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Pseudo-Casimir stresses and elasticity of a
confined elastomer film†

Bing-Sui Lu,*a Ali Najib and Rudolf Podgornika

Investigations of the elastic behavior of bulk elastomers have traditionally proceeded on the basis of

classical rubber elasticity, which regards chains as thermally fluctuating but disregards the thermal

fluctuations of the cross-links. Herein, we consider an incompressible and flat elastomer film of an

axisymmetric shape confined between two large hard co-planar substrates, with the axis of the film

perpendicular to the substrates. We address the impact that thermal fluctuations of the cross-links have

on the free energy of elastic deformation of the system, subject to the requirement that the fluctuating

elastomer cannot detach from the substrates. We examine the behavior of the deformation free energy

for one case where a rigid pinning boundary condition is applied to a class of elastic fluctuations at the

confining surfaces, and another case where the same elastic fluctuations are subjected to soft ‘‘gluing’’

potentials. We find that there can be significant departures (both quantitative and qualitative) from the

prediction of classical rubber elasticity theory when elastic fluctuations are included. Finally, we compare

the character of the attractive part of the elastic fluctuation-induced, or pseudo-Casimir, stress with the

standard thermal Casimir stress in confined but non-elastomeric systems, finding the same power law

decay behavior when a rigid pinning boundary condition is applied; for the case of the gluing potential,

we find that the leading order correction to the attractive part of the fluctuation stress decays inversely

with the inter-substrate separation.

I. Introduction

There has been increasing interest in polymer network films of
micron to nanoscale thicknesses,1 which can be used as
sensors that mimic biological organs, tunable Bragg reflectors
and synthetic cell substrata.2,3 Natural polymer network films
also exist, for example, the actin filament networks of cells and
the intertwining sphingomyelin chains in a myelin sheath.4

A conventional picture of a polymer network is that of a collection
of chains whose end-points (or junctures) are permanently
cross-linked to an elastic matrix that undergoes deformation.5

The shear modulus emerges from the entropic cost of thermal
fluctuations of the chains.6–9 On the other hand, the elastic
matrix itself is also a thermally fluctuating entity at room
temperature, with the chain end-points undergoing thermally
driven displacements about their mean positions.7,10–12 The
end-points have a typical localization length or root-mean-
square displacement that is directly related to how densely
the network is cross-linked.10 Physically the typical localization

length reflects how strongly localized the network constituents
are, i.e., a smaller value would correspond to a stronger
localization. We can also regard it as a cut-off length scale
below which continuum elasticity theory no longer applies, and
it is in this sense that we shall apply the term in the rest of this
paper. Thus quantities such as strain and deformation tensor
are really coarse-grained quantities that have a meaning only
on length scales larger than the typical localization length. The
classical theory of rubber elasticity6 (also known as the affine
network model8) takes into account the thermal fluctuations of
the chains, but regards the elastic matrix (i.e. the cross-linked
ends of the fluctuating chains) as thermally non-fluctuating.
However, the effects of thermal fluctuations of the elastic matrix
(henceforth called ‘‘elastic fluctuations’’) can substantially modify
the predictions of classical rubber elasticity when the local
incompressibility of the elastomer is taken into account, as
has been shown for the case of a bulk elastomer (i.e. whose
dimensions are all much larger than the typical localization
length-scale).11 It is thus of interest to study how elastic fluctuations
can modify the elastic deformation behavior of a thin locally
incompressible elastomer film confined between two large hard
co-planar substrates. This would involve the interplay between
elastic fluctuations and the finite-size effects of the elastomer
system. Here and in what follows, we take ‘‘thin’’ to refer to
a thickness that is much smaller than the square root of the
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cross-sectional area of the elastomer surface co-planar with the
substrates, but still larger than the typical localization length.

Our paper presents a first step in the theoretical investigation
of the effects of thermal elastic fluctuations on the behavior of
a confined incompressible elastomer film. In this confined
system boundary conditions have to be imposed on the elastic
fluctuations at the confining surfaces. We address the case of a
boundary condition (BC) that enforces the vanishing of elastic
fluctuations at the confining surfaces (i.e. the ‘‘rigid pinning’’
BC, which is mathematically equivalent to a Dirichlet BC), as
well as the case where we have a ‘‘soft’’ gluing potential (instead
of a ‘‘hard’’ Dirichlet BC) acting at each confining surface on
a class of elastic fluctuations. From studies in other systems,
confinement has been known to result in fluctuation-induced,
Casimir or pseudo-Casimir stresses.13–18 Such stresses are the
result of thermal or quantum fluctuations of a field with long
range correlation, constrained by the presence of boundary
surfaces. The surfaces ‘‘feel’’ the presence of each other via
these fluctuating fields. The long range correlations can emerge
for example in ordered soft matter systems which exhibit broken
symmetry (i.e. an ordered phase), where the corresponding
Goldstone modes mediate the pseudo-Casimir force between
the boundary surfaces of the system. In fluctuating elastomers,
there are elastic phonons which are the coarse-grainings of
thermally excited random displacements of the cross-linking
points. As we will see later, these phonons are ‘‘massless’’ (i.e.
they only appear as gradient terms in the Hamiltonian), and it is
well-known that the phonons can therefore exhibit long-range
correlations.11 Thus, we expect analogous pseudo-Casimir stresses
to arise in a thermally fluctuating confined elastomer. In
confined nematics15,16 and confined polymer liquid crystals,17

the fluctuation-induced pseudo-Casimir stress is predicted to
be attractive and decay as the third power of inverse inter-
surface separation. The route is thus open to the following
inter-related pair of investigations. Firstly, from the angle of
rubber elasticity, how do thermal elastic fluctuations modify
the elastic behavior predicted by classical rubber theory, for
a confined elastomer film? In particular, how does the type
of boundary conditions impact on the deformation free
energy behavior? Secondly, from the purview of the field of
fluctuation-induced forces,18 how does the character of the
attractive part of the elastic fluctuation-induced stress in a
confined elastomer compare with the Casimir stress induced
by confined electromagnetic, nematic, or polymer liquid crystal
fluctuation modes?

For the sake of simplicity, we disregard the effects of
disorder introduced by the heterogeneous distribution of
cross-links, and we focus instead on homogeneous elastomers,
in which every point of the elastomer (together with its thermal
fluctuations) undergoes an affine transformation under an
externally applied uniaxial shear deformation. We study the
case of incompressible elastomers as the shear modulus of
rubber is substantially smaller than its bulk modulus (often
by at least two orders of magnitude9), which justifies the
approximation of incompressibility. We also limit our consideration
to elastomer films whose thicknesses are larger than the typical

localization lengthscale (and thus of macroscopic lengthscales),
in order that the framework of continuum elasticity theory may
still be used, but the thickness is much smaller than the
transverse dimension of the film, so that the finite-size effects
on elastic fluctuations cannot be neglected.

II. The Hamiltonian

Our system is an elastomer film which in its undeformed state
has a certain thickness L and cross-sectional area S, and is
confined between a pair of co-planar hard substrates. The
elastomer film is then subjected to a uniaxial shear deformation.
To describe the corresponding energy cost for a given thermal
configuration of the elastomer, we take the Hamiltonian of ref. 11:

Hel ¼
m0
2

ðL
0

dz

ð
d2x?

@RiðxÞ
@xa

@RiðxÞ
@xa

; (2.1)

where RðxÞ ¼ L � ðxþ uðxÞÞ. Here L is the deformation gradient,

x is the mean position of a given mass-point in the elastomer
prior to deformation, and u(x) denotes the elastic phonon,
i.e., the thermal fluctuation of the mass-point about its
mean position. The coordinate x can equally well be regarded
as a label affixed to each mass-point in the undeformed
elastomer, which tags along as the mass-point moves when
the elastomer is deformed.

III. Partition function

The partition function is given by

Z ¼
ð
Dudðr � uÞe�bHel � Z0Zu: (3.1)

Here we have decomposed Z into a fluctuation-free, mean-field
part Z0, and a fluctuation contribution Zu. The symbol d( f )
denotes the Dirac delta-functional, which is defined to be zero
(non-zero) if f a 0 ( f = 0).19 By writing the Dirac delta-function
inside the functional integral over u, we are enforcing the local
incompressibility of the elastomer: r�u = 0. This linear con-
straint is true only for small u, which is the regime we consider.
This constraint is derived from the more general nonlinear
local incompressibility constraint, viz., det qR/qx = 1. We can see

this by writing det @R=@x ¼ det L
� �

det dþ @u=@x
� �

, and using

the global incompressibility of the elastomer, viz., det L
� �

¼ 1,

which forces 0 ¼ ln det dþ @u
.
@x

� �
¼ Tr ln dþ @u

.
@x

� �
. For

small u we can expand the logarithm to a linear order, and
obtain r�u = 0.

The mean-field free energy is given by

F0 ¼ �kBT lnZ0 ¼
m0
2
VTr LT � L

� �
: (3.2)

Taking the z-direction to be perpendicular to the cross-sectional
surface of the elastomer, a uniaxial shear deformation is

described by the deformation gradient: L ¼ diag l�1=2; l�1=2; l
� �

,

where l 4 1 (l o 1) corresponds to uniaxial extension
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(compression). Correspondingly, the mean-field free energy
becomes

F0 ¼
m0
2
V l2 þ 2

l

� �
: (3.3)

The elastic fluctuation correction to Z is described by

Zu �
ð
Dudðr � uÞe�bHu (3.4)

where Hu is the Hamiltonian for elastic fluctuations. As we show
in Appendix A, Hu is given by

Hu ¼
m0
2

ð
d3x@aubLT

biLic@auc: (3.5)

We can thus also express Hel as

Hel ¼
m0
2

ðL
0

dz

ð
d2x? LT

aiLia þ @aubLT
biLic@auc

� �
: (3.6)

The first term describes classical rubber elasticity, and is
derived by considering the entropy of fluctuating Gaussian
chains with end-points fixed in a thermally non-fluctuating matrix
that deforms affinely. On the other hand, the second term allows
for the thermal fluctuations of the end-points themselves.

A. Boundary conditions

Furthermore, we need to specify boundary conditions (BCs) for the
elastic fluctuations u at the two interfaces. Owing to the local
incompressibility constraint, the BC can only be enforced on two
components of u. Let us write u = (v,uz) and make a Helmholtz
decomposition of v into an irrotational and a solenoidal part: v =
vJ + v>. The solenoidal fluctuation, v>, satisfies r>�v> = 0, whilst
the irrotational fluctuation, vJ, satisfies r> � vJ = 0. The symbol
r> � (qx,qy) refers to the two-dimensional gradient operator. The
first set of boundary conditions are the non-detachment BCs:

uz(z = 0) = uz(z = L) = 0, (3.7)

which enforce the condition that the surfaces of the elastomer
do not detach from the substrates.20 Regarding the second set of
boundary conditions for the other components of u, we can
have different choices depending on the physical make-up of
the interfaces. For example, if the elastomer surfaces are rigidly
pinned to the substrates so that the elastic displacements at the
interfaces cannot undergo solenoidal motion, we can specify the
rigid pinning boundary condition for v>, i.e.,

v>(z = 0) = v>(z = L) = 0, (3.8)

whilst the corresponding BC for vJ can be found from the local
incompressibility constraint. On the other hand, if we allow for
some solenoidal ‘‘slippage’’ of the elastomer film at the inter-
faces, then instead of the rigid pinning BC we have additional
terms (the soft ‘‘gluing’’ potentials, to be described in Section V)
in Hel that describe the energetic cost of slippage. In this case,
the non-detachment BC still holds for uz.

We need to calculate the fluctuation correction to the mean-
field behavior described by eqn (3.3). The fluctuation calculation is
made somewhat more challenging by the presence of the local

incompressibility constraint in the partition function. The
corresponding strategy we adopt is to make use of a certain
mode decomposition that automatically enforces the local
incompressibility constraint and also shows the partition function
to be a functional integral over two independent field degrees of
freedom. We therefore next turn to the mode decomposition.

B. Mode decomposition

Let us write (in real space) u = (v,f) where v � (ux,uy) and f � uz.
Let us also define the differential operator in the x–y directions:
r> � (qx,qy). The uniaxially compressed elastomer is described
by the Hamiltonian

Hu ¼
m0
2

ðL
0

dz

ð
d2r

1

l
@ivm@ivm þ l2@if@if

� �

¼ m0
2

ðL
0

dz

ð
d2r

1

l
r? � vjj
� �2

þ1
l
@zv
jj

� �2�

þ 1

l
r? � v?
� �2þ1

l
@zv
?� �2þl2@if@if

�
(3.9)

where the Greek index m = 1, 2 and the Latin index i = 1, 2, 3. As the
co-planar substrates break translation symmetry in the z-direction
but leave the system translationally invariant in the x–y plane, the
two-dimensional inverse Fourier transforms of vJ and v> are given by

vjjðq; zÞ ¼
ð
d2Q

ð2pÞ2e
iq�Q~vjjðQ; zÞ;

v?ðq; zÞ ¼
ð
d2Q

ð2pÞ2e
iq�Q~v?ðQ; zÞ;

(3.10)

and the inverse Fourier transform of f is given by

fðq; zÞ ¼
ð
d2Q

ð2pÞ2e
iq�Q~fðQ; zÞ: (3.11)

Here Q = (Qx,Qy) is the two-dimensional wave-vector conjugate
to q = (x, y). In two-dimensional Fourier space the properties
of vJ and v> are described by Q̂m~n>m = 0 and emnQ̂m~nJn = 0 (where
Q̂ = Q/Q, e12 = �e21 = 1 and e11 = e22 = 0), which implies that they
can be expressed in terms of scalar modes w and c, viz.,

~nJm � Q̂mw, ~n>m � emnQ̂nc. (3.12)

In terms of w, c and ~f, we can rewrite Hu as

Hu½w;c;f� ¼
m0
2l

ðL
0

dz

ð
d2Q

ð2pÞ2 Q2 cðQ; zÞj j2þ @zcðQ; zÞj j2
�

þQ2jwðQ; zÞj2 þ @zwðQ; zÞj j2

þ l3 Q2j~fðQ; zÞj2 þ @z~fðQ; zÞ
�� ��2� ��

(3.13)

The corresponding partition function is given by

Zu ¼
ð
Dw
ð
Dc
ð
D~f

Y
fQg

Y
fzg

d QwðQ; zÞ � i@z~fðQ; zÞ
� �

� e�bHu w;c;~f½ �
(3.14)
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We turn next to the computation of the free energy for the two
following types of boundary conditions for c: (i) the rigid pinning
BC and (ii) ‘‘gluing’’ potential (to be described in Section V).

IV. Elastomer rigidly pinned at the
interfaces
A. Fluctuation modes

First we consider the case of an elastomer rigidly pinned at the
interfaces with the co-planar substrates. This means that we
implement both the non-detachment BC (eqn (3.7)) for ~f and
the rigid pinning BC (eqn (3.8)) for c, so these fluctuation fields
are given by sinusoidal Fourier series:

~fðQ; zÞ ¼
X1
n¼1

ffiffiffiffi
2

L

r
sin

npz
L

� �
fre
n ðQÞ þ ifim

n ðQÞ
� �

; (4.1a)

cðQ; zÞ ¼
X1
n¼1

ffiffiffiffi
2

L

r
sin

npz
L

� �
cre
n ðQÞ þ icim

n ðQÞ
� �

: (4.1b)

Here the superscripts ‘‘re’’ and ‘‘im’’ refer to real and imaginary
parts. The independent fluctuation degrees of freedom along
the z-direction are now replaced by the independent discrete
modes labeled by n, where n = 1, 2, 3,. . . To determine w(Q,z), we
return to the local incompressibility constraint: �qz(Im ~f(Q,z) =
Q Re w(Q,z)) and qz(Re ~f(Q,z)) = Q Im w(Q,z). Used in conjunction
with eqn (4.1a), we obtain

wðQ; zÞ ¼
X1
n¼1

ffiffiffiffi
2

L

r
np
QL

� �
cos

npz
L

� �
�fim

n þ ifre
n

� �
: (4.2)

In terms of the discrete modes we can write eqn (3.13) as

Hu cn;fnf g½ � ¼ m0
2l

X1
n¼1

ð
d2Q

ð2pÞ2 Q2 þ np
L

� �2� �


� cre
n ðQÞ

� �2þ cim
n ðQÞ

� �2h i

þ l3Q2 þ np
L

� �2� �
1þ np

QL

� �2
 !

� fre
n ðQÞ

� �2þ fim
n ðQÞ

� �2h i�

(4.3)

As we show in Appendix B, this leads to the following fluctuation
contribution to the free energy of elastic deformation:

FuðlÞ ¼
kBTS

2

X1
n¼1

ð
d2Q

ð2pÞ2ln lQ2 þ 1

l2
np
L

� �2� �
(4.4)

We can rewrite eqn (4.5) as

FuðlÞ ¼
kBTS

4p

ðpx�1
0

dQQ
XM
n¼1

ln a2 þ n2
� �

� 2lnlþ B
� 

; (4.5)

where a� l3/2QL/p and B� p2MkBTS/4Lx2 is a term independent
of l (and which we will thus ignore), and we have set an upper
limit M � L/x on the discrete sum, as the number of fluctuating

degrees of freedom in the z-direction is limited by the typical
localization length x.

B. Fluctuation free energy

Before we turn to evaluate the free energy of the confined
elastomer film, we make a few general remarks about the
anticipated features of such a free energy. In a confined elastomer
film, thermal fluctuations of the elastic matrix introduce qualitative
changes to the free energy and the value of l that minimizes the
free energy. In an isotropic bulk elastomer, such elastic fluctuations
cause a spontaneous change in the volume of the undeformed
system (relative to the state of the undeformed elastomer in mean-
field theory12), but the value of l that characterizes the undeformed
state remains unchanged at unity.11 The latter is expected on
grounds of symmetry as it is equally energetically costly for elastic
fluctuations to occur in every direction in space, with the elastomer
being equally macroscopically large (and homogeneous) in every
direction. In this respect, the reference (i.e., undeformed) space can
be regarded as isotropic and translationally invariant in every
direction. On the other hand, the reference space of a confined
elastomer film is isotropic only in the transverse directions, and
translation symmetry is broken in the direction normal to the
film’s surface. As we have seen, applying the Dirichlet-type non-
detachment BC on the spectral decomposition of the elastic
fluctuations leads to a discrete spectrum of modes in the normal
direction, whereas there is a quasi-continuous spectrum of modes
in the transverse directions. Each mode carries a thermal energy,
and there are many more modes in the transverse directions than
in the normal direction. The spectral anisotropy will thus be
reflected in the energetic anisotropy of the fluctuation-corrected
free energy, which means for example that we expect that the free
energy minimum should occur at a value of l different from
unity, l being the strain measured relative to the isotropic
undeformed state (or ground state) in mean-field theory.
Hence, the fluctuations generate internal ‘‘pre-stress’’ that
causes the system to undergo a spontaneous shear relaxation,
while the physically measurable strain is defined with reference to
the state that has already spontaneously relaxed.

To evaluate the free energy, we first decompose the discrete
sum in eqn (4.5) as follows:

XM
n¼1

ln n2 þ a2
� �

¼
XM
n¼1

lnðnþ iaÞ þ lnðn� iaÞð Þ

¼ ln ð1þ iaÞM þ ð1� iaÞM
� �

¼ ln
GðM þ 1� iaÞGðM þ 1þ iaÞ

Gð1þ iaÞGð1� iaÞ

� �

In the above, the Pochhammer symbol (x)n denotes G(x + n)/
G(x). We make use of the result (see e.g. ref. 21)

Gð1þ iaÞGð1� iaÞ ¼ pa
sinhðpaÞ (4.6)

and in the limit that z c 1, use Stirling’s approximation to
G(z)21

GðzÞ � ðz=eÞz
ffiffiffiffiffiffiffiffiffiffi
2p=z

p
: (4.7)
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We thus have

GðM þ 1� iaÞGðM þ 1þ iaÞ

� 2peðMþ1�iaÞlnðMþ1�iaÞ�ðMþ1�iaÞ

� eðMþ1þiaÞlnðMþ1þiaÞ�ðMþ1þiaÞ

� e�
1
2
lnðMþ1�iaÞ�1

2
lnðMþ1þiaÞ

¼ 2pe Mþ1
2

� �
ln ðMþ1Þ2þa2ð Þe

�2a tan�1 a
Mþ1

� �
�2ðMþ1Þ

;

(4.8)

where we have used the identity tan�1 z = (i/2)ln((1 � iz)/
(1 + iz)).22 By writing L/x = M E M + 1/2, we have

lnðGðM þ 1� iaÞGðM þ 1þ iaÞÞ

� ln 2pþ L

x
ln

L

x

� �2

þl3 QL

p

� �2
" #

� 2l3=2QL

p
tan�1

l3=2Qx
p

� �
� 2L

x
:

(4.9)

Using (4.4), (4.6) and (4.9), the discrete sum can be put in
the form

XM
n¼1

ln a2 þ n2
� �

�M ln 1þ a

M

� �2� �
þ 2a cot�1

a

M

� �

� lnpaþ ln 1� e�2pa
� �

þ C;

(4.10)

where we used the identity tan�1(z) = p/2 � cot�1(z) and
approximated M + 1 and M + 1

2 by M, which is valid for large
M. The term C � ln p + 2M ln M � 2M is independent of l, and
we can thus disregard the corresponding term in the free
energy. In Fig. 2, we compare the left-hand side (LHS) and
right-hand side (RHS) of eqn (4.10), with the LHS and RHS
evaluated relative to their values at l = 1, for M = 5 and M = 10,
and l = 0.3 and l = 0.9. We see that the agreement between
the exact LHS and its approximation in the RHS improves
for larger values of M and smaller values of l. Furthermore,
for each value of l and M, the agreement is better for the
lower half-range of values of Q, with the error becoming
more noticeable only for Q close to the upper bound px�1

(the upper bound being there because continuum elasticity
is not defined on lengthscales smaller than the typical
localization length).

Writing M = L/x, we have

FuðlÞ �
kBTS

4p

ðpx�1
0

dQQ ln 1� e�2l
3=2QL

� �n
� lnl3=2 � 2L

x
ln l

þ L

x
ln 1þ l3

Qx
p

� �2
" #

þ 2l3=2QL

p
cot�1

l3=2Qx
p

� �)

(4.11)

where we have neglected terms independent of l. The first term
describes the interaction between the confining surfaces, the
second term can be interpreted as a surface tension term, and
the remaining terms are the bulk terms. The first term resembles,

but is not identical to, the standard form of a Casimir free
energy (see, e.g., ref. 15), the differences being the finite
upper cut-off and the presence of l in the exponent. Strictly
speaking, even in studies of the Casimir effect, a finite upper
cut-off (which corresponds to the smallest length scale in
the problem) should be imposed;23 however, the difference
between the integral with a finite upper cut-off and one
with an infinite upper bound is an irrelevant constant in
the usual Casimir problems, which do not involve time-
persistent elastic stresses in the intervening medium, and can
thus be ignored. In our present problem, we cannot replace
the integral by one with an infinite upper bound, because
the difference depends on l and thus changes as the elastomer
is deformed.

We can rewrite the integral over the first term as the sumðpx�1
0

dQQ ln 1� e�2l
3=2QL

� �
¼ � zRð3Þ

4l3L2
� gðl;LÞ;

gðl;LÞ �
ð1
px�1

dQQ ln 1� e�2l
3=2QL

� �
:

(4.12)

In the above, zRðsÞ �
P1
n¼1

1=ns is the Riemann zeta function,

and zR(3) E 1.202.21 We thus obtain for the fluctuation
free energy:

FuðlÞ ��
kBTSzRð3Þ
16pl3L2

�kBTS

4p
gðl;LÞ� 3pkBTS

16x2
lnlþpkBTV

24x3
fbulk:

(4.13)

In the above, we denote the volume by V � SL, and

fbulk � 4l3=2cot�1 l3=2
� �

� 6 ln l� 1þ 3þ 1

l3

� �
ln 1þ l3
� �

:

(4.14)

The first three terms in eqn (4.13) scale as S, whereas the rest
are bulk terms that scale as V.24

C. Reference state

The full free energy is given by the sum of the mean-field
contribution (eqn (3.3)) and the fluctuation correction:

Ffull = F0 + Fu. (4.15)

F0 has a minimum at l = 1 but the minimum of Ffull occurs at
l = l0 a 1. We can understand this by noting that l = 1 is the
ground state of the mean-field theory, viz.,

@F0

@l

����
l¼1
¼ 0; (4.16)

which corresponds to a thickness L measured in a state where
the positions of the cross-links (i.e. the ambient elastic matrix)
do not undergo thermal fluctuations. On the other hand,
in a state where the elastic matrix does undergo thermal
fluctuations, the fluctuations will cause the system to relax to
a new equilibrium thickness L0 distinct from L (see Fig. 1). The
corresponding value of l (where l is a deformation relative to
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the mean-field ground state) is l0 � L0/L, and l0 is determined
from the stationarity condition:

@Ffull

@l

����
l¼l0
¼ 0: (4.17)

The value of l0 can be determined numerically. For example,
for m0 = kBT/x3, l0 E 1.0466 for L = 5x, l0 E 1.03717 for L = 7x
and l0 E 1.03008 for L = 10x. We call the state that satisfies
eqn (4.17), the true ground state. If we measure a subsequent,
isothermal, externally applied deformation relative to the true
ground state, the corresponding strain ~l = L0/L0 (where L0 is the
thickness of the deformed elastomer) is related to l via

l = ~ll0. (4.18)

D. Deformation free energy

The full deformation free energy is given by

F(~l) = Ffull(~ll0) � Ffull(l0). (4.19)

This quantity vanishes for zero external deformation relative to
the true ground state [F(~l = 1) = 0]. Using eqn (3.3) and (4.11),
we find the deformation free energy for a system with the rigid
pinning BC:

bx3
�
V

� �
F ~l
� �

¼ bx3m0
2

~ll0
� �2

þ 2

~ll0
� l02 �

2

l0

� �

þ x3

4pL

ðpx�1
0

dQQ ln
1� e�2

~ll0ð Þ3=2QL

1� e�2l03=2QL

2
4

3
5

þ p
6

~ll0
� �3=2

cot�1 ~ll0
� �3=2� ��

� l03=2 cot�1 l03=2
� �i

þ p
24

3þ 1

~ll0
� �3

2
64

3
75 ln 1þ ~ll0

� �3� �

� p
24

3þ 1

l03

� �
ln 1þ l03
� �

� p
4
ln ~l� 3px

16L
ln ~l:

(4.20)

Fig. 1 Comparison of different ground states and relative deformations.
The state in (i) corresponds to the undeformed or reference state in mean-
field theory (where thermal fluctuations of the elastic matrix are absent).
We call this the mean-field ground state, and is the ground state considered
by classical rubber elasticity theory. In (ii), the elastomer undergoes an
external deformation with a deformation l measured relative to the mean-
field ground state. If we allow for the effect of thermal fluctuations of the
elastic matrix, the elastomer in state (i) will undergo a spontaneous
relaxation to state (iii), with a deformation l0 measured relative to the
mean-field ground state. We call state (iii) the fluctuation corrected or true
ground state. In (iv) the elastomer undergoes an external deformation
~l relative to the true ground state, and such deformation corresponds to
what is measured in experiment.

Fig. 2 Comparison of the left-hand side (LHS) and right-hand side (RHS)
of eqn (4.10), for (i) l = 0.9 and (ii) l = 0.3, with the LHS and RHS evaluated
relative to their values at l = 1. For each case we plot the behavior for M = 5
and M = 10.
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In Fig. 3, we show the behavior of the free energy density as a
function of ~l for three different thicknesses of the elastomer
film, L = 5x, 7x and 10x.25 We see that elastic fluctuations
introduce a significant deviation from the qualitative behavior
predicted by mean-field theory; in particular, fluctuations
increase the overall free energy of the system relative to what
mean-field theory predicts, and the increase is more significant
for larger film thicknesses. For example, the full free energy
can be seventy times larger than the mean-field value if an
elastomer of undeformed thickness 5x is compressed to 70% of
its original thickness.

V. Elastomer ‘‘glued’’ at the interfaces
A. Hamiltonian

Next, we consider the case of an elastomer that is ‘‘glued’’ at the
interfaces, so that the solenoidal elastic fluctuations can
undergo some slippage there. This is analogous, for example,
to hydrodynamic slippage of a fluid in a nanopore due to a
hydrophobic mismatch between the fluid and the surface of
the nanopore.26 In practice the glue can be an adhesive such
as polysaccharide adhesive viscous exopolysaccharide (PAVE)
isolated from the marine bacterium Alteromonas colwelliana.27

Instead of the rigid pinning BC we have a ‘‘soft’’ gluing
potential at the confining surfaces,28–32 described by two extra
terms in Hu:

Hu ¼
m0
2

ðL
0

dz

ð
d2r

1

l
r? � vjj
� �2

þ 1

l
@zv
jj

� �2
þ 1

l
r? � v?
� �2�

þ 1

l
@zv
?� �2þl2@if@if

�

þ Kt

2w0
2

ð
d2r v?ðz ¼ 0Þ

�� ��2þ v?ðz ¼ LÞ
�� ��2� �

(5.1)

The terms within the integral over z are the same as those in
eqn (3.9), whereas the last two terms describe the energetic cost
of elastomer slippage at the interface. Kt quantifies the slippage
energy cost (or adhesion strength) per unit area on each of the
two interfaces, and w0 has the meaning of a ‘‘slippage length’’.
We have only written down soft BC terms for v> as the other
component vJ is completely determined by f via the local
incompressibility constraint. In terms of ~f, w and c (defined
by eqn (3.11) and (3.12)), we now have

Hu w;c; ~f
h i

¼ m0
2l

ðL
0

dz

ð
d2Q

ð2pÞ2 Q2jcðQ; zÞj2 þ @zcðQ; zÞj j2
�

þQ2jwðQ; zÞj2 þ @zwðQ; zÞj j2

þ l3 Q2 ~fðQ; zÞ
�� ��2þ @z~fðQ; zÞ

�� ��2� �

þ Kt

2w0
2

ð
d2Q

ð2pÞ2 jcðQ; z ¼ 0Þj2 þ jcðQ; z ¼ LÞj2
� �

:

(5.2)

The form of the above expression is consistent with the recovery
of eqn (4.1) in the limit that Kt - N (which corresponds to the
regime of rigid pinning).

The non-detachment BC (eqn (3.7)) taken together with the local
incompressibility condition means that f and w are still given by
eqn (4.1a) and (4.12), respectively. The Hamiltonian is then given by

Hu[{fre
n ,fim

n },c] = H1 + Hc, (5.3)

where

H1 �
m0
2l

X1
n¼1

ð
d2Q

ð2pÞ2 l3Q2 þ np
L

� �2� �
1þ np

QL

� �2
 !

� fre
n ðQÞ

� �2þ fim
n ðQÞ

� �2h i (5.4)

and

Hc �
m0
2l

ðL
0

dz

ð
d2Q

ð2pÞ2 Q2jcðQ; zÞj2 þ @zcðQ; zÞj j2
� �

þ Kt

2w0
2

ð
d2Q

ð2pÞ2 jcðQ; z ¼ 0Þj2 þ jcðQ; z ¼ LÞj2
� �

:

(5.5)

Next, we turn to evaluate the partition function.

B. Partition function

The fluctuation contribution to the partition function can be
expressed as

Zu = Z1Zc (5.6)

where

Z1 �
Y
n2Zþf g
fQ4 0g

ð
dfre

n ðQÞ
ð
dfim

n ðQÞ e�bH1 (5.7)

Zc �
Y

fz2½0;L�g
fQ4 0g

ð
dcreðQ; zÞ

ð
dcimðQ; zÞ e�bHc (5.8)

Fig. 3 Comparison of the free energy densities of elastic deformation as a
function of deformation ~l measured relative to the true ground state (i.e.,
the undeformed state of the elastomer after elastic fluctuations have been
allowed to relax), for m0 = kBT/x3 and (i) L = 5x (blue, dashed), (ii) L = 7x
(green, dot-dashed), and (iii) L = 10x (red, dotted). Comparison is made
with the mean-field elastic energy in eqn (3.3) (black).
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In the above, Z+ refers to the set of all positive integers and
{Q 4 0} refers to the set of all positive wave-vectors (‘‘positivity’’
being defined with reference to a straight line that divides the
two-dimensional lattice of points (Qx,Qy) into two halves; e.g.,
if we denote the normal vector to such a line by n, then a
wave-vector is positive if it satisfies Q�n 4 0). To evaluate Zc we
note that it has the form of a (Euclidean) Feynman path integral
for a harmonic oscillator where z is a time-like coordinate, and
accordingly we apply the Fourier series method of Feynman
and Hibbs.36 Let us define the Hamiltonian density Ĥc(Q) in
Q-space:

Hc �
ð
d2Q

ð2pÞ2 ĤcðQÞ; (5.9)

and write

c(Q,z) = ccl(Q,z) + q(Q,z) (5.10)

where ccl(Q,z) is a solution to the saddle-point equation

qz
2ccl = Q2ccl (5.11)

and has the values ccl(Q,z = 0) = XQ and ccl(Q,z = L) = YQ at the
boundary interfaces, whilst

qðQ; zÞ ¼
X
n

cnðQÞ sin
npz
L

� �
(5.12)

which satisfies Dirichlet boundary conditions. For fluctuations
of given wave-vector Q and specified boundary values c(Q,z = 0) =
XQ and c(Q,z = L) = YQ, we have made a decomposition into
(i) a ‘‘classical trajectory’’ ccl(Q,z) that extremizes the Boltzmann
weight factor e�bĤc(Q), and (ii) deviations q(Q,z) about this
trajectory, with the same ‘‘end-points’’ (i.e. zero fluctuation
amplitude at the boundaries). [Note that the case of c(Q,z)
subject to Dirichlet BCs (considered in Section 4) is a special
case where ccl(Q,z) � 0.] Tracing over all fluctuations in Zc

is then equivalent to tracing over all deviations q for the
same classical trajectory for given boundary values, and then
tracing over all possible boundary values. The above-mentioned
decomposition also ensures that the Hamiltonian separates
into two decoupled contributions:

ĤcðQÞ ¼
m0
2l

ðL
0

dz Q2 cclðQ; zÞj j2þ @zcclðQ; zÞj j2
� �

þ Kt

2w0
2

cclðQ; z ¼ 0Þj j2þ cclðQ; z ¼ LÞj j2
� �

þ m0
2l

ðL
0

dz Q2jqðQ; zÞj2 þ @zqðQ; zÞj j2
� �

:

(5.13)

Accordingly, we find after implementing boundary conditions
that

cclðQ; zÞ ¼
YQ � XQ coshQL

sinhQL
sinhQzþ XQ coshQz: (5.14)

Substituting eqn (5.12) and (5.14) in eqn (5.13) and summing
over wave-vectors, we obtain

Hc �
X
n

ð
d2Q

ð2pÞ2
m0L
4l

Q2 þ n2p2

L2

� �
� cre

n ðQÞ
� �2þ cim

n ðQÞ
� �2h i

þ 1

2

ð
d2Q

ð2pÞ2
m0Q
l

cothQLþ Kt

w0
2

� �
XQ

�� ��2þ YQ

�� ��2� ��

� 2m0Q
l
ðcosechQLÞ Xre

QY re
Q þ X im

Q Y im
Q

� ��
:

(5.15)

The evaluation of Z1 and Zc in eqn (5.6) involves a straight-
forward Gaussian functional integration, and is shown in
Appendix C. The result for Zu is eqn (C4). Next, we turn to
evaluate the deformation free energy.

C. Free energy

The fluctuation free energy is evaluated in Appendix C, and the
result is given by

Fu = �kBT ln Z = F1 + F2 + const, (5.16)

where the ‘‘const’’ refers to contributions that are independent
of l, and

F1 �
kBTS

4p

ðpx�1
0

dQQ ln 1� e�2l
3=2QL

� �
� 3pkBTS

16x2
ln l

þ pkBTV
24x3

fbulk;

(5.17)

F2 �
kBTS

4p

ðpx�1
0

dQQ ln 1þ aðlÞ cothQLð Þ2� aðlÞcosechQLð Þ2
h i

¼ kBTS

4p

ðpx�1
0

dQQ 2 lnð1þ aðlÞÞ � ln 1� e�2QL
� ��

þ ln 1� 1� aðlÞ
1þ aðlÞ

� �2

e�2QL

" #)
;

(5.18)

where a(l) � m0w0
2Q/(lKt). The term fbulk is given by eqn (4.14).

The contribution F1 is the same as the fluctuation free energy
for an elastomer with rigid pinning BC (cf. eqn (4.11) and (4.13)
of Section IV), whilst F2 is the extra contribution that arises
from the finite strength of the gluing potential. The first term of
F2 can be interpreted as a surface tension term, whilst the
second and third terms describe the interaction between the
confining surfaces. As we expect, the last term in the formula
for F2 has a similar form to the thermal Casimir free energy for
a slab with soft boundary conditions and no region exterior to
the slab.28–32

As in eqn (4.19) of Section IV, the full deformation energy is
given by

F(~l) = Ffull(~ll0) � Ffull(l0), (5.19)

where Ffull � F0 + F1 + F2. For L = 5x, we find, by numerically
solving for l0 with the stationarity condition eqn (4.17), viz.,
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(qFfull(l)/ql)|l=l0
= 0, that l0 E 1.05414 for m0w0

2/Kt = 0.1,
l0 E 1.07503 for m0w0

2/Kt = 1, and l0 E 1.08807 for m0w0
2/

Kt = 10. As we do not know the actual value of the adhesion
strength Kt, we have tried a range of values from small to
large.33,34 The corresponding deformation free energy behavior
is displayed in Fig. 4. The deformation free energy is larger for
smaller gluing strengths Kt, because more fluctuation modes
can be excited, and each mode contributes thermal energy to
the overall free energy.

VI. Elastic pseudo-Casimir stress

We now turn to explore the fluctuation-induced, or pseudo-
Casimir, stresses that lead the system to spontaneously relax to
the true ground state, in particular comparing the attractive
component of such stresses with the thermal Casimir stresses
of non-elastomeric systems. To consider fluctuation stresses
we consider deformations defined relative to the mean-field
ground state (i.e. before the system has spontaneously relaxed).
As is typical in studies of the Casimir effect, we will focus on the
surface free energy contribution.35 We shall look at the effects
of the rigid pinning BC and the soft gluing potential.

First we consider the case of the rigid pinning BC, and we
refer to the discussion in Section IV. In eqn (4.13), the first term
is attractive and reminiscent of a Casimir effect:

Fc � �
kBTSzRð3Þ
16pl3L2

¼ � kBTSLzRð3Þ
16pðL0Þ3 ; (6.1)

where L0 = lL is the thickness of the deformed elastomer. The
pseudo-Casimir contribution Fc is thus attractive, and decays
as the inverse cube of the current separation between the
substrates. Besides this attractive contribution to the surface
free energy, eqn (4.13) also contains a surface term which
is proportional to �ln l, and thus repulsive for compressions,
as well as a finite-size correction (proportional to �g(l,L)) to
the pseudo-Casimir term. The latter two contributions to the

surface free energy compete with the attractive pseudo-Casimir
contribution, as we see from Fig. 5. Our problem is thus
distinct from the pseudo-Casimir physics of confined non-
elastomeric systems such as a nematic liquid crystal confined
between two flat plates with strong homeotropic anchoring at
the surface of each plate. There the director fluctuation free
energy decays inversely as the square of the separation between
the plates, and does not involve any additional repulsive terms
originating from internal stresses of the intervening medium.15

We determine the pseudo-Casimir stress sc from the formula

sc ¼ �
l
S

@FcðlÞ
L@l

¼ �3kBTzRð3Þ
16pl3L3

¼ �3kBTzRð3Þ
16pðL0Þ3 ; (6.2)

which is attractive and decays as (L0)�3. The right-hand side of
the first equality contains a prefactor l to account for the change
in the cross-sectional area after deformation. This prefactor is
necessary to define the true stress (as opposed to nominal stress,
which decays as (L0)�4). The distinction between true and nominal
stress only arises because we are dealing with an incompressible
elastomer,6 while in the studies of the Casimir effect in non-
elastomeric systems,13–17 the Casimir stress computed corresponds
to the nominal stress. Although the pseudo-Casimir stress in a
confined elastomer film decays with the same power law as that in
non-elastomeric systems (e.g. confined nematic and electromagnetic
fluctuations), the mechanisms giving rise to the same power law
are qualitatively distinct.

Next, we consider the correction to Fc and sc that come from
a soft gluing potential (cf. Section 5). To enable a formal
comparison with the more studied case of the pseudo-Casimir
effect emerging in confined nematic liquid crystals,15 consider
the last term of eqn (5.18) with the upper bound in the integral
set to infinity; let us call this dFc:

dFc ¼
kBTS

4pL2

ð1
0

duu ln 1� 1� xu

1þ xu

� �2

e�2u

" #
; (6.3)

Fig. 4 Free energy behavior of a system with a soft gluing potential, L = 5x
and m0 = kBT/x3, for m0w0

2/Kt = 0.1 (blue dashed), m0w0
2/Kt = 1 (green

dot-dashed), and m0w0
2/Kt = 10 (red dotted). For comparison we display

the behavior predicted by classical rubber elasticity (black), with L = x and
m0 = kBT.

Fig. 5 Comparison (in dimensionless units) of the magnitudes of the
attractive, pseudo-Casimir term, i.e., zR(3)x2/16pl3L2 (blue solid), and the
repulsive and finite-size contributions to the surface free energy part of
eqn (4.13), i.e., �g(l,L)x2/4p � 3p ln l/16 (red dashed), for the case L/x = 15.
For l = 0.07 (corresponding to a measured thickness of L0 = 1.05x, which is
larger than the typical localization length), the magnitude of the former
contribution is 18.3% of the latter contribution.
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where u � QL and x � m0w0
2/(lKtL). The problem is analytically

tractable37 for sufficiently large Kt, where x is small, and we can
expand dFc in powers of x, obtaining:

dFc � �
kBTSzRð3Þ

16pL2
þ kBTSzRð3Þm0w0

2

4plKtL3
�
3kBTSzRð3Þ m0w0

2
� �2

4pl2Kt
2L4

(6.4)

The first term can be disregarded as it is independent of l. The
corresponding true stress is

dsc ¼
kBTzRð3Þm0w0

2

4plKtL4
�
3kBTzRð3Þ m0w0

2
� �2

2pl2Kt
2L5

¼ kBTzRð3Þm0w0
2

4pKtL3L0
�
3kBTzRð3Þ m0w0

2
� �2

2pKt
2L3ðL0Þ2

(6.5)

The leading term has a positive sign, indicating that the soft
gluing potential leads to a less attractive pseudo-Casimir
stress, and decays as (L0)�1. The pseudo-Casimir stress for a
system with a soft gluing potential is obtained by adding dsc

to sc. Again, the contribution of the pseudo-Casimir stress
correction is offset by the finite size correction as well as the
first term of eqn (5.18).

VII. Summary and conclusion

In this study we have examined the important contribution of
thermal fluctuations of the elastic displacement to the elasticity
of thin confined elastomer films of an axisymmetric shape. We
have found that there can be significant departures (both
quantitative and qualitative) from the prediction of classical
rubber elasticity theory when elastic fluctuations are included.
Furthermore, we have also addressed the impact of different
types of boundary conditions on a particular (solenoidal)
mode of elastic fluctuation on the elastic deformation free
energy, focussing on the effect of (i) a ‘‘rigid pinning’’ boundary
condition and (ii) a pair of ‘‘gluing’’ boundary potentials (which
can be regarded as the elastic analogue of hydrodynamic
slippage). We found that the deformation free energy is lower
in case (i) than in case (ii). In addition, we have also explored
the formal similarities of the attractive component of the elastic
fluctuation-induced (pseudo-Casimir) stress with the thermal
Casimir stress. The attractive component for the rigid pinning
BC, as well as the leading order term corresponding to the
gluing potential problem, has the same (L0)�3 decay, where
L0 is the inter-surface separation. On the other hand, there
are also corrections to the attractive part of the fluctuation
stress for the gluing potential problem (which stem from the
finiteness of the gluing strength), and the leading correction
term decays as (L0)�1.

Our investigation into the thermal elastic fluctuation effects
between bounding surfaces in the context of confined elastomers
now opens up the avenue of analyzing the effective fluctuation-
induced interactions between rigid inclusions in the elastomer
network. Similar fluctuation mediated interactions have been
introduced between e.g. protein inclusions in a background of

thermal fluctuations of the lipid membrane, that exist as long
as the rigidity of the inclusion differs from that of the ambient
membrane.38 Another possible avenue is to investigate the
analogue of the critical Casimir effect (i.e. the Casimir effect
in a system characterized by an order parameter, for example
a thin superfluid film, where the effect is generated by
long-range fluctuations of the order parameter when the
system is near-critical, such that the fluctuations approach
‘‘masslessness’’39,40) in elastomeric systems, for example
cross-linked polymer blends under confinement. Our approach
can be extended to study the effects of disorder introduced by
random chemical cross-linking (disorder effects have indeed
received a lot of attention recently in other examples of fluctuation-
induced forces; see ref. 38, 41–50 and references therein), and
also to investigate the behavior of nematic elastomers9,51–53 in
confined environments.

Appendix A: derivation of the
fluctuation Hamiltonian, eqn (3.5)

Here we fill in the steps leading from eqn (3.1) to (3.5). Using
eqn (2.1), we can express eqn (3.1) as

Z ¼
ð
Dudðr � uÞexp � bm0

2

ðL
0

dz

ð
d2x?




� LiaLia þ 2LiaLib
@ub
@xa
þ LibLic

@ub
@xa

@uc
@xa

�� � (A1)

Let us define a matrix gab � LiaLib and a vector ua
0 � gabub.

In terms of the new variable and using dðr � uÞ¼detgdð@agabubÞ,
we can express Z as

Z ¼
ð
Du0J dðr � u0Þdetg

� exp �bm0
2

ðL
0

dz

ð
d2x?




� LiaLia þ 2LiaLibgbc
�1@uc0

@xa

�

þ LibLicgbb0
�1gcc0

�1@ub0

@xa

@uc0

@xa

��
(A2)

Here J � jjdu=du0jj is the functional Jacobian for the trans-
formation of field variables u to u0. As LiaLibgbc

�1 = gabgbc
�1 = dac,

the second term in the exponent is proportional tor�u0. The Dirac
delta-function d(r�u0) is only non-zero for configurations for
which r�u0 = 0, implying that we can set the second term of the
exponent to zero. Next we make a change of variables from u0

back to u. Eqn (A2) then becomes

Z ¼
ð
Dudðr � uÞe

�b m0V
2

Tr LT �L
� �

þHu

� �
; (A3)

where Hu is given by eqn (3.5).
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Appendix B: derivation of the
fluctuation free energy, eqn (4.4)

The fluctuation Hamiltonian, after the constraint of local
incompressibility has been applied, is given by eqn (4.3), viz.,

Hu cn;fnf g½ � ¼ m0
2l

X1
n¼1

ð
d2Q

ð2pÞ2 Q2 þ np
L

� �2� �


� cre
n ðQÞ

� �2þ cim
n ðQÞ

� �2h i

þ l3Q2 þ np
L

� �2� �
1þ np

QL

� �2
 !

� fre
n ðQÞ

� �2þ fim
n ðQÞ

� �2h io

(B1)

The partition function Zu with the incompressibility constraint
and Dirichlet BC taken into account can consequently be
expressed in Fourier space as

Zu ¼
Y
n2Zþf g
fQ4 0g

ð
dfre

n ðQÞdfim
n ðQÞ

ð
dcre

n ðQÞdcim
n ðQÞ

� e�bHu fre
n ;f

im
n ;cre

n ;c
im
nf g½ �

(B2)

The Hamiltonian is Gaussian in the fluctuations, and thus the
functional integrals over the fluctuating fields can be straight-
forwardly performed, yielding

Zu ¼
Y
n2Zþf g
fQ4 0g

2pkBTlS

m0 Q2 þ np
L

� �2� �
2
664

3
775

� 2pkBTlS

m0 l3Q2 þ np
L

� �2� �
1þ np

QL

� �2
 !

2
66664

3
77775

¼ eA�bFuðlÞ;

(B3)

where Z+ refers to the set of positive integers, {Q 4 0} refers
to the set of all positive wave-vectors (‘‘positivity’’ being
defined with reference to a straight line that divides the two-
dimensional lattice of points (Qx,Qy) into two halves; e.g., if we
denote the normal vector to such a line by n, then a wave-vector
is positive if it satisfies Q�n 4 0), A is a constant defined by

A �
X1
n¼1

X
fQ4 0g

ln
4p2S2 kBTð Þ2Q2

m02

" #
� 2 ln Q2 þ np

L

� �2� �( )

(B4)

and Fu is given by

Fu � kBT
X1
n¼1

X
fQ4 0g

ln lQ2 þ 1

l2
np
L

� �2� �
(B5)

In the above, S is the cross-sectional area of the surface of the
elastomer film that is co-planar with the confining substrates, in the
state prior to external deformation. The functional integral runs over

all independent fluctuating field degrees of freedom. As the real and
imaginary components of the (complex) fluctuating fields fQ and cQ

obey the relations fre
�Q = fre

Q, fim
�Q = �fim

Q (and similar ones for cQ,
these relations being required by the reality of the fluctuating fields
in real space), the modes with positive and negative wave-vectors Q
are not really independent of each other, and thus the functional
integral product runs only over the positive wave-number con-
tributions. By making the continuum limit

P
fQg
¼ S

Ð
d2Q

�
ð2pÞ2

where the wave-vector sum now runs over all wave-vectors, we have

Fu ¼
kBTS

2

X1
n¼1

ð
d2Q

ð2pÞ2ln lQ2 þ 1

l2
np
L

� �2� �
; (B6)

which is eqn (4.4).

Appendix C: derivation of the
fluctuation free energy for a ‘‘glued’’
elastomer, eqn (5.16)

In this section, we provide the calculation steps to derive the
fluctuation free energy in eqn (5.16) for an elastomer ‘‘glued’’ to
the substrates. The partition function Zu corresponding to eqn (5.2)
is given by eqn (5.6). Similar to the step from eqn (B2) and (B3), the
evaluation of eqn (5.7) involves functionally integrating over the sets
of fluctuating fields {fre

n } and {fim
n } which are Gaussian in form (as

we can see from eqn (5.4)). The functional integration thus yields

Z1 ¼
Y
n2Zþf g
fQ4 0g

2pkBTS

m0 l2Q2 þ 1

l
np
L

� �2� �
1þ np

QL

� �2
 !

2
66664

3
77775 (C1)

To evaluate Zc (cf. eqn (5.8)), we have to functionally integrate
over six sets of fluctuating fields, viz., {cre

n }, {cim
n }, {Xre

Q}, {Xim
Q },

{Yre
Q }, and {Yim

Q }. Again, as we see from eqn (5.15), these fields are
Gaussian in form. Making use of the formulað1

�1
dX

ð1
�1

dYe�
a
2

X2þY2ð ÞþbXY ¼ 2pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2
p ; (C2)

with the identification a ¼ m0Q
l

cothQLþ Kt

w0
2

and

b ¼ m0Q
l
ðcosechQLÞ, and Hc from eqn (5.15), we have

Zc ¼
Y
n2Zþf g
fQ4 0g

dcre
n ðQÞdcim

n ðQÞ
ð
dX re

Q dX im
Q

ð
dY re

Q dY im
Q

� e
�bHu cre

n ;c
im
n ;Xre

Q
;X im

Q
;Y re

Q
;Y im

Q

n oh i

¼
Y
n2Zþf g
fQ4 0g

4plkBTS

Lm0 Q2 þ np
L

� �2� �

� 4p2 kBTð Þ2S
m0Q
l

cothQLþ Kt

w0
2

� �2

� m0Q
l

cosechQL

� �2
;

(C3)
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where the first factor in the right-hand side of the second
equality comes from a functional integration over cre

n (Q) and
cim

n (Q), and the second factor comes from a functional integration
over Xre

Q, Xim
Q , Yre

Q, and Yim
Q .

Using eqn (C1) and (C3), we find that the partition function
Zu in eqn (5.6) is given by

Zu ¼
Y
n2Zþf g
fQ4 0g

32p4 kBTð Þ4w0
4S3

Lm02Kt
2Q2 1þ np

QL

� �2
 !2

lQ2 þ 1

l2
np
L

� �2� �

� 1

ð1þ aðlÞ cothQLÞ2 � ðaðlÞcosechQLÞ2;

(C4)

where a(l) � m0w0
2Q/(lKt). The fluctuation free energy is given

by Fu = �kBT ln Zu, i.e.,

Fu ¼ Dþ kBT
X
fQ4 0g

X1
n¼1

ln lQ2 þ 1

l2
np
L

� �2� �(

þ ln ð1þ aðlÞ cothQLÞ2 � ðaðlÞcosechQLÞ2
� �

;

(C5)

where D is independent of l, given by

D��kBT
X
fQ40g

ln
32p4 kBTð Þ4w0

4S3

Lm02Kt
2

�
X1
n¼1

lnQ2 1þ np
QL

� �2
" #28<

:
9=
;

(C6)

The second term of eqn (C5) is identical to the term in eqn (B5),
which we can write as F1, where

F1 �
kBTS

2

X1
n¼1

ð
d2Q

ð2pÞ2 ln lQ2 þ 1

l2
np
L

� �2� �
(C7)

Making use of eqn (4.12) and (4.13) allows us to rewrite F1 as
eqn (5.17).

We can rewrite the third term of eqn (C5) as F2, where

F2 � kBT
X
fQ4 0g

ln ð1þ aðlÞcothQLÞ2 � ðaðlÞcosechQLÞ2
� 

¼ kBTS

2

ð
d2Q

ð2pÞ2ln ð1þ aðlÞcothQLÞ2 � ðaðlÞcosechQLÞ2
� 

:

(C8)

In the second step we have made the continuum limit, and
we thus arrive at eqn (5.18). Summing up the contributions D,
F1 and F2 gives us the fluctuation free energy, eqn (5.16).

Acknowledgements

BSL thanks the Institute for Research in Fundamental Sciences
(IPM), Tehran, for a memorable stay in May 2015, where the
present work was conceived. He also thanks L. Athanasopoulou
for constructive discussions. BSL and RP would like to acknowl-
edge the financial support of the Agency for research and
development of Slovenia under Grant No. N1-0019 and P1-0055.

AN acknowledges partial support from the Royal Society, the Royal
Academy of Engineering, and the British Academy (UK).

References

1 M. Zhai and G. B. McKenna, Elastic modulus and surface
tension of a polyurethane rubber in nanothick films, Polymer,
2014, 55, 2725.

2 G. Harsanyi, Polymer Films in Sensor Applications, CRC Press,
1995.

3 L. Zhai, Chem. Soc. Rev., 2013, 42, 7148.
4 R. H. Pritchard, Y. Y. S. Huang and E. M. Terentjev,

Mechanics of biological networks: from the cell cytoskeleton
to connective tissue, Soft Matter, 2014, 10, 1864.

5 C. P. Broedersz and F. C. MacKintosh, Modeling semi-
flexible polymer networks, Rev. Mod. Phys., 2014, 86, 995.

6 L. R. G. Treloar, The Physics of Rubber Elasticity, Clarendon
Press, Oxford, 1975.

7 H. M. James and E. Guth, Theory of the Elastic Properties of
Rubber, J. Chem. Phys., 1943, 11, 455.

8 M. Rubinstein and S. Panyukov, Elasticity of polymer networks,
Macromolecules, 2002, 35, 6670–6686.

9 M. Warner and E. M. Terentjev, Liquid Crystal Elastomers,
Oxford University Press, Oxford, 2003.

10 P. M. Goldbart, H. E. Castillo and A. Zippelius, Randomly
Crosslinked Macromolecular Systems: Vulcanisation Transition
to and Properties of the Amorphous Solid State, Adv. Phys.,
1996, 45, 393.

11 X. Xing, P. M. Goldbart and L. Radzihovsky, Thermal
Fluctuations and Rubber Elasticity, Phys. Rev. Lett., 2007,
98, 075502.

12 X. Mao, P. M. Goldbart, X. Xing and A. Zippelius, Soft
random solids and their heterogeneous elasticity, Phys.
Rev. E: Stat., Nonlinear, Soft Matter Phys., 2009, 80, 031140.

13 M. Bordag, G. L. Klimchitskaya, U. Mohideen and V. M.
Mostepanenko, Advances in the Casimir Effect, Oxford University
Press, Oxford, 2009.

14 V. M. Mostepanenko and N. N. Trunov, The Casimir Effect
and its Applications, Oxford University Press, Oxford, 1997.

15 A. Ajdari, B. Duplantier, D. Hone, L. Peliti and J. Prost,
Pseudo-Casimir effect in liquid crystals, J. Phys. II, 1992, 2,
487–501.

16 P. Ziherl, R. Podgornik and S. Žumer, Casimir force in liquid
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