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General theory of asymmetric steric interactions
in electrostatic double layers

A. C. Maggsa and R. Podgornikb

We study the mean-field Poisson–Boltzmann equation in the context of dense ionic liquids where steric

effects become important. We generalise lattice gas theory by introducing a Flory–Huggins entropy for

ions of differing volumes and then compare the effective free energy density to other existing lattice gas

approximations, not based on the Flory–Huggins Ansatz. Within the methodology presented we also

invoke more realistic equations of state, such as the Carnahan–Starling approximation, that are not

based on the lattice gas approximation and lead to thermodynamic functions and properties that differ

strongly from the lattice gas case. We solve the Carnahan–Starling model in the high density limit, and

demonstrate a slow, power-law convergence at high potentials. We elucidate how equivalent convex

free energy functions can be constructed that describe steric effects in a manner which is more

convenient for numerical minimisation.

1 Introduction

In the theory of ionic liquids1 steric effects are of particular
importance since the packing of ions can be especially dense.2

If this is indeed the case, steric saturation impedes the solid
establishment of the Gouy–Chapman double layer close to an
electrified surface as the ions are not allowed to pack densely
near the surface, and consequently cannot screen the high
surface charge as would be the case for e.g. aqueous electrolytes.3

Instead they rather occupy several vicinal layers, completely
saturating the sterically available volume.

The most common and simplest analytic approach to these
effects is via the lattice gas mean-field approximation that
became, particularly through the work of Kornyshev, a paradigmatic
approximation in the context of ionic liquids.3 The methodological
basis of the lattice gas mean-field approximation is the Poisson
equation coupled with a lattice gas entropy, as opposed to the
ideal gas (Boltzmann) entropy incorporated in the foundation of
Poisson–Boltzmann theory (for a detailed introduction, see
ref. 4). The mean-field lattice gas methodology introduced
specifically within the context of ionic liquids can be, as we
show below, furthermore extended to a general local thermo-
dynamic approach for any model of inhomogeneous fluids,
without any connection to the lattice gas framework.5 In this
way one can connect the equation of state for any reference
uncharged fluid, not only a lattice gas, with a solid description

of the same fluid with charged particles on the mean-field
electrostatics level, generalizing in this way the Poisson–Boltzmann
theory with consistent inclusion of the packing effects. We
consider this to be an important formal and conceptual advance
as it allows us to consistently compare various approximate
models of steric effects in ionic liquids, while preserving the
overall mean-field nature of the electrostatic part.

This approach is particularly relevant for the analysis of
dense electric double layers as they arise in the context of ionic
liquids or dense Coulomb fluids in general.6 We will use
this general local thermodynamics approach in conjunction
with two model equations of state: the asymmetric lattice
gas approximation and the asymmetric Carnahan–Starling
approximation, and compare their consequences. The size
asymmetry as well as the charge asymmetry, as shown in
Fig. 1, that this approach allows us to analyse, are fundamentally
important for understanding the nature of the electrostatic double
layers in ionic liquids. We, in particular, include the asymmetric
lattice gas approximation into our discussion as its symmetric
counterpart has been widely recognized as the standard theoretical
approach3 but has, as such, resisted various attempts to be
consistently generalized to a situation of asymmetric steric
interactions for components of widely differing size. On the
other hand, the Carnahan–Starling approximation for uncharged
homogeneous fluids gives the results regarding thermodynamic
observables that are almost indistinguishable from simulations7

and thus represents an excellent baseline to compare with.
Our approach to the asymmetric lattice gas statistics is based

on an analogy with the standard Flory–Huggins methodology
used in the context of polymer chains of differing lengths.8

While formulated in the context of interacting polymers,
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the entropic part of Flory–Huggins theory refers only to the
lattice statistics of variously sized objects,9 which is the sole
aspect that we utilize in what follows. Asymmetric lattice gas
mixtures have been addressed on various levels before,1,3,6,10–14

but mostly through ad hoc approximations, plausible expan-
sions and phenomenological extensions of the symmetric lattice
gas theories, with some similarities to the present approach,
while yet not identical to it. The connection with Flory–Huggins
theory now sets the calculation in the proper perspective of
other physical problems that require a detailed counting of
sterically available states for variously sized objects on a lattice.
We believe that this is also the most natural framework for the
appropriate lattice theory of asymmetry effects in ionic liquids.

Our purpose here is threefold. First we want to formulate a
general local thermodynamic theory of mean-field electrostatic
effects for non-homogeneous Coulomb systems that can be
described with an equation of state in the reference i.e. an
uncharged state. This will allow us to derive an appropriate
generalized Poisson–Boltzmann equation for the fully coupled,
charged system where the electrostatic part is consistently
formulated on the mean-field level. We then define a model
asymmetric lattice gas system, whose equation of state we derive
based on the Flory–Huggins theory of lattice gases, at the same
time putting into perspective also various other attempts in
obtaining the appropriate asymmetric lattice gas statistics. This
allows us finally to compare the asymmetric lattice gas with
the asymmetric Carnahan–Starling theory with a well-known
equation of state in the reference uncharged state. Based on
this, we then draw the necessary conclusions regarding the
applicability of the lattice gas approximation in the description
of asymmetric dense ionic liquids and show that it misses
qualitatively some important features exhibited clearly by the
Carnahan–Starling approximation. Nonetheless, as the lattice
gas model is and will foreseeably remain a workhorse of the
ionic liquid theory, it is important to formulate it appropriately
for the asymmetric case also so that its predictions can be
compared with more advanced theoretical approaches as well as
definitively assessed in comparison with experiments.

The plan of the paper is as follows: we will first formulate the
local thermodynamic mean-field approach to Coulomb fluids
and then apply it to the asymmetric lattice gas, derived within
the Flory–Huggins lattice approximation, comparing its results
with the asymmetric Carnahan–Starling approximation. As a
sideline we then derive several useful general relations valid
specifically for the asymmetric lattice gas approximation in the
context of electrostatic double layers. We finally comment on
the major deficiencies of the lattice gas approach when compared
to the more advanced Carnahan–Starling approximation and draw
some useful conclusions and possible directions for future
research. The paper is written pedagogically and contains
several known results that have been however rederived in a
completely different framework.

2 General formulation

We proceed by studying the Legendre transform of the free
energy density f (c1,c2) of an isothermal (T = const) binary
mixture

f (c1,c2) � m1c1 � m2c2, (1)

where c1,2 are the densities of the two components, and the
chemical potentials m1,2 are defined as

m1;2 ¼
@f c1; c2ð Þ
@c1;2

: (2)

According to the well-known thermodynamic relationships5 the
Legendre transform, eqn (1), equals

f c1; c2ð Þ � @f c1; c2ð Þ
@c1

c1 �
@f c1; c2ð Þ
@c2

c2 ¼ �p c1; c2ð Þ; (3)

where p(c1,c2) is the thermodynamic pressure, or the equation
of state. For the inhomogeneous case we now invoke the local
thermodynamic approximation so that the inhomogeneity is
described solely via the coordinate dependence of the densities,
but the form of the thermodynamic potential remains the same
as in the bulk,

F ¼
ð
V

d3r f c1; c2ð Þ � m1c1 � m2c2ð Þ ¼ �
ð
V

d3rp m1; m2ð Þ: (4)

In the case of charged particles one needs to consider also the
electrostatic energy and its coupling to the density of the particles
via the Poisson equation, on top of the reference free energy of
uncharged particles. The corresponding thermodynamic potential
of the charged binary mixture then assumes the form

F c1; c2;D½ � ¼
ð
V

d3r f c1; c2ð Þ � m1c1 � m2c2ð Þ

þ
ð
V

d3r
D2

2e
� c r �D� e Z1c1 � Z2c2ð Þð Þ

� �
;

(5)

where D = D(r) is the dielectric displacement field, e = ee0 with e
being the relative dielectric permittivity, Z1,2 are the valencies of the
two charged species and c = c(r) is now the Lagrange multiplier

Fig. 1 A schematic representation of the asymmetric system composed
of particles with unequal sizes and unequal valencies in the vicinity of a
charged surface. The left side symbolically shows the underlying lattice for
the Flory–Huggins lattice gas approximation.
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field that ensures the local imposition of Gauss’s law.15 We can
write this expression in an alternative form as

F ¼
ð
V

d3r f c1; c2ð Þ � m1 � eZ1cð Þc1 � m2 þ eZ2cð Þc2ð Þ

þ
ð
V

d3r
D2

2e
� cr �D

� �
:

(6)

Invoking now the identity with eqn (4), discarding the boundary
terms and minimizing with respect to D, we get the final form of
the inhomogeneous thermodynamic potential

F½c� ¼ �
ð
V

d3r
1

2
eðrcÞ2 þ p m1 � eZ1c; m2 þ eZ2cð Þ

� �
: (7)

In the case of charged boundaries one needs to add a surface
term cDndS, where Dn is the normal component of the electric
displacement field at the surface, to the above equation. While
the derivation of eqn (7) proceeded entirely on the mean-field
level, it can be extended to the case when the Coulomb inter-
actions are included exactly and the mean potential becomes
the fluctuating local potential in a functional integral representation
of the partition function.16

Let us note that the signs of the electrostatic terms in eqn (7)
are consistent with the definition of the grand canonical partition

function, i.e. O = �pV, with Oðl; bÞ ¼
P1
N¼1

lNQðN; bÞ
�
N!, where

Q(N,b) is the canonical partition function for N particles. The
absolute activity is defined as l = ebm. Since electrostatic inter-
actions enter with a Boltzmann factor, l = ebm - ebm8eZ1,2c,
where � is valid for positive and + for negative ions.

For any equation of state p(m1,m2) or indeed any model free
energy f (c1,c2) of the reference uncharged system, one now
needs to evaluate the appropriate chemical potentials of the
binary components from eqn (2), make a substitution

m1,2 - m1,2 8 eZ1,2c

and finally derive the Euler–Lagrange equation for the local
electrostatic potential of the form

er2c� @p m1 � eZ1c; m2 þ eZ2cð Þ
@c

¼ 0; (8)

which contains a derivative of the pressure function of the
uncharged reference system and generalizes a form already
derived within a symmetric lattice gas approximation.17 Invoking
furthermore the Gibbs–Duhem relation

c1;2 ¼
@p

@m1;2

we derive the Poisson equation as

@p m1 � eZ1c; m2 þ eZ2cð Þ
@c

¼ �eZ1
@p

@m1
þ eZ2

@p

@m2

¼ �e Z1c1 � Z2c2ð Þ ¼ �q:
(9)

where q is the local charge density. Also note that the charge
density is a derivative with respect to the potential of a single
function, a simple test of consistency for any proposed

approximate theory. Together with eqn (8) this constitutes
a generalisation of Poisson–Boltzmann theory for any model
of the fluid expressible via an equation of state in the local
thermodynamic approximation. This also generalizes some
results previously derived only for the lattice gas.

In the case of a single or two planar surfaces, with the
normal in the direction of the z-axis, so that c(r) = c(z), the
Poisson–Boltzmann equation possesses a first integral of
the form

1

2
ec02ðzÞ � p m1 � eZ1cðzÞ; m2 þ eZ2cðzÞð Þ ¼ �p0 (10)

where p0 is an integration constant equal to the osmotic
pressure of the ions and determined by the boundary conditions.
The disjoining (interaction) pressure for two charged surfaces, P,
is then obtained by subtracting the bulk contribution from the
osmotic pressure p0. The first integral of the Euler–Lagrange
equation can be used to construct an explicit 1D solution,
c = c(z) by quadrature.

In the limiting case of an ideal gas, with the van’t Hoff
equation of state p(c1,c2) = kBT(c1 + c2) it is straightforward to see
that the above theory reduces exactly to the Poisson–Boltzmann
approximation.18 Furthermore, for the binary, symmetric lattice-gas

p c1; c2ð Þ ¼ �kBT
a3

log 1� a3 c1 þ c2ð Þ
� �

(11)

where a is the cell size,19 the above formalism yields the results
discussed at length by Kornyshev.3 From eqn (11) we also see
one of the weaknesses of the lattice gas approach, as the
pressure diverges only very weakly at close packing. We
will compare with a more realistic equation of state later in
this paper.

3 Asymmetric lattice gas

We start with the free energy density of mixing for a three
component lattice gas system composed of species ‘‘1’’ at
concentration c1, composed of N1 subunits, and species ‘‘2’’
at concentration c2, composed of N2 subunits, in a solvent of
(water) molecules of diameter a. It can be expressed rather
straightforwardly in terms of the volume fractions f1 and f2

after realizing that it is equivalent to the problem of polydis-
persed polymer mixtures on the Flory–Huggins lattice level.8

For a three component system the free energy can be obtained
from the entropy of mixing simply as20

f f1;f2ð Þa3
kBT

¼ f1

N1
logf1 þ

f2

N2
logf2

þ 1� f1 � f2ð Þ log 1� f1 � f2ð Þ;
(12)

where the volume fractions f1 and f2 are defined as

f1,2 = a3c1,2N1,2 = R1,2
3c1,2, (13)

and N1,2 = (R1,2/a)3 measures the relative volumes of species 1
and 2, with radii R1,2, compared to the solvent with radius a.
While the size-symmetric lattice gas has a venerable history (for
an excellent review, see ref. 2) there have been fewer previous
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attempts to master the lattice gas mixtures in the context of
size-asymmetric electrolytes,1,3,6,10–14 and the simple connection
with the entropy of lattice polymers has apparently not been
noted before.

Since there is no exact enumeration of the lattice statistics
for equal and even less so for unequal, composed particles, it is
difficult to compare various approximations referred above.6,10–14

What they do have in common is that they are never derived
systematically but in one way or another incorporate a kind of
mean-field statistical–mechanical Ansatz, based on the assumption
that the probability that the next site to be occupied is empty, is
assumed to be equal to the fraction of still empty sites.21 However,
the features that all the approximations should exhibit, apart from
consistency as defined by eqn (9), are that the osmotic pressures
corresponding to different approximate lattice entropies reduce to

the ideal van’t Hoff form,
p f1;f2ð Þa3

kBT
! f1

N1
þ f2

N2

� �
, for small

volume fractions and to
p f1;f2ð Þa3

kBT
! � log 1� f1 þ f2ð Þð Þ for

high volume fractions. In the latter tight packing regime the
nature of the composed particles is irrelevant and the osmotic
pressure depends only on the volume fractions. None of the
approximations referred to above satisfies all these requirements.

The reason that we base our asymmetric lattice statistics on
the Flory–Huggins entropy is that first of all it exhibits all the
stated properties, furthermore that it has already been applied
to micelles, globular proteins and colloids, and finally that over
the years its limitations have been thoroughly investigated (see
ref. 22, and references therein).

The chemical potential for the free energy eqn (12), based on
the Flory–Huggins entropy of mixing, is then obtained as

m1;2 ¼
@f c1; c2ð Þ
@c1;2

¼ @f f1;f2ð Þ
@f1;2

a3N1;2; (14)

that can be evaluated explicitly yielding

bm1,2 = logf1,2 + 1 � N1,2(log(1 � f1 � f2) + 1).
(15)

The Legendre transform eqn (1) then yields the osmotic
pressure, again as a function of both volume fractions

�p f1;f2ð Þa3
kBT

¼ log 1� f1 � f2ð Þ

þ f1 1� 1

N1

� �
þ f2 1� 1

N2

� �
:

(16)

The form of this result is revealing as it states that the osmotic
pressure is basically the lattice gas pressure of a symmetric
mixture, corrected by the fact that N1,2 subunits of species ‘‘1’’
and ‘‘2’’ do not represent separate degrees of freedom.
Obviously, for a symmetric system with N1,2 = 1 this reduces
exactly to the lattice gas symmetric binary mixture expression,
eqn (11).

Introducing ~m1,2 = b(m1,2 + N1,2 � 1) we can rewrite eqn (15) as

f1,2 = (1 � f1 � f2)N1,2 e~m1,2 (17)

Using this relation we can derive an explicit equation for

u = (1 � f1 � f2) (18)

of the form

u(1 + uN1�1e~m1 + uN2�1e~m2) = 1, (19)

that yields u = u(~m1,~m2;N1,N2). This allows us to finally write the
osmotic pressure as a function of the two densities

�p c1; c2ð Þa3
kBT

¼ log 1� a3 c1N1 þ c2N2ð Þ
� �

þ

þ a3c1 N1 � 1ð Þ þ a3c2 N2 � 1ð Þ;
(20)

or the two chemical potentials through u = u(~m1,~m2;N1,N2) as

�p m1; m2ð Þa3
kBT

¼ log u

þ uN1 e~m1 1� 1

N1

� �
þ uN2 e~m2 1� 1

N2

� �
:

(21)

In the case of ions of the same size, we can set without any loss
of generality that N1 = N2 = 1, so that

�p m1; m2ð Þa3
kBT

¼ log u ~m1; ~m2ð Þ ¼ � log 1þ e~m1 þ e~m2
� �

; (22)

a standard expression for the symmetric lattice gas.23,24

The above equations present a complete set of relations
satisfied by the asymmetric lattice gas, being a mixture of two
differently sized ions. The addition of mean-field electrostatic
interactions eqn (8) then modifies solely the chemical potentials
so that

p(m1,m2) - p(m1 � eZ1c,m2 + eZ2c) (23)

if the two species are oppositely charged, which we assume. The
corresponding Poisson–Boltzmann equation is then obtained
from eqn (8) and (9) in the form

er2c ¼ �e Z1@m1 � Z2@m2
� �

p m1 � eZ1c; m2 þ eZ2cð Þ

¼ � e

a3
Z1

N1
f1ðcÞ �

Z2

N2
f2ðcÞ

� �
:

(24)

where f1,2(c) are obtained from eqn (17) and (19) with ~m1 -

~m1 � beZ1c,~m2 - ~m2 + beZ2c.
In complete analogy with the case of polyelectrolytes with

added salt25 it is clear that electroneutrality of the asymmetric
lattice gas in the bulk is achieved only if it is held at a non-zero
electrostatic potential, c0, that can be obtained from eqn (24) in
an implicit form

N1 �N2ð Þ log u c0ð Þ ¼ � ~m1 � ~m2ð Þ þ log
N1Z2

N2Z1
: (25)

In what follows we then simply displace the origin of the
electrostatic potential by c0, the Donnan potential, interpreted
as the change in the electrostatic potential across the bulk
reservoir–ionic liquid interface, or equivalently as a Lagrange
multiplier for the constraint of global electroneutrality.26
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4 Asymptotic behaviour of the lattice
gas model

We now consider the forms of the general equations derived
above in the limiting cases of small and large electrostatic
potentials of the lattice gas model:

4.1 Small potential and screening length

In the limit of c - 0, one can derive

p m1 þ eZ1c; m2 � eZ2cð Þ ¼ p m1; m2ð Þ

� e Z1@m1 � Z2@m2
� �

p m1; m2ð Þc

þ 1

2
e2 Z1@m1 � Z2@m2
� �2

p m1; m2ð Þc2 þO c3
� � (26)

where we took into account eqn (9). Just as in the non-linear
case, see above, the term linear in c is connected with the
displaced electrostatic potential, eqn (25). The linearized form
of c0 is then obtained approximately as

c0 ¼
e Z1@m1 � Z2@m2
� �

p m1; m2ð Þ
e2 Z1@m1 � Z2@m2
� �2

p m1; m2ð Þ
: (27)

Obviously the expansion of the pressure for small values of the
electrostatic potential is then quadratic in the difference c� c0.

Furthermore, the Hessian of the pressure p(m1,m2) is positive
definite, i.e.

e2

e
Z1

2 @
2p

@m12
� 2Z1Z2

@2p

@m1m2
þ Z2

2 @
2p

@m22

� �
¼ k2 4 0; (28)

while from eqn (7) it follows that k is nothing but the inverse
Debye length expressed through the second derivatives of
pressure with respect to the chemical potentials of both
charged species. Since the curvature tensor of the Legendre
transform is the inverse of the curvature tensor of the function
itself,27 we can write

X
m

@2p m1; m2ð Þ
@mi@mm

@2f c1; c2ð Þ
@cm@ck

¼ dik (29)

where all the matrices are 2 � 2. From here it follows rather
straightforwardly that

k2 ¼ e2

e

Z2
2 @

2f

@c12
þ 2Z1Z2

@2f

@c1@c1
þ Z1

2 @
2f

@c22

@2f

@c12
@2f

@c22
� @2f

@c1@c2

� �2

¼ 4p‘BN1N2

u Z1
2c1 þ Z2

2c2
� �

þ a3c1c2 Z1N2 þ Z2N1ð Þ2

1þ N1 � 1ð Þa3N1c1 þ N2 � 1ð Þa3N2c2ð Þ ;

(30)

where we introduced the Bjerrum length lB = e2/(4pekBT). In
general, the Debye length is therefore not a linear function of
the concentrations. For the symmetric lattice gas, N1 = N2 = 1,
and taking into account the definition eqn (18), the above
result reduces to k2 = 4plB(Z1

2c1 + Z2
2c2 � a3(Z1c1 � Z2c2)2),

which for bulk electroneutrality reduces further to the standard
Debye expression.23

4.2 Large potential and close packing

The limits for c - �N of a lattice gas can be derived as

u ¼
e� ~m1þbeZ1cð Þ=N1 c! þ1

e� ~m2�beZ2cð Þ=N2 c! �1

(
(31)

implying

f1;2ðc!1Þ ¼
1

e� ~m1þbeZ1cð ÞN2=N1þ ~m2�beZ2cð Þ

(
: (32)

and

f1;2ðc! �1Þ ¼
e� ~m2�beZ2cð ÞN1=N2þ ~m1�beZ1cð Þ

1

(
: (33)

where the upper formula is for ‘‘1’’ and the lower one for
‘‘2’’. Thus

�pðc!1Þa
3

kBT
¼ � ~m1 þ beZ1cð Þ=N1 þ 1� 1

N1

� �

þ e� ~m1þbeZ1cð ÞN2=N1 e ~m2�beZ2cð Þ 1� 1

N2

� �
(34)

and

�pðc!�1Þa
3

kBT
¼� ~m2�beZ2cð Þ=N2þe� ~m2�beZ2cð ÞN1=N2 e ~m1þbeZ1cð Þ

� 1� 1

N1

� �
þ 1� 1

N2

� �
(35)

The most striking feature of these limits is the linear
behaviour of p(c) for large positive or negative potentials,
which gives rise to a V-like curve for symmetric particles. This
linear behaviour is linked to the saturation of close packing
of the lattice particles against a high potential surface. For
particles of unequal size the two branches of p(c) have different
slopes.

5 A dense two-component lattice gas

For some cases in the theory of ionic liquids one can assume
dense packing, without any intervening solvent, so that f1 + f2 = 1.
The corresponding free energy can then be cast into a
simplified form

f f1;f2 ¼ 1� f1ð ÞN2a
3

kBT
¼ f1

M
logf1 þ f2 logf2: (36)

where M = N1/N2 is the effective size of species ‘‘1’’ compared to
species ‘‘2’’. This implies furthermore that

@f

@f1

þ @f

@f2

¼ 0! m1 þMm2 ¼ 0: (37)

The equation analogous to eqn (19) then assumes the form

f1 = (1 � f1)Mebm1�1+M (38)
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and the Legendre transform of the free energy density
follows as

�p f1;f2 ¼ 1� f1ð ÞN2a
3

kBT
¼ logf2 þ f1 1� 1

M

� �
: (39)

The Poisson–Boltzmann equation is then cast into a
simplified form

er2c ¼ � e Z1@m1 � Z2@m2
� �

p m1 � eZ1c; m2 þ eZ2cð Þ

¼ e

a3N1
Z1 þMZ2ð Þf1 �MZ2ð Þ;

(40)

and the charge density is constrained to be between� e

a3
Z2

N2
and

e

a3
Z1

N1
.

6 Asymmetric Carnahan–Starling
approximation

In order to show the interest and generality of our local
thermodynamic approach we will now apply it in the case of
the Carnahan–Sterling approximation for asymmetric binary
hard sphere mixtures.28 For a bulk, uncharged hard sphere
fluid the Carnahan–Starling approximation is ‘‘almost exact’’.

The excess pressure in the Carnahan–Starling approximation
derived via the ‘‘virial equation’’ is then equal to

pexc c1; c2ð Þ
ckBT

¼
1þ xþ x2
� �

� 3x y1 þ xy2ð Þ � 3x3y3
1� xð Þ3

(41)

where c1,2 are the densities of the two components and

x1;2 ¼
4p
3
R1;2

3c1;2 and x ¼ x1 þ x2; (42)

where R1,2 are the hard sphere radii of the two species.
Furthermore,

y1 ¼ D12
R1 þ R2ffiffiffiffiffiffiffiffiffiffiffi

R1R2

p y2 ¼ D12
x1R2 þ x2R1ffiffiffiffiffiffiffiffiffiffiffi

R1R2

p
x

y3 ¼
x1
x

� �2=3

þ x2
x

� �2=3
 !3 (43)

with

D12 ¼
ffiffiffiffiffiffiffiffiffi
x1x2
p

x
R1 � R2ð Þ2

R1R2
: (44)

The excess free energy then follows as

fexc c1; c2ð Þ
ckBT

¼ � 3

2
1� y1 þ y2 þ y3ð Þ

þ 3y2 þ 2y3

1� x
þ 3

2

1� y1 � y2 �
1

3
y3

ð1� xÞ2

þ y3 � 1ð Þ logð1� xÞ;

(45)

It is now straightforward to obtain the chemical potentials from
the free energy as m1,2 = m1,2(c1,c2), invert them and then obtain
the pressure equation as p = p(m1,m2).

7 Asymptotic behaviour of the
Carnahan–Starling free energy density

In the limit of large potentials c, as occurs near an electrode,
the second, wrongly charged, component of the fluid is
excluded and the dominant physics is the packing of a single
component system under the constraints coming from the
electrostatic interactions. In this limit of x - 1 we can
substitute y1,2 = 0 and y3 = 1. The most important divergence
in this limit thus stems from the denominator in eqn (45).

The free energy density of a Carnahan–Starling liquid near
close packing has a singularity of the form

f ðcÞ ¼ c0kBT

1� c=c0ð Þ2
(46)

where c0 is the close packing volume fraction of the component
dominating near the electrode. With this assumption we can
take the Legendre transform of the most singular, diverging
part of the free energy to find the large potential limit of p(c).
For large positive c (assuming that eZ2c c m) this limit turns
out to be

pðcÞ ¼ Z2ec0c�
3

2
2c0kBTð Þ1=3 Z2ec0cð Þ2=3 (47)

where we have used the fact that negative ions of valence Z2

dominate.
In the high packing limit p(c) is therefore linear in the

potential, and is given by the spatial charge density at close
packing exactly like for the lattice gas. However, unlike the
lattice gas, the approach to the high field limit is very slow. In
fact from eqn (9) it follows that

�qðcÞ ¼ @pðcÞ
@c

¼ Z2ec0 �
2c0kBT

c

� �1=3

Z2ec0ð Þ2=3: (48)

The spatial charge density is negative for large positive potentials.
The correctness of this law is demonstrated in Fig. 2 which
plots (1/c0Z2e)dp/dc as a function of c�1/3. The curve linearly
extrapolates to unity for large c. There is a very clear
contrast to the case of the lattice gas model where the
cross-over to close packing occurs for much smaller values of
the potential.

7.1 Solution for the high field Carnahan–Starling limit

The solution for the generalized Poisson–Boltzmann equation
in the high field limit can be found from the solution of the
integral problemð

dc ec0Z2c� o ec0Z2cð Þ2=3 þ p0

� 	�1=2
¼

ffiffiffi
2

e

r ð
dz (49)

with o = 3(2c0kBT)1/3/2; we neglect m compared to Z2ec. This
integral can be transformed by substituting (ec0Z2c)1/3 = y,
giving

3

ð
dyy2

y3 � oy2 þ p0ð Þ1=2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2e2c0

2Z2
2

e

s ð
dz; (50)
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a form which can be solved by using elliptic functions. If we
make the further approximation that p0 is small we can find
much simpler expressions:

zðcÞ � z0 ¼
ffiffiffiffiffi
2e
p

ec0Z2
Z2ecc0ð Þ1=3�o

� 	3=2


þ 3o Z2ecc0ð Þ1=3�o
� 	1=2� (51)

Here, z(c) gives the distance from a plate which corresponds to
a potential c. It is obviously the inverse function of c(z). We
perform a ‘‘numerically exact’’ calculation of the curve z(c) (in
the units of the Bjerrum length) in Fig. 3 inset, where we place a
positive electrode at z = 0. The main figure of Fig. 3 contains
three curves: The blue dotted curve explodes part of the inset
and is overlayed with a red dotted curve corresponding to
eqn (51). On this scale the results are indistinguishable. The
green curve is evaluated by assuming a perfect packing of the
fluid against the electrode. Eqn (51) is clearly a much better
description of the high electrostatic potential physics.

Eqn (51) can also be combined with eqn (48) to find z(q) and
thus the evolution of the spatial charge density with distance
from an electrode as well as the variation of the local charge
density with the potential.

8 Differential capacitance

Together with the boundary condition Dn = s, where s is the
surface charge density, one can derive the equivalent of the
Grahame equation in the form

s2

2e
� p m1 � eZ1c0; m2 þ eZ2c0ð Þ ¼ �p0; (52)

assuming that the bound surface is located at z = 0, i.e.
c0 = c(z = 0). From the Grahame equation one can next derive
the differential capacitance C as

C c0ð Þ ¼
@s c0ð Þ
@c0

¼ ee
s c0ð Þ

�Z1
@p

@m1
þ Z2

@p

@m2

� �

¼ �ee Z1c1 � Z2c2ð Þ
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2e p� p0ð Þ

p ;

(53)

with� depending on the sign of the surface charge. Taking into
account the definition of the Bjerrum length, lB

C2 c0ð Þ ¼ 2pkBT‘B
Z1c1 c0ð Þ � Z2c2 c0ð Þð Þ2

p c0ð Þ � p0
: (54)

Invoking the Poisson–Boltzmann equation for this case, an
alternative form of the differential capacitance is

C c0ð Þ ¼ e logc0
0ð Þ0

¼
ffiffiffiffiffi
2e
p @

@c0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p m1 � eZ1c0; m2 þ eZ2c0ð Þ � p0

p
;

(55)

the form that we use in our numerical work, shown in Fig. 4,
where we plot the dimensionless quantity Cbe2/e2 that is
obtained from the above relation. In vacuo e2/be2 E 13 mF m�2.
It is interesting to note that even if we shift the minimum of the
curve p(c) to occur at c = 0 this does not imply that c = 0 is also
a stationary value of the differential capacitance. This is clearly
visible in the curves of Fig. 4, where in denser fluids the
maximum of the curves is shifted to positive potentials. We
mark the position of the minimum in p(c) by a slight break in
the solid lines. This displacement of the maximum of the
capacitance from the minimum of p is trivially understood if
one assumes that the expansion of p(c) includes a term in c3.

Fig. 2 Study of the evolution of the charge density �q = dp(c)/dc in units of
close packed charge density Z2ec0 and variables adapted to the Carnahan–
Starling fluid, eqn (45), (blue solid line). The large field behaviour is linear in
1/c1/3, as surmised in deriving eqn (48). Same data as Fig. 7 for large positive
potentials. The lattice gas model (red dashed line) gives much more rapid
cross-over to saturation at large potentials. Horizontal (yellow dash-dotted)
line is to guide the eye and corresponds to the close packing charge density.

Fig. 3 Solution of eqn (50) for Carnahan–Starling 1 : 1 electrolyte in units
of the Bjerrum length. Blue dotted line: an exact numerical calculation of
the function z(c). The solid curve is given in the inset (blue solid line).
The high field limit is studied in the main panel. Red dotted line: an
approximation valid for large fields from eqn (51). Green dashed line profile
calculated from assuming a perfect packing of the fluid against the
electrode. Blue dotted and red dotted curves correspond almost perfectly,
with no extra fitting parameters.
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We see that the qualitative behaviour of the curves generated for
the lattice model, as well as for the Carnahan–Starling fluid, is
rather similar.

Finally, in Fig. 5, we compare our theory for differential
capacitance of an asymmetric lattice gas electrolyte with a
simple semiempirical modification proposed by Kornyshev,3

based on the assumed dependence of the maximal possible
local concentration of the two types of ions on the local
electrostatic potential. This cross-over modification is built
to correctly interpolate between the maximal packing value
characteristic for the cation-rich and anion-rich layers and
can be guessed with the help of simple physical arguments.
Indeed, we see that the wings of the capacitance curves are

reproduced rather well by the approximation. However, the
detailed form of the side peaks is clearly different in the two
approaches for strongly negative values of the chemical
potential.

9 Conclusions

By using general arguments based upon local thermodynamics,
we generalized the Poisson–Boltzmann mean-field theory of
Coulomb fluids to the case where the reference, uncharged
fluid need not be ideal. We formulated the general theory in
particular cases of an asymmetric lattice gas based on the
Flory–Huggins mixing entropy and an asymmetric Carnahan–
Starling fluid, that both describe the steric effects at various
levels of approximations and are particularly relevant for the
analysis of dense electric double layers as arising in the context
of ionic liquids or dense Coulomb fluids. The use of properties
of Legendre transforms allows us to efficiently translate between
forms of the free energy; this includes a standard formulation in
terms of the electrostatic potential, and a dual formulation (see
Appendix) in terms of the electric displacement field.

We analyzed in detail the size asymmetry and its effect on
the salient properties of electric double layers. As part of our
analysis we also formulated a thermodynamic description of an
asymmetric lattice gas, derived within the Flory–Huggins lattice
approximation. This allows the lattice gas approximation,
which in its symmetric form already serves as the most popular
description of the steric effects in the context of Poisson–
Boltzmann theory,2 to be further extended to the case of
ubiquitous size-asymmetric dense ionic mixtures. It is probably
in the latter case that it will prove to be most useful specifically
in the context of ionic liquids.1 The Flory–Huggins approach for
steric asymmetry in itself does not deal with the possible shape

Fig. 4 Top: differential capacitance in dimensionless form be2C/e2 for
a volume asymmetric lattice gas 1 : 1 electrolyte. Bottom: volume
asymmetric Carnahan–Starling fluid, from eqn (55). Each curve is for a
different value of the chemical potential, m. Strongly negative chemical
potentials give a minimum in the curves near c = 0, together with two
asymmetric maxima. As the chemical potential increases the curves
develop a peak near (but not at) c = 0. The chemical potential has been
shifted such that the minimum of p(c) is at c = 0. In both cases the
positively charged component has a volume 1.53 larger than the negative
component. Curves: bottom to top at c = 0 corresponding to bm = [�8,
�7, �6, �5, �4, �3, �2, and �1, 0].

Fig. 5 A comparison between the theory for the dimensionless capacitance
Cbe2/e2 of an asymmetric lattice gas 1 : 1 electrolyte and a simple
semiempirical modification.3 Blue solid lines: approximate treatment;
yellow dashed lines: results of the lattice gas model. Curves: bottom
to top at c = 0 corresponding to values of the chemical potential,
bm = [�9, �5, and �1].
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asymmetry of the ions.29 One possible way to incorporate this
on a Poisson–Boltzmann-like level is to describe the ions
through their charge multipoles, which certainly takes, at least
to some extent, into account the electrostatic aspect of the
shape asymmetry30,31 but does not address its steric part. The
appropriate framework for that would be in a liquid crystal
context where orientational ordering is ubiquitous.32

For the Carnahan–Starling fluid we have found an asymptotic
form that gives a rather simple analytic relation between potential
and distance, eqn (51), as well as the relation between potential
and local charge density, eqn (48). It is clear that the description
of charged fluids as lattice gases or as charged hard spheres
gives very different phenomenology in high field regions.
The lattice gas crosses over very rapidly to a close packed
system, whereas much higher fields are needed to compress
the hard sphere system, leading to very slow cross-overs 1/c1/3

in physical properties such as charge density. The lattice
gas-based theories of finite size effects, which because of
their simplicity gained a pronounced following in the context
of the ionic fluids and are quite suitable for drawing qualitative
conclusions regarding the packing effects, should thus be
used with caution when quantitative conclusions are what
is aimed at. For this Carnahan–Starling theory or even
better direct numerical simulations should be sought after as
an alternative.

As a final note we remark that local thermodynamics is the
major obstacle to further refine the outlined approach and that
it will be regrettably very difficult to circumvent. In this respect
1D models with possibly exact solutions should in our opinion
contribute to a better – if by necessity simplistic – understanding
of these complicated sterically constrained systems with Coulomb
interactions.33–35

10 Appendices
10.1 Numerical methods

We wrote numerical codes to study the double Legendre
transformed free energy

f (c1,c2) � m(c1 + c2) � ~c(Z1c1 � Z2c2) (56)

where ~c = �c. We do this by working with the effective
coordinates

n = (c1 + c2)

q = (Z1c1 � Z1c2) (57)

So that we are interested in stationary points of the function.

f̃ (n,q) � mn � ~cq (58)

where we have expressed the free energy as a function of the
two independent coordinates, n the number density and q the
charge density.

We proceed by constructing an intermediate function gm(q)
by numerical minimisation of eqn (58), with fixed m and q,
with ~c = 0. The function gm(q) is then passed to the
Chebfun library36,37 which evaluates gm(q) for different specific

values of q and builds a Chebyshev approximant accurate
to a relative accuracy of 10�15. From this function we
build the Legendre transform from q to ~c by standard
operations on gm.27

gmðqÞ ! gm
0 ðqÞ ! ðgm

0 Þ�1ð~cÞ !
ð ~c

gm
0

� 	�1
ðc0Þdc0 (59)

These steps are all performed by manipulation of the Chebyshev
series, while maintaining close to machine precision in the
evaluations. The result is an approximant to p( ~c). The last step
is to transform back to p(c) which requires a flip-in sign of the
potential axes.

The functions p(c) and gm(q) encode complementary information
on the physical system. We can find the equilibrium charge density
at a given potential from the relation

qðcÞ ¼ �dp
dc

(60)

and we find the potential at imposed charge density from

cðqÞ ¼ �dgm
dq

(61)

The non-standard signs in these relations come from the
difference between c and ~c.

Fig. 6 shows the numerical minimization result for the
intermediate function gm(q), eqn (58), and the pressure, which
is obtained from eqn (59) and a flip-in sign of the potential axes.
p(c) displays a characteristic V-like shape either of symmetric or
asymmetric type, depending on the size of the ions. In Fig. 7 we

Fig. 6 Top: gm(q), an effective potential in units of kBTc0 at imposed local
charge density, in units of ec0, for a Carnahan–Starling 1 : 1 electrolyte. The
divergences correspond to the close packing with density c0 for the
symmetric fluid. Blue solid line: symmetric particle sizes. Gold dash-dotted
line: asymmetric particle sizes with larger negative particles. Symmetric system
with particle size lB/4, for an asymmetric system the larger particle has a
doubled volume. Bottom: the function p(c) in units of kBTc0 for the same two
sets of parameters. Blue solid line: symmetric particle sizes. Seen from afar
the function displaying a characteristic symmetric V-like behaviour. Gold
dash-dotted line: asymmetric particle sizes, with larger particles giving a
smaller slope in the pressure function.
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compare the numeric results regarding the pressure and the
charge density of the Carnahan–Starling fluid and the asymmetric
lattice gas. An important and qualitative difference can be
observed with the Carnahan–Starling fluid showing a much slower
convergence to the asymptotic value for the large potential.

The question finally arises as to how to use the numerically
determined curves for p(c) in other external codes. Inspiration
comes from the Carnahan–Starling approximation for the
pressure which is a ratio of polynomials in the density. Such
a general form is an example of a Padé approximant that
yields a high precision representation of the function p(c) with
an approximation as a ratio of two cubic polynomials that
yields a rather good fit. Use of two quartics gives results
which are visually perfect. Thus the present functional forms
can be easily exported (this is even part of the chebfun library)
to simple, fast approximations that can be used in other
simulation codes.

Clearly these methods are completely general and can be
applied to even more elaborate equations of state, extrapolated
from the best virial expansions.38

10.2 Convex formulation for Poisson–Boltzmann free energies

As an alternative to writing the Poisson–Boltzmann functional
in terms of the potential c with the help of the function p(c)
we can generate an equivalent convex formulation using the
displacement field D. As shown in ref. 39 and 40 this exact
transformation requires the Legendre transfrom of the function
p(c). However, we have already evaluated this object, it is just
gm(q), eqn (59). We can thus at once conclude that the general

convex Poisson–Boltzmann function equivalent to those discussed
above is

f ðDÞ ¼ D2

2e
þ gm divD� reð Þ (62)

with re the externally imposed charge density. This form can be
particularly interesting for the numerical work when coupling to
other conformational degrees of freedom such as polymer chains
or biomolecules. While we do not have an analytic expression for
gm for the Carnahan–Starling fluid it is again easy to generate the
curve as a Chebyshev polynomial and export them to an accurate
and efficient form for use in other codes.
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and R. Podgornik, in Electrostatics of soft and disordered matter,
ed. D. S. Dean, J. Dobnikar, A. Naji and R. Podgornik, Pan
Stanford, Singapore, 2014.

34 A. Maggs and R. Podgornik, Europhys. Lett., 2014, 108, 68003.
35 A. Lee, D. Vella, S. Perkin and A. Goriely, J. Chem. Phys.,

2014, 141, 094904.
36 L. N. Trefethen, Mathematics in Computer Science, 2007, 1,

9–19.
37 T. A. Driscoll, N. Hale and L. N. Trefethen, Chebfun Guide,

Pafnuty Publications, 2014.
38 M. N. Bannerman, L. Lue and L. V. Woodcock, J. Chem.

Phys., 2010, 132, 084507.
39 A. C. Maggs, Europhys. Lett., 2012, 98, 16012.
40 J. S. Pujos and A. C. Maggs, in Electrostatics of soft and

disordered matter, ed. D. S. Dean, J. Dobnikar, A. Naji and
R. Podgornik, Pan Stanford, Singapore, 2014.

Soft Matter Paper

Pu
bl

is
he

d 
on

 2
0 

N
ov

em
be

r 
20

15
. D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ity
 o

f 
M

as
sa

ch
us

et
ts

 -
 A

m
he

rs
t o

n 
29

/0
1/

20
16

 1
9:

27
:5

9.
 

View Article Online

http://dx.doi.org/10.1039/c5sm01757b



