and purely imaginary for odd l, with an addi-
tional useful property that

∑
m|Ilm|2 = 1, i.e., the functions fl

are normalised. As can be seen in Fig. 5, the number of local
minima and maxima increases with increasing wave number;
for the icosahedral symmetry, their number can be correlated
with the Caspar-Klug triangulation number (cf. Ref. 29). Ad-
ditionally, the functions with odd l have equal extrema, while
those with even l differ in the depth and shape of the minima
and maxima.

In what follows, we will deal with surface charge distri-
butions of the form

σ (") = σ0 + σl

∑

m

IlmYlm("), (39)

where the wave number l and the symmetry fully determine
the expansion coefficients. The total charge on the shell is
Q = 4πR2σ 0 and the σ l gives only the variation of the
charge due to the symmetry, contributing nothing to the to-
tal charge (δ2

σ = 〈σ 2〉 − 〈σ 〉2 = σ 2
l ). We can connect the vari-

ation strength σ l with the symmetry, if we demand that the
charge on the shell is of the same sign everywhere,

σ̃lfl(") + σ0 ! 0 ∀", (40)

from where we obtain the critical variation strength σ̃l

= σ0/|f min
l |.

B. Self-energy

From Eq. (12) and the aforementioned property of the
functions fl(") that

∑
m|Ilm|2 = 1, we have for the self-energy

of a single shell with surface charge distribution with wave
number l

F
(l)
DH = R2σ 2

l

2κεε0
C0(l, κR). (41)

Even though the symmetry has an imprint on the functions
fl and consequently on the electrostatic potential, the free en-
ergy depends only on the wave number and the strength of the
variation. The function C0(l, x) tends to 1/2 in the limit when
x → ∞, regardless of the wave number. However, in the op-
posite limit of x → 0 it tends to zero as x/(2l + 1) in the lowest
order of approximation.

Upon the addition of homogeneously distributed back-
ground charge, the self-energy of such a shell can be written
as

FDH = F
(0)
DH

[

1 + 1
4π

(
σl

σ0

)2
C0(l, κR)
C0(0, κR)

]

. (42)

The ratio C0(l, x)/C0(0, x) goes to 1 in the limit of x → ∞, and
falls off to an l-dependent constant in the limit of x → 0 as
(1 + x)/(2l + 1). Consequently, in the limit of κR 2 1 only
the strength of the variation σ l and the ratio σ l/σ 0 play a role
as the self-energy becomes insensitive to the wave number of
the variation. In the limit of κR → 0, the self-energy with a
given l goes to 0, the more so the larger the wave number,
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FIG. 6. Correction to the free energy of a charged shell [Eq. (43)] due to
local charge variation characterized by wave number l. The strength of the
variation is such that the charge on the shell is everywhere of equal sign, σ̃l

= σ0/|f min
l |. Full symbols show the limit where κR → ∞ and empty sym-

bols show the limit of κR → 0. Circles denote icosahedral, squares octahe-
dral, and diamonds tetrahedral symmetry.

but with the scale still set by σ l and σ 0. Figure 6 shows the
free energy correction of a charged shell due to local charge
variation as given by Eq. (42),

FDH = F
(0)
DH (1 + γcorr ), (43)

in the limits discussed above and for the special choice of
σ̃l/σ0 = 1/|f min

l |. The local variation increases the shell self-
energy, and quite significantly so in the limit κR 2 1. On the
other hand, the correction due to variation is smaller in the
limit of κR 3 1, and for the range of wave numbers relevant
for the icosahedral symmetry is of the order of less than 1%
of the homogeneous contribution. The correction decreases
with increasing wave numbers as smaller “wavelengths” of
the extrema become smoothed out due to screening. The scat-
tering of the data with respect to the wave numbers is a con-
sequence of the minima of the functions f min

l changing non-
monotonically with l.

C. Interaction of two equal shells

Let us finally turn attention to the interaction of two equal
shells carrying charge distributions with icosahedral, octa-
hedral, and tetrahedral symmetries. We will be mainly con-
cerned with determining the minima of the interaction free
energy as a function of the orientation of the shells. Two cases
of inhomogeneous charge distributions will be explicitly con-
sidered: (i) the case of an overall neutral shell charge distribu-
tion and (ii) the same as (i) but with an added homogeneous
background charge. Thus, when we will speak of a minimum
energy it is assumed to be with respect to the shells’ orienta-
tions unless stated otherwise.

Determining the orientation where the interaction energy
has a minimum can be numerically demanding since the dis-
tributions have a varying number of local extrema the num-
ber of which increases with l, and that also become shallower
at larger intershell separations. This in general increases the
probability of finding only the local minimum of the interac-
tion instead of the global one. However, we have implemented
a minimization procedure based on simulated annealing,52, 53

which reliably finds the global minimum in all of the cases
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FIG. 7. Absolute value of the minimum interaction energy Vll at contact for
two uncharged shells with symmetric variation (the interaction in the min-
imum is always attractive). Circles show wave numbers with icosahedral
symmetry, squares ones with octahedral, and diamonds those with tetrahe-
dral symmetry. Full symbols show the case where κR ≈ 10 (c0 = 100 mM
and R = 10 nm), and empty symbols the case with κR ≈ 3 (c0 = 10 mM and
R = 10 nm). Strength of the variation is taken to be σ l = 1 e0/nm2.

we have considered, with an error in the interaction energy
always below approximately 5%.

1. Neutral shells

Considering the case of two neutral shells, we have only
one term in the interaction energy, Vll , which depends on sev-
eral parameters: the shells’ orientations, their separation, as
well as the wave number l, the corresponding symmetry, and
the strength of the variation σ l (equal for both shells). Also,
variable are the bulk salt concentration c0 and the radii of the
shells R.

To begin with, we show in Fig. 7 the absolute val-
ues of the minimum energy for the two shells at contact
(ρ = 2R); the interaction in the minimum is always attractive.
The strength of the variation influences the scale of the energy
in a predictable way, scaling with the square of σ l [Eq. (31)].
Lowering κR increases the interaction energy, as already ob-
served in Sec. III, and the energy decreases with increasing l.
Also, at a fixed l the attraction in the minimum is stronger for
a lower symmetry.

The l dependence can be understood by considering the
factors contributing to the interaction energy Vll in Eq. (31),
coming mainly from the function C(l, l, κR) and the modified
spherical Bessel functions of the second kind ks(κρ), where
the sum over s is limited by l (Appendix A 1). The function ks
takes on the biggest value when s = l, and thus the scaling of
the energy is approximately set by the product of C(l, l, κR)
and kl(κρ); the product which decreases as l increases.

The symmetry dependence and to some extent the l de-
pendence as well are likely linked to the average size of the
local charge patches with the same sign. Lower symmetries
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FIG. 8. Minimum of the interaction energy Vll as a function of the intershell
separation for symmetries with even wave numbers: icosahedral symmetry
with l = 6 (circle) and l = 10 (diamond) and octahedral symmetry with
l = 6 (square) and l = 10 (triangle). Full lines show the case where
κR ≈ 10 and dashed lines a case with κR ≈ 3. The inset shows the behavior
of the absolute value of the energy for the two symmetries with l = 6, show-
ing the scaling at larger separations. Strength of the variation is taken to be
σ l = 1 e0/nm2.

at a fixed l have less minima, and the local patches of charge
thus span a greater fraction of the shell surface. The inter-
action of two large patches brought close is less affected by
neighboring patches some distance away, whereas the smaller
patches of higher symmetries see an interaction averaged-out
over several other patches in proximity.

Figures 8 and 9 present the dependence of the interaction
energy on the intershell separation for a number of different
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FIG. 9. Minimum of the interaction energy Vll as a function of the intershell
separation for symmetries with odd wave numbers: icosahedral symmetry
with l = 15 (circle) and l = 21 (diamond) and octahedral symmetry with
l = 9 (square) and l = 13 (triangle). Full lines show the case where
κR ≈ 10 and dashed lines a case with κR ≈ 3. The inset shows the behavior
of the absolute value of the energy for l = 9 and l = 15, showing the scaling
at larger separations. Strength of the variation is taken to be σ l = 1 e0/nm2.
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cases. The configuration of the two shells with the minimum
energy does not appear to change with increasing separation;
however, for every case there are several equal solutions due
to the symmetry of the problem. We can observe again that
lower l and lower symmetries result in bigger attraction.

From Fig. 8, it is obvious that the scaling of the inter-
action energy with the intershell separation at a fixed wave
number is influenced only by the dimensionless parameter
κR, with the energy falling off more rapidly with larger κR.
Changing the wave number also affects the scaling, as can be
seen in Fig. 9, and the energy again falls off more rapidly with
increased l.

Since the depths of minima and maxima of the surface
charge distributions coincide for odd wave numbers and dif-
fer for even wave numbers, something similar is also observed
in the interaction free energy when comparing different shell
orientations. For odd ls, the interaction energies in the min-
imum and maximum configuration mirror each other, even
with changing separation, while for even ls the maximum of
the interaction is usually somewhat larger than the minimum.
For all the other orientations of the shells, the energy falls in
between the limits delineated by the minimal and maximal
interaction, all the while keeping a monotonic behavior with
respect to the intershell separation, i.e., being either purely
repulsive or purely attractive.

2. Charged shells

On addition of a homogeneous background charge, we
can study the interaction of two charged shells in the presence

of local charge density variation. The shells are assumed equal
in size and the interaction energy is then

Vint (ρ,ωi) = V0(ρ) + Wl0(ρ,ωi) + Vll(ρ,ωi), (44)

where l is again chosen from the allowed wave numbers for a
given symmetry. In addition to the parameters considered in
the case of two neutral shells, we can now modify the total
charge on the shells by changing σ 0, and we can assume that
the ratio σ l/σ 0 will play an important role, similar to what we
found out in Sec. III.

Taking a look first at the two shells at contact (ρ = 2R),
we show in Fig. 10 the contours of the minimum interaction
energy as a function of κR and the ratio σ l/σ 0 for the distri-
butions already depicted in Fig. 5. Several things are notable:
A sufficiently large charge variation with respect to σ 0 will
cause a shift from repulsion to the attraction in the configu-
ration of the two shells with the minimum energy. This criti-
cal ratio where the energy changes sign depends on κR, and
becomes increasingly large when κR approaches 0. On the
other hand, for large κR the critical ratio seems to approach a
constant, which is expectedly bigger than the critical ratio in
Eq. (40), where the sign of the charge is still equal every-
where on the shells. Additionally, as already observed in pre-
vious cases, the sign of σ l has an effect only on distributions
with even wave numbers, and the value of σ 0 simply sets the
energy scale. However, the contours where the interaction en-
ergy changes sign remain the same regardless of the value
of σ 0.

The major influence on the critical ratio where the min-
imum of the interaction energy changes sign appears again
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FIG. 10. Contour plots of the minimum of the interaction energy Vint in units of kBT as a function of κR and the ratio σ l/σ 0. The charge is kept fixed at σ 0 = 0.4
e0/nm2, and we vary the variation σ l. The shells are in contact, ρ = 2R. Dashed lines show the contours where the interaction changes sign, and dotted-dashed
lines show the critical variation σ̃l [Eq. (40)]. Below the critical variation the charge on the shells is everywhere of equal sign, irrespective of the variation. The
wave numbers and symmetries are the same as in Fig. 5: (a) icosahedral with l = 15, (b) octahedral with l = 9, (c) icosahedral with l = 21, and (d) dodecahedral
with l = 6.
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FIG. 11. Total interaction energy Vint of two charged shells with icosahedral variation (full line) and the relative contributions (V0 – dotted line, Wl0 – dotted-
dashed line, Vll – dashed line) as a function of the intershell separation for (a) l = 6 and σ l/σ 0 = 6, (b) l = 15 and σ l/σ 0 = 6, and (c) l = 15 and σ l/σ 0 = 10.
The radii of the shells are R = 10 nm with κR ≈ 10, and the charge on the shells is fixed to σ 0 = 0.4 e0/nm2, making the V0 contribution equal for all three
cases.

to be the number of extrema in the distribution, where lower
number of extrema needs lesser variation strength to achieve
attraction—meaning lower l and lower symmetries. In distri-
butions with the same symmetry and similar l, the minima
of those with odd wave numbers are slightly stronger com-
pared to distributions with even l. This can be understood by
taking a look at the cross-term Wl0, where one can observe
from Eq. (31) that a factor of (−1)l appears in the summation
over the expansion coefficients. Thus, in the minimum con-
figurations of distributions with odd l the cross-term is sev-
eral orders of magnitude lower than the V0 and Vll contribu-
tions, whereas the cross-term is comparable if the l is even
(Fig. 11).

From this section, we can conclude that even like-charged
particles can be found in configurations where they attract
each other, if only the local variation of charge is large
enough. It is the presence of patches of opposite sign that me-
diates this attraction, as can be seen from the regions excluded
by dotted-dashed lines in Fig. 10. The attraction sets in for
close separations of the two particles, as the long-range be-
havior is dominated by the repulsion of the homogeneous con-
tribution, however small (Fig. 11). Any configuration other
than the one with minimum energy can show either a purely
repulsive, or a mixed short-range attractive/long-range repul-
sive behavior, as already observed in Sec. III.

V. DISCUSSION AND CONCLUSIONS

We have derived an analytical expression for the inter-
action of two permeable, arbitrarily charged spherical parti-
cles in the DH approximation. To study the interactions of
virus-like particles or other shells with symmetric variations
in surface charge distributions, we have introduced model
charge distributions with icosahedral, octahedral, and tetra-
hedral symmetry, and characterized by a single wave number.

We find that local variations in the charge distribu-
tions leading to local charge separation into oppositely
charged patches reduce the repulsion between like-charged
shells, a feature that has also been observed in models
of protein-protein interactions54 as well as in DNA-DNA

interactions.49, 55 An important consequence of the reduced
repulsion is that it can be furthermore turned into explicit
attraction if the background homogeneous charge is small
enough. This onset of attraction between like-charged parti-
cles is due to the presence of local variation of charge, since
the attracting patches have to have opposite sign. The attrac-
tion is short-ranged with respect to the separation between the
particles, with the long-ranged interaction engendered by the
homogeneous charge background still being (vanishingly) re-
pulsive. Apart from the minimum interaction free energy con-
figuration, any other configuration can exhibit either a purely
repulsive, or a mixed short-range attractive/long-range repul-
sive behavior.

One of the drawbacks of the approach used here is the
linearization of the nonlinear Poisson-Boltzmann (PB) equa-
tion. The approximation is well-justified for radii relevant for
viruses7 (R " 10 nm) and salt concentrations of c0 ∼ 100 mM.
However, for smaller salt concentrations where κR ∼ 1 the
DH theory overestimates the values of the potential and con-
sequently the energy,3, 36 meaning that the values obtained for
the interaction energy at shell contact are too big. The quali-
tative behavior, on the other hand, is expected to be much the
same.36

The inhomogeneous charge distributions introduced in
this paper were all mapped on a single-shell capsid model.
A further improvement would be a two-shell model, with
each shell carrying a distribution corresponding to the charge
on the inner and outer shells.7 Nonetheless, the single-shell
model is able to capture the main aspects of the electrostatic
interactions in the system.36

If the charge distributions can be characterized by one
or only a few different wave numbers (such as the ones con-
sidered in this paper), this greatly simplifies the expressions
for the interaction potential, limiting many of the sums in-
volved. On the other hand, distributions where patches ex-
tend over well-defined surface regions can be difficult to
be parametrized within the formalism. The most extreme
cases would be distributions of point charges on a shell
or a partially formed capsid as considered in Ref. 3—i.e.,
distributions consisting of delta functions or Heaviside step
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functions in the solid angle, which are also notoriously diffi-
cult to accurately represent with a finite number of terms in an
expansion.

The symmetric charge distributions presented can serve
as improved models in a broad variety of virus systems. One
such example could be the adsorption of flexible polyelec-
trolytes on viral capsids, which have dodecahedral charge dis-
tribution, where a combination of the lowest dodecahedral
symmetry (l = 6 in Fig. 5) with the addition of a homoge-
neous background nicely fits the model of discrete charges
as used in Ref. 56. These models also open up the pos-
sibilities of studying the interaction of viral capsids with
multivalent ions within the dressed counterions theory, or
even multivalent ion mediated interaction between two such
capsids.57–59

The derived expressions for the interaction potential are
certainly too heavy to be used in computer simulations.
And even though molecular dynamics simulations show that
switching from continuous to discrete charge patterns in
model spherical proteins leads to significant differences be-
tween the resulting screened Coulomb interactions,45 the con-
tinuous distributions presented are more tractable analytically,
especially since the symmetries can be described by using one
or at most few different wave numbers.
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APPENDIX A: DETAILS OF THE DERIVATION

1. Properties of Wigner 3-j symbols

The combination of the two Wigner 3-j symbols in
the function Lpq

lm [Eq. (22)] gives the rise to following
properties:37, 38 the function is non-zero only when m = q and
l + p + s = even. The product of the two Wigner 3-j symbols
also makes the function Lpq

lm invariant under all odd and even
permutations of the three wave numbers l, s, and p. The sum
over s is limited with the triangle inequality, |l − s| ≤ p ≤ l
+ s. This further restricts s to even numbers when l = p; on
the other hand, when one of them is zero (e.g., p = 0), the
sum contains only one term, s = l.

2. Obtaining coefficients for the electrostatic potential
of the shells

Writing out the continuity equation [Eq. (15)] on the
surface of the second shell in terms of the functions ψ±

lm,

we obtain
∑

l,m

a(lm, 2)il(κR)Ylm(")

=
∑

l,m

b(lm, 2)kl(κR)Ylm(")

+
∑

l,m

b(lm, 1)
∑

p,q

Lpq
lm (1)ip(κR)Ypq("). (A1)

By multiplying both sides with Y ∗
l′m′ and using the orthogo-

nality properties of spherical harmonics,33 we have after inte-
grating over "
[

a(lm, 2) −
∑

p,q

b(pq, 1)Llm
pq (1)

]

il(κR) = b(lm, 2)kl(κR).

(A2)
With the same procedure, the boundary condition for the dis-
continuity of the electric field [Eq. (16)] on the surface of the
second shell on the other hand yields

[

a(lm, 2) −
∑

p,q

b(pq, 1)Llm
pq (1)

]

i ′l (κR)

−b(lm, 2)k′
l(κR) = σ (lm, 2)

κεε0
. (A3)

The factors in the square braces of Eqs. (A2) and (A3) are the
same, giving

b(lm, 2)
kl(κR)
il(κR)

i ′l (κR) − b(lm, 2)k′
l(κR) = σ (lm, 2)

κεε0
,

(A4)
from which we obtain the coefficients b(lm, 2) of the exterior
solution [Eq. (23)]. Same approach is used to obtain b(lm, 1).
By inserting these coefficients back into the boundary con-
dition equations, we then get the coefficients of the interior
solution, Eq. (24).

3. Deriving the symmetrized terms
of interaction energy

The function Wlp we have introduced in Eq. (31) written
out in full is

Wlp = R2

2κεε0

∑

m,q

{
C0(p, κR)il(κR)

kp(κR)

[
σ (pq, 1)σ ∗(lm, 2)Llm

pq (1)

+ σ ∗(lm, 1)σ (pq, 2)Llm
pq (2)

]
+ C0(l, κR)ip(κR)

kl(κR)

×
[
σ (lm, 1)σ ∗(pq, 2)Lpq

lm (1)+σ ∗(pq,1)σ (lm, 2)Lpq
lm (2)

]}

.

(A5)

We can separate the four terms of the sum into two parts,
Wlp = W

(1)
lp + W

(2)
lp , where

W
(1)
lp = R2

2κεε0

∑

m,q

[
C0(p, κR)il(κR)

kp(κR)
σ (pq, 1)σ ∗(lm, 2)Llm

pq (1)

+ C0(l, κR)ip(κR)
kl(κR)

σ ∗(pq, 1)σ (lm, 2)Lpq
lm (2)

]
(A6)
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and similarly for W
(2)
lp . The Wigner 3-j symbols appearing in

the functions Lpq
lm are non-zero only if q = m. Since the func-

tions are invariant under odd and even permutations, we get
that Llm

pm(1) and Lpm
lm (2) differ only in the factor (−1)s ap-

pearing in the sum in the latter case. Thus, the sum over q
disappears and using the fact that l + p + s = even, we get

W
(1)
lp = R2

2κεε0

∑

m,s

(−1)p+m(2s + 1)
√

(2l + 1)(2p + 1)

× ks(κρ)
(

l s p

0 0 0

)(
l s p

m 0 m

)

×
[

C0(p, κR)il(κR)
kp(κR)

σ (pm, 1)σ ∗(lm, 2)

+ C0(l, κR)ip(κR)
kl(κR)

σ ∗(pm, 1)σ (lm, 2)

]

. (A7)

Additionally, we can use the following relations:

C0(p, κR)il(κR)
kp(κR)

+ C0(l, κR)ip(κR)
kl(κR)

= 2C(l, p, κR),

(A8)

C0(p, κR)il(κR)
kp(κR)

− C0(l, κR)ip(κR)
kl(κR)

= 0, (A9)

where the function C(l, p, x) is defined in Eq. (32), and after
some manipulation, we obtain

W
(1)
lp = R2

κεε0
C(l, p, κR)

×
∑

m,s

(−1)p+mRe[σ (pm, 1)σ ∗(lm, 2)]

× (2s + 1)
√

(2l + 1)(2p + 1) ks(κρ)

×
(

l s p

0 0 0

) (
l s p

m 0 m

)
. (A10)

In an analogous manner, we can derive a similar expres-
sion for W

(2)
lp , and putting both results together we retrieve

Eq. (31).

APPENDIX B: LIMITING CASES OF INTERACTION
ENERGY

In this appendix, we shall derive some limiting cases of
the general expression for the interaction energy to show that
we obtain the results found in the literature. A useful partial
result is the expression for the interaction of two homoge-
neously charged shells, V0.

The distribution is spherically symmetric and invari-
ant under all rotations, thus giving for both shells σ (00, i)
=

√
4πσ0 (this normalization of the coefficient is due to the

requirement that 4πR2σ 0 = Q gives the total charge on a
shell). Taking this into account, the interaction of two such
shells is found to be

V0(ρ) =
4πR2σ 2

0

κεε0
sinh2(κR) × e−κρ

κρ
. (B1)

1. Coulomb limit

First, we take a look at the Coulomb limit where
κR → 0. In this limit, the function C(l, p, x) found in partial
terms of the interaction energy Wlp [Eq. (31)] goes as

lim
x31

C(l, p, x) = xl+p 2−(l+p+1)x2

1(l + 3/2)1(p + 3/2)
, (B2)

where 1(z) is the Gamma function.33 The bigger the wave
number of the charge variation, the smaller role it plays in
this limit, and in the lowest order of the expansion in x = κR
we need focus only on the lowest wave numbers l = p = 0.
Thus, we obtain using Eq. (B1)

lim
κR→0

V (ρ,ωi) ≈ lim
κR→0

V0(ρ) = Q2

4πεε0
× e−κρ

ρ
, (B3)

the screened Coulomb (DH) interaction of two point
charges Q.

2. Limit of large screening

Another limit is the regime of large screening, κR → ∞.
We need to consider the asymptotic expansions of the function
C(l, p, x) and the modified spherical Bessel functions appear-
ing in the expression for the interaction energy:

lim
x21

C(l, p, x) = e2x

2π
+ e−2x(−1)l+p

2π
− (−1)l + (−1)p

2π
.

(B4)

ks(κρ) 6 π

2κ

e−κH

H + 2R
e−2κR, (B5)

where we have written the distance between the shell cen-
ters ρ in terms of their distance of closest contact H, ρ = H
+ 2R. From Eq. (B5), it is obvious that in this limit the domi-
nant term in the radial dependence is independent of the wave
number, but the anisotropy of the two distributions persists.45

This makes it hard to obtain any general results as the inter-
action in general depends on the orientations of the two shells
when they are brought together. But if we consider two shells
at small separations, ρ 3 R, we can check the interaction of
two homogeneously charged shells [Eq. (B1)] and obtain

V0(H ) =
Rσ 2

0

8κ2εε0
e−κH , (B6)
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which has the same functional dependence as given by Ver-
wey and Overbeek,35 but differs in the prefactor due to a dif-
ferent approximation.

3. Dipole-dipole interaction

Another limit we can check is the expression for the in-
teraction of two (equal) dipole distributions. We concern our-
selves with an axially symmetric charge distribution with l
= 1, σ (1m, i) = σ 1δm0. The connecting line between the two
dipoles is chosen to be ẑ, and due to the symmetry of the prob-
lem the only relevant Euler angles are the azimuthal angles of
the two dipoles, β1 and β2. The dipole moment of the shells
can be calculated from their surface charge distributions,38

µ =
∫

r σ (") δ(r − R) d3r. (B7)

The distribution in the reference frame is axially symmetric,
and we get a dipole moment in the z direction only with the
magnitude

µ = σ1R
3

√
4π

3
. (B8)

Thus, we can write for the general orientations of the
two dipoles µ1µ2 = µ2(cos β1 cos β2 + sin β1 sin β2) and
(µ1ẑ)(µ2ẑ) = µ2 cos β1 cos β2. After summing over m and s
the dipole-dipole interaction energy is

V11 = R2σ 2
1

κεε0
C(1, 1, κR)

(
−3πe−κρ

2(κρ)3

)

×
[
(2 + 2κρ + (κρ)2) cos β1 cos β2

−(1 + κρ) sin β1 sin β2

]
. (B9)

Simplifying the above equation using the expressions for the
dipole moment, we can write in the Coulomb limit of two
point dipoles

lim
κR→0

V11/kBT = lB
e−κρ

ρ3

[
(1 + κρ)µ1µ2

−(3 + 3κρ + (κρ)2)(µ1ẑ)(µ2ẑ)
]
, (B10)

obtaining the same expression for the DH interaction of two
point dipoles as given in the literature (e.g., Ref. 60).
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