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In aqueous solutions, dissolved ions interact strongly with the surrounding water and surfaces, thereby
modifying solution properties in an ion-specific manner. These ion-hydration interactions can be accounted
for theoretically on a mean-field level by including phenomenological terms in the free energy that
correspond to the most dominant ion-specific interactions. Minimizing this free energy leads to modified
Poisson-Boltzmann equations with appropriate boundary conditions. Here, we review how this strategy has
been used to predict some of the ways ion-specific effects can modify the forces acting within and between
charged interfaces immersed in salt solutions.
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1. Introduction

Due to their complex inter-dependency, resolving the interactions
of ions in aqueous solution can be a daunting task. Consequently, the
theory of electrolytes has been an active field of research for the last
century and continues to be so even today. In the early 20th century,
pioneering achievements by Gouy, Chapman, Debye, Hückel and
Langmuir resulted in the so-called Poisson-Boltzmann (PB) theory.
The starting point of this mean-field theory was to consider point-like
ions immersed in a solvent that was modeled as a continuum
dielectric. Neglecting charge correlations and fluctuations, the elec-
trostatic energy and the ionic entropy led to impressive predictions of
the osmotic pressure, ion activities, and ion profiles close to charged
interfaces and electrodes. These findings still form the basis of much of
our current understanding of electrolyte solutions [1].

Even earlier, however, in the late 1800s Hofmeister (among
others) encountered ion-specific phenomena when he followed the
effects of various salts on macromolecular interactions in solutions
[2]. Specifically, Hofmeister showed that certain monovalent ions
(such as fluoride and chloride) are more effective at precipitating
(“salting out”) proteins than others, such as bromide and iodide. This
ion-specific capacity is often described in terms of the “Hofmeister
series” and is correlated with other properties of aqueous ionic
solutions, such as their surface tension and solution viscosity. To
explain these observations, one must consider additional ion–ion and
ion–solvent interactions, which are not directly and exclusively
related to the ion charge. To quote Hofmeister himself [3]: “It also
can be expected that the precipitating capacity of salts is parallel
to other physical and chemical properties, if […] these properties
are dependent on the water adsorbing capacity of the salts”.

In recentdecades, thenumberof observations that found similar ion-
specific interactions has steadily grown [4••,5]. These effects are found to
influence the interactions of surfactant micelles, lipid–bilayer mem-
branes, proteins, DNAmolecules, andmore. As an example wemention
charged and net-neutral lipid membranes that can swell or remain
unswollendependingon the typeof counterion [6]. This observationcan
be related to the “stickiness” of larger and more polarizable ions at the
vicinity ofmembranes. Ion-specific interactions result in a net exclusion
or inclusion of ions at interfaces, which then can drive macromolecular
interfaces, such as lipid membranes, to bind or separate. An extensive
overview is beyond the scope of this review, but the interested reader
should consult the recent surveys [7,8••].

Beyond their polarizing effect on water molecules due to their
charge, ions are themselves polarizable, and therefore interact with
water and interfaces through van derWaals (dispersion) forces. These
forces are ion specific and depend on ion polarizability. In addition,
ions are not point-like particles and interact also via steric in-
teractions, which depend on their effective ionic radii. Once we
consider more complex ions that are composed of several nuclei,
interactions between permanent dipoles should be examined.
Furthermore, these ions can have more complex structure and
manifest additional forces, such as hydrophobic interactions between
water and nonpolar parts of the ions. Since all these interactions are
mediated by the solvating water molecules, we will jointly refer to all
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these additional interactions under the broad name of hydration
forces, without fully defining their microscopic origin. The focus of
this review is on the ways hydration interactions can be incorporated
and used through systematic phenomenological modifications of the
PB theory.

The complexity of hydration interactions makes it almost
impossible to account for all their sources ab initio. The structure of
liquidwater and hydrogen-bonded network is in itself highly complex
to model and predict. Even strategies that rely on molecular dynamics
simulations inherently include some level of approximation [9•].
As an alternative, we discuss a phenomenological strategy, where
the free energy is our primary tool. The principal idea is that any
interaction, including hydration interactions, can be added to the PB
free energy, and its effect on the osmotic pressure and ion profiles
can be subsequently assessed. Schematic drawing of some of these
additional interactions is presented in Fig. 1. In these endeavors we
will, however, confine ourselves to short-range hydration interactions
that allow for the most straightforward analysis. Similar strategies
have been successfully used in other instances where details of
specific interactions are not fully known, such as in lipid membranes
and liquid crystals.

We start in Section 2 by presenting the PB free energy of ionic
solutions, and the corresponding expressions of the density profile
and osmotic pressure. Then, in Sections 3 and 4, we show how
additional terms accounting for other non-electrostatic interactions
lead to important effects and have consequences for macromolecular
interactions.
2. General approach

We base our presentation on the PB free energy as the primary
starting point [10], with its well-known mean-field limitations [11].
For simplicity, let us focus on a simple model system composed of two
charged planar surfaces (of infinite extent) located at z=±D/2,
immersed in an electrolyte bath with a dielectric constant ε that
contains several types of ions. Each surface carries a charge density
Fig. 1. Schematic representation of four possible additions to the Poisson-Boltzmann
free energy that accounts for different ion-specific hydration interactions. These
additional interactions can involve interactions between the ions themselves (top left),
interactions of ions with surfaces and interfaces that are non-electrostatic (top right), as
well as interactions with the solvent that itself could be either single (bottom right) or a
multi-component mixture (bottom left) [12].
of σ (elementary charge per unit area). The PB free energy FPB of the
ionic solution is composed of three parts:

FPB = ∫ − εε0
2

ψ′
� �2 + ∑

i
eqiniψ

� �
d3r

+ kBT∫ ∑
i

ni ln a3ni

� �
− ni − μ ini

h i
d3r

+ ∫
S
σ ψd2r;

ð1Þ

where ε is the dielectric constant, ε0 is the vacuum permittivity (in SI
units), and ni and qi are, respectively, the number density and
the valency of the ith ionic type. The first two terms correspond to the
electrostatic energy, while the sum of the third and fourth terms is
equal to −Ts, where T is the temperature and s is the ideal entropy of
mixing (per unit volume) of all mobile ions. Note that nia

3 is the
volume fraction of the ith species, where a is a microscopic length. The
chemical potential μi of the ith species, appearing in the fifth term, can
be regarded as a Lagrange multiplier ensuring that the ions between
the two surfaces are coupled with an ionic reservoir of a given
ionic strength. The last term reflects the surface contribution to the
electrostatic energy.

In order to facilitate the generalizations that will follow hereafter,
we rewrite Eq. (1) in a more formal fashion:

F = ∫ fV d
3r + ∫

S
fs d

2r

= ∫ w−Ts−∑
i

μ ini

� 	
d3r + ∫

S
fs d

2r;
ð2Þ

where fV=w−Ts−∑iμini is the generalized bulk free-energy
density written as a sum of generalized enthalpy and entropy
densities, w=w({ni},ψ′,ψ) and s=s({ni}), respectively. In addition,
fs contains all the surface contributions and depends on the surface
degrees of freedom such as the surface charge σ and surface potential
ψs. The decomposition of the free energy into volume and surface
parts assumes that the surface interactions are of short range.

The Euler–Lagrange (EL) equations of the above free energy can
then be decomposed into a volume and a surface contribution. The
bulk equations are

∂
∂z

∂fV
∂ψ′

� 	
−∂fV

∂ψ = 0 and
∂fV
∂ni

= 0: ð3Þ

These EL equations reduce to the common PB equation in the case
of F=FPB as in Eq. (1). In addition, variation of the surface terms
in Eqs. (1–2) results in

∂fs
∂ψ j

D=2
= σ = εε0ψ′s: ð4Þ

Modifications in any of the free-energy terms in Eq. (2) lead to
changes in the ionic density profiles and boundary conditions, and
represent deviations from the standard PB form.

From the PB free energy, Eq. (1), it follows that the pressure
between two confining planar surfaces is

PPB = − 1
Area

δFPB
δD

= − εε0
2

ψ′
� �2 + kBT∑

i
ni: ð5Þ

The pressure is composed of an attractive electrostatic term
stemming from the Maxwell stress tensor [13•], and a second term
that resembles the van 't Hoff form and originates from the ideal
entropy of mixing.

The osmotic pressure is given by the difference between the
pressure P at finite separation and its bulk value Pb (infinite



Fig. 2. Counterion density n as a function of distance z from a charged interface. Results
of three models are presented: the standard PB theory (solid line); PB theory including
ionic hydration shell, Eqs. 8–9, of size a=7.5Å (dashed line); PB theory including
linearly varying dielectric constant, Eqs. (10–11), with β=−20M−1 (dotted line). The
surface charge density is −e/50Å−2 in all cases.
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separation). In the followingwewill refer to P as the osmotic pressure,
omitting the reference to its bulk value. For systems with symmetric
boundary conditions (equally-charged surfaces), the osmotic pressure
is always repulsive [14]. Note that, in general, boundary terms in the
free energy do not contribute explicitly to the pressure.

Generalizations of the above electrostatic free energy are repre-
sented in Fig. 1 and entail changes in all three of its parts, w, s and fs.
Modifications in the enthalpy w are related to the dependence of
dielectric response function ε on solvent and solute compositions, as
well as with other non-electrostatic interactions. The changes in the
ionic entropy s are related with ionic steric interactions. Finally,
modifications of the surface free-energy fs are wrought by the short-
range non-electrostatic ion-surface interactions. The approach advo-
cated here provides a convenient way to classify non-electrostatic
effects in termsof how theymodify the standardmean-field free energy.

The extended bulk free-energy fV can be written in a general but
explicit form

fV = − ε0
2
ε nif gð Þ ψ′

� �2 + ∑
i

eqiniψ + h nif gð Þ; ð6Þ

where the dielectric response ε({ni}) takes a general form and
depends on the ionic densities. The expression for fV includes the
changes in the electrostatic interaction part (the first term), as well
as in the third term, where h combines entropy and all other non-
electrostatic interactions.

The corresponding osmotic pressure in planar geometry can then
be derived as

−P =
1

Area
δF
δD

=
ε0
2

ε + ∑
i

∂ε
∂ni

ni

� �
ψ′
� �2 + h − ∑

i
ni

∂h
∂ni

: ð7Þ

Only modifications in fV enter explicitly into the pressure
expression. However, surface modifications lead to changes in
the density profiles, which in turn cause deviations in P. The function
h({ni}) encodes all the non-electrostatic couplings of the ionic
densities. Hence, the osmotic pressure depends crucially on the
assumed form of h, as will be demonstrated in several cases hereafter.

3. Bulk: ion–ion and solvation interactions

In the following section we review several examples where
the bulk free-energy, fV, is modified on the mean-field level, shedding
new light on the notion of hydration interactions.

3.1. Steric effects of hydration shells

Why would one consider steric effects as a part of hydration
interactions? In an aqueous solvent, the hardcore radius of ions is set
principally not by ionic impenetrability but rather by the much larger
and variable size of its hydration shell, composed of highly structured
vicinal water [5]. This structured shell excludes ions from the
proximity of one another (top-left panel of Fig. 1). The full account
of this problem can be addressed by employing liquid state theories,
and requires extensive tools such as computer simulations or
numerical solution of integral equations [15]. However, even with
these elaborate tools, the state-of-the-art picture of solvent and solute
structure is not well understood.

An alternative approach is to use a more crude, yet simple, mean-
field theory that accounts for steric effects within the Coulomb lattice-
gas model. On this level the lattice constant is chosen to be equal
to the hydration shell radius, a. The model accounts for density
saturation close to charged objects and surfaces, but does not provide
any insight into the microscopic packing structure.

The lattice-gas model of Coulomb fluids has a venerable history
[16] and has been apparently reinvented several times in the last
century [17], starting with Bikerman in 1942 [18]. The lattice-gas
entropy has the mean-field form

TS nif g;ψð Þ = − kBT
a3

∫½∑
i

nia
3 ln a3ni

� �

+ 1−∑
i

nia
3

� 	
ln 1− ∑

i
nia

3
� 	�d3r:

ð8Þ

and can be systematically derived via a field-theory approach [19]. For
simplicity, it is assumed that all ionshave the samehydration shell size a
but this condition can be relaxed [20]. The corresponding EL equations
lead to a modified PB equation whose solutions show a pronounced
saturation of the ion density in high potential regions, as can be seen in
Fig. 2 (dashed line) [21]. This limits the highest ionic density in the
vicinity of charged surfaces, extending the electrostatic double-layer
further into the bulk, as compared to the standard PB profile.

An even older attempt to take into account steric effects at charged
surfaces was introduced by Stern in the 1920s [22]. In Stern's model,
ions are assumed to be fully excluded from a layer of a few Angstroms
(the so-called Stern layer) adjacent to the surface, while outside this
layer the profile is determined by the standard PB model. The lattice-
gas and the Stern models are both related to steric effects, although
their ion-density profiles differ at the surface.

The osmotic pressure for a Coulomb lattice-gas between two
charged surfaces was derived in Ref. [13•], having the form

P = − εε0
2

ψ′
� �2− kBT

a3
ln 1−∑

i
nia

3
� 	

; ð9Þ

which can be reduced to the PB form of Eq. (5) in the limit of a small
hydration shell (a3→0).

We note that steric exclusion, in general, augments the osmotic
pressure between charged surfaces at small separation and provides a
paradigm for the “hydration interaction” that stems from entropy
contributions to the free energy.

3.2. Ion-dependent dielectric response

The formation of hydration shells around ions is driven by the strong
local electrostatic fields [5]. Besides the steric effects (discussed in the
previous section) due to the formation of the hydration shell, the

image of Fig.�2
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dielectric response of the solution is also modified by the presence of
ions [23]. Being dipolar, water molecules are strongly attracted to the
ions and align themselves along the electrostatic field lines
that originate from the ions. Consequently, the orientational degrees
of freedom of water molecules are substantially reduced, leading
to regions with lower dielectric response compared to pure water
(bottom-right panel of Fig. 1). This results in a decrement of the
macroscopic dielectric constant, as had been observed experimentally
already in the late 1940s [24•]. Furthermore, when the ions are
distributed inhomogeneously (for example, close to charged interfaces),
the dielectric response will depend locally on the ionic profile.

In the framework of a phenomenological mean-field free-energy,
this effect [25••] can be accounted for by assuming that the dielectric
response depends linearly on the ionic density, n:

ε n zð Þ½ � = εw + βn zð Þ; ð10Þ

where εw is the dielectric constant of pure water, and β is defined as a
phenomenological coefficient. The linear relation for macroscopic
dielectric constant was observed for several monovalent salts and
for a fairly wide range of concentrations, see Ref. [25••] and references
therein. Note that only one ionic species (counterion only) is
considered here for the sake of simplicity, but this can be easily
generalized for any number of ionic species.

The counterions now play a “dual” electrostatic role. On the one
hand, they are attracted to the charged interface due to their charge,
whereas, on the other hand, they are repelled due to their lower
dielectric response relative to the pure solvent. The interplay between
these two contributions leads to a decreased ionic density in the
vicinity of the charged interface, when compared to standard PB
theory. Specific results can be found in Ref. [25••].

The above mentioned dielectric response, Eq. (10), leads to an
explicit term, −βε0n(ψ′)2/2, to be inserted in the bulk free-energy, fV
of Eq. (6). In the prevalent case for monovalent salts, the linear
coefficient is negative, βb0, and the free energy is increased due to the
presence of the ions. The corresponding osmotic pressure can be
obtained from Eq. (7) and is of the form

P = − ε0
2

εw + 2βnð Þ ψ′
� �2 + kBTn: ð11Þ

The 2βn(ψ′)2 term together with the modified ionic profile
(exclusion effects) results in an increase of the repulsion between
like-charged surfaces, as compared to the PB pressure, Eq. (5) (see
dotted line in Fig. 2). This may appear as counterintuitive, because
exclusion usually creates effective attractive interactions between
interfaces (so-called depletion interactions). However, note that
counterions are electrostatically trapped between equally charged
surfaces, leading to an overall inter-surface repulsion.

3.3. Ions in a dipolar solvent

An alternative approach to the effect of ion-solvent interaction
is to model water molecules as explicit, constant-magnitude point-
like dipoles [26••,27]. This adds another degree of freedom to the
free energy of Eq. (2). Since the dipolar degree of freedom can be
integrated analytically, one obtains a free-energy ansatz along the
lines of Eq. (2), with an additional polarization-energy term. Instead
of treating the solvent as a homogeneous mediumwith a macroscopic
dielectric constant, the dielectric constant is calculated to be a
function of the local electrostatic field, ψ′:

εeff = εm +
cdp0
ψ′

G uð Þ; ð12Þ

where εm is the background medium dielectric constant, the bulk
concentration of dipoles is cd, p0 is their dipolar moment, and
u≡p0ψ′/kBT is a dimensionless energy variable accounting for the
energy of a dipole p0 in an external electric field −ψ′. The function
G(u)≡cosh(u)/u − sinh(u)/u2 is related to the first order spherical
Bessel function. The osmotic pressure for thismodel can be computed
explicitly and leads to the form

P = − εmε0
2

ψ′
� �2 + kBT ∑

i
ni

−kBTcduG uð Þ + kBTcd
sinh u

u
;

ð13Þ

where the third term is the dipolar electrostatic contribution, and the
fourth term is the pressure of an ideal gas of dipolar particles with a
concentration cd sinh(u)/u. The interplay between these two terms as
well as the change in the ionic profile leads to a deviation from the PB
pressure, making it smaller in the case of two oppositely charged
surfaces [26••].

3.4. Ions in hydrogen-bonded aqueous solvent

Another ion-specific effect explicitly considers the hydrogen-bond
network of water molecules and its perturbation by the dissolved
ions and confining surfaces [28•]. These types of considerations lead
to finite-ranged hydration interactions and complicated couplings
between the chemical structure of the confining surfaces [29]. Of all
the effects considered here, these are the most difficult to describe
theoretically in a consistent way, since new types of order parameters,
in addition to ionic density and the corresponding electrostatic fields,
need to be taken into account. Various types of phenomenological
theories of finite-range hydration effects are mostly related to the
microscopic Onsager–Dupuis model of ice [30] and are able to account
for some facets of the structural correlations of the aqueous solvent as
a consequence of its pronounced hydrogen-bonded structure.

3.5. Ions in binary mixtures

Models accounting for ion-solvent interactions can also be
generalized for the case of binary solvent mixtures. These are complex
solvating environments, because the solution may respond to a
solvated ion by varying the local solvent composition (bottom-left
panel of Fig. 1). For example, a miscible mixture of high dielectric
solvent (water) with a lower dielectric one (such as alcohol) can
respond to a solvated ion by drawing more water molecules around
the ion at the expense of alcohol molecules in order to optimize the
dielectric response [31]. Moreover, additional non-electrostatic in-
teractions may preferentially drive one solvent to make closer contact
with the ions. This general tendency is characterized by so-called
preferential interactions, which compete with the entropic cost (or
more generally, the free-energy cost) of concentrating one solvent
around the ion. These interactions can, for example, be quantified by
the differences in solvation energies of salts by different pure solvents
and can even lead to macroscopic phase-separation of the liquids
(“salting out”) [32]. Similar considerations can be applied to charged
macromolecular interfaces. For example, recent experiments show
that preferential water inclusion (preferential hydration) can lead
to subtle, yet measurable changes in the forces acting between
macromolecules such as DNA [33].

At the simplest level, the local dielectric response in an A/B binary
mixture depends linearly on the local solvent composition ϕA and ϕB

as

ε zð Þ = ϕA zð ÞεA + ϕB zð ÞεB; ð14Þ

where, due to solvent incompressibility (while neglecting the ionic
volume fraction), we require ϕA+ϕB=1. This form is also supported
also by experimental evidence [32].
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The total free energy is composed of three terms:

F=FPB+Fmix+Fsol.

The first FPB term is the regular PB expression, Eq. (1), with the
dielectric constant ε of the solvent substituted by the local dielectric
response, ε(z). The second term Fmix is directly derived from regular
solution theory, and describes the ideal mixing and enthalpy of the
solvent on the mean-field level in terms of the relative solvent
composition ϕ≡ϕB:

Fmix =
kBT
a3

∫ ½ϕ lnϕ + 1−ϕð Þln 1−ϕð Þ�d3r
+

kBT
a3

∫χϕ 1−ϕð Þd3r;
ð15Þ

where χ is the dimensionless interaction parameter (rescaled by kBT).
The origin of the third term, Fsol, is the preferential (non-electrostatic)
ion-solvent interaction, assumed to correspond to a bilinear coupling
between the ion densities, ni, and the relative solvent composition ϕ,
so that

Fsol = kBT∑
i
∫αiniϕ d3r ð16Þ

where αi is the preferential interaction parameter of species i.
Minimizing the free energy with respect to ϕ, ni and ψ yields the

corresponding equilibrium (EL) equations [34,35]. Solving these
equations results in ionic and solvent density profiles close to the
charged surfaces. The osmotic pressure can be derived from Eq. (7) as
a function of the inter-plate separation D, αi and the experimentally
determined bulk concentrations (i.e., salt concentration nb and
solvent composition ϕb). It has the form

P = − ε0
2

ε +
∂ε
∂ϕϕ

� �
ψ′
� �2 + kBT ∑

i
ni −

kBT
a3

ln 1−ϕð Þ

+ kBT ∑
i
αiniϕ − kBTχ

a3
ϕ2

:

ð17Þ

In the absence of preferential solvation, αi=0, and only as long as
ϕb≪1 and εANεB, small changes in osmotic pressure are expected,
because density modulations of the solvent are small. However,
considerable changes in the osmotic pressure are expected when
preferential interactions are included [34•]; the effect is expected to be
particularly large for separation between charged interacting surfaces
of less than ∼10−20Å.

3.6. Solutions of antagonist ions

Along similar lines as presented in the previous section, an
interesting effect emerges by considering the peculiar case where co-
ions and counterions bear an antagonist preferential solvation [36,37].
This effect is of considerable importance to the properties of neutral
interfaces where the two ionic species accumulate on different sides of
an interface between two immiscible dielectric solvents. For example,
we mention the oil/water interface, where the hydrophobic ions
accumulate on the oil side of the interface, and the hydrophilic ones
on the aqueous side. Under these conditions the surface tension is found
todependnon-monotonously on the ionic bulk density, resulting froma
negative contributing term proportional to

ffiffiffiffiffi
nb

p
, and a positive term

linear in nb. Note that in order to obtain this behavior even on themean-
field level, onemust take into account image charge interactions, which
become important nearnon-charged interfaces separating twodifferent
dielectric solutions. Here these interactions were considered in a
generalized Onsager–Samaras fashion and are further discussed in
Section 4. More recently [38], the implication of this effect on the phase
diagram of aqueous mixtures was studied. It was found that due to this
antagonist ion effect, hydrophilic ions tend to enhance phase separation
between the two immiscible solvents.

4. Direct ions-surface interactions

So far, we have discussed the contributions to the bulk energy of
solvated ions, fV. Similarly, specific interactions can also occur at
interfaces when the adsorbed ions interact favorably with the surface
constituents (top-right panel of Fig. 1). The main difference is in the
lower dimensionality of the adsorbing surface. Below we review
some examples of short-range surface-specific interactions that can
be described via a modified surface free-energy, fs, (second term in
Eq. (2)), and examine the consequences of these modifications.

4.1. Charge regulation

In their pioneering model of charge regulation, Ninham and
Parsegian [39] introduced the concept of a variable surface charge
density that self-adjusts according to other system properties. The
charged surface is not described by a constant charge density. Instead,
the amount of charge is regulated according to association and
dissociation of surface ionic groups. Considering such processes at
thermal equilibrium yields a charge-regulated boundary condition.
The main addition in the Ninham–Parsegian model with respect to
the regular PB model is the novel boundary condition, which is
determined self-consistently and, in turn, fixes the amount of
dissociated charge groups on the surface as a function of, e.g., the
separation between the surfaces. This model proved to be very useful
and was later applied in many other contexts [40].

Though originally the charge regulation was derived by requiring
that the surface charging be at equilibrium with the bulk through a
specified equilibrium constant for ion-surface binding [39], it can be
introduced equivalently by using a free-energy approach. Consider a
surface composed of associated (neutral) and dissociated (charged)
groups modeled as a two-component mixture. The free energy,
fs(η,ψs)=σψs+ fent, is a sum of an electrostatic term and the surface
entropy of mixing

fent =
kBT
a2
½η ln η + 1−ηð Þ ln 1−ηð Þ�; ð18Þ

where η is the area fraction of the dissociated (charged) groups at the
surface, and σ=eη/a2 is the surface charge density. The boundary
condition, Eq. (4), is obtained from a variation of the free energy with
respect to ψs, while minimization with respect to η corresponds to the
Langmuir adsorption isotherm [41•]. Combining these two conditions
leads to the Ninham–Parsegian charge regulation condition [39•]:

η
1−η

= exp − eψs

kBT

� 	
: ð19Þ

Since the boundary terms do not enter the pressure equation,
Eq. (7), the modification in the interactions between two bounding
surfaces is wrought only through the changes in the ionic profiles and
the electrostatic field. General forms of surface free energies may lead
to surface phase separations as discussed in Ref. [42]. As shown in the
next section, such phase separation can couple to the spacing between
the charged layers at equilibrium.

4.2. Lamellar–lamellar phase transition

One extension of the Ninham–Parsegian model considers short-
range non-electrostatic interactions between associated and
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dissociated charged groups at the surface, and can be modeled by
additional terms to fs [41•]. This generalization is motivated by
experiments by Zemb et al. [43], where a lamellar–lamellar phase
transition was observed in certain bilayer-forming lipids and
surfactants, such as DDA (didodecyldimethylammonium halides),
for a series of three homologous halide counterions: Cl−, Br− and I−.
A discontinuous transition was found for the inter-lamellar spacing D
as a function of applied osmotic stress, but only when counterions
such as bromide were used. In contrast, for chloride there is no phase
transition and the isotherm, P(D), follows the PB prediction, while for
iodide the lamellar phase did not disperse at all in water.

There is a probable link between the surface activity of ions and the
lamellar–lamellar phase transition characterized by the discontinuous
jump (for certain counterions) in the inter-bilayer separation. To
suggest a possible explanation for these experiments, a free-energy
approach can be used, with a surface term fs of the form

fs = σψs + fent−
kBT
a2

αsη +
1
2
χsη

2
� �

: ð20Þ

The modification in fs, as compared with the previous section,
is included in the last two terms in the squared brackets. A non-
electrostatic ion binding to the surface is modeled by the linear αsη
term, while the interaction between the bound and dissociated groups
is represented by the quadratic 1

2χsη2 term.
Minimizing the complete free energy leads to the regular PB

equation inside the bulk solution and to a boundary condition in the
form of the Langmuir–Frumkin–Davis adsorption isotherm [44]. The
solution of the PB equation with this boundary condition completely
determines the counterion density profile ni(z) and electrostatic
potential, and yields the osmotic pressure P of the form Eq. (5) as a
function of separation D.

The analysis of the solution shows that if the parameter χs is large
enough (typically ≈10kBT), an in-plane phase transition can occur,
with a coexistence region in the phase diagram between ion-adsorbed
and ion-depleted phases. This transition, in turn, is coupled to the bulk
phase transition causing a jump in the inter-lamellar spacing D as
the osmotic pressure is changed. Qualitatively, the behavior of this
lamellar system, seen for different ions, can be understood in terms
of the specific counterion interaction with the charged surfactant
bilayer. The Cl− counterion always dissociates from the bilayer-
forming DDA+ surfactant, resulting in PB-like behavior, and a
continuous P(D) isotherm. For Br−, the dissociation is partial, leading
to a first-order transition and a coexistence between the two lamellar
phases of two different D spacings. Finally, for the I− counterion, the
ion always stays associated with the DDA+ surfactant and there is not
sufficient repulsive interaction to stabilize the swelling of the stack
under any osmotic pressure.

4.3. Bilayer curvature effects

So far we have discussed rigid and flat surfaces. But often,
interfaces are composed of lipids or surfactants that can be deformed
at some free-energy cost. The adsorption process can then lead to a
surface restructuring and deformation at equilibrium. For a multi-
component layer, the compositional and elastic degrees of freedom
are in general coupled, leading to a complex variational problem. Ion
specificity is then manifested through charge regulation, through
interactions between mobile associated and dissociated surface sites,
and through other surface-mediated interactions, such as bilayer
elasticity. This is particularly relevant when considering the adsorp-
tion of large macroions onto oppositely charged layers.

Phenomenological terms added to the free energy are useful
here too. The free energy can be written as a sum fs= fent+ fels+σ ψs.
The additional term corresponds to an elastic energy in its Helfrich
form, using the bending modulus κ of the layer,

fels =
1
2
κ c−c0 ηð Þ½ �2 ð21Þ

where c denotes the layer curvature, and c0(η) is the spontaneous
curvature, dependingon the local fractionof dissociated surfaces sites, η.

Using these modified equations, it has been possible to predict
how charged macromolecules, such as DNA, proteins, and even
viruses, can reshape oppositely charged membranes, and sometimes
induce a macroscopic phase separation from a flat lamellar phase to a
deformed one [45].
4.4. Surface tension of electrolyte solutions

Another approach to study ion-surface interaction is to consider a
non-electrostatic external field that has a direct dependence on the
distance from the surface, and add this term “by hand” to the free
energy, ending up with modified ionic profiles. The main difference
between this method and those mentioned in the previous sections is
the assumption of a certain functional form of the non-electrostatic
external field, which is independent of other system properties. One
famous example to thismethod is the Onsager–Samaras theory for the
surface tension of electrolyte solutions [46]. In this seminal work it
was assumed that the image-charge potential can be regarded as an
external potential that scales as ψim∼exp(−2λD

−1z)/z where z is the
distance from the surface and λD is the Debye screening length. Taking
into account ψim leads to a depletion layer in the vicinity of neutral
interfaces.

In recent works [47•–49], a model was proposed to explain the
adsorption to an air/water interface of “soft” and large anions, such as
iodide and bromide, and the depletion of “hard” and small cations,
such as sodium. The model was based on two additional and
independent external fields, absent in the standard PB theory. The
contribution of the first stems from the cost of the electrostatic energy
of a polarizable ion that is modeled as a sphere, positioned at the
interface and immersed only partially in the liquid phase. This energy
is found to be substantially reduced for a large soft anion. The second
additional ingredient is the energy associated with exchanging an ion
with a water molecule in the hydrogen-bond network. Since the
water molecule is energetically favored in the bulk, this will lead to an
effective attraction of the ion to the interface, which scales with the
partial volume of the ion in the air phase.

Taking these two independent external fields into account leads to
a dependence of the profiles on the ionic size and polarizability. The
predictions suggest that the ion-specific surface tension agrees with
the Hofmeister series [7].

In another work it was suggested that the specific ion property of
making or breaking the water hydrogen-bond network can be
modeled by an attractive potential (square well) or a repulsive
potential (square barrier) [50,51]. Namely, the energetic favor or
disfavor of ions to be part of the hydrogen-bond network leads,
respectively, to an effective attractive or repulsive interaction of the
ions to the surface. Adding these external fields changes the ionic
profile and induces anion-specific depletion or adsorption, depending
on the choice of the external potential. This non-monotonic behavior
was also observed in surface tension experiments [52].

It is still questionable whether the simplified form of these
external potentials can be fully justified. Furthermore, in all models
where independent external potentials are “inserted by hand” into
the free energy, it is assumed that the additional interactions are
additive. It remains an open question whether all these interactions
are not intimately related to one another in a self consistent manner.
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4.5. Dispersion forces close to dielectric discontinuities

Electrostatic interactions mediated by aqueous solvent are contin-
gent upon the dielectric response function that encodes all the relevant
structural properties of the solvent [53]. The temporal dependence is
always non-local and can be converted into an appropriate frequency-
dependent dielectric response function, ε(ω). The non-local spatial
dependence, on the other hand, describes the orientational correlations
between water molecules in a hydrogen-bonded network. For an
infinite system it can be codified by a wave-vector dependent dielectric
function [54]. However, additional approximations are needed in order
to describe correlations in a system that is bound by interfaces and
contains mobile counterions [55].

The link between the frequency-dependent ε(ω) and the van der
Waals (vdW) interactions is provided by the Lifshitz theory [56]. The
dielectric models for the frequency response of aqueous solvents are
well worked out and lead to quantitative estimates of these
interactions for various geometries [57•]. Ninham and Mahanty
were the first to suggest that vdW interactions supply, at least in
part, an explanation for the ionic specificity [58]. In particular, they
suggested that vdW interactions partially explain the origin of the
water-structure contribution to the interactions between ions and
surfaces. For ions interacting with surfaces the vdW potential in the
non-retarded limit is given by ψvdW(z)∼B/z3 where z is the distance
from the surface, and the coefficient B depends on the polarizability of
the ions. This suggestion has been picked up recently in several
attempts to connect the Hofmeister series and other ion-specific
effects with vdW interactions (see Refs. [7,59•] and references
therein).

At the most basic level vdW interactions contribute an additional
term to the mean-field potential leading to modified ionic profiles
compared to the PB ones [60]. Amore advancedmean-field continuum
theory should take into account the dependence of the dielectric
response on the local density of the ions [25]. Thus, the frequency-
dependent dielectric response could bewritten as ε(z,ω)=ε(ni(z),ω).
Note that the ion density dependence of the dielectric function has
already been discussed in the previous sections, but the evaluation of
vdW interactions with a non-homogeneous dielectric profile is, in
general, difficult [61].

An additional complication is due to the fact that not only vdW
interactions depend on ni(z), but the converse is true as well — the
ionic profiles, ni(z), depend on vdW interactions. This coupled
problem is even more difficult to solve and, in general, may lead to
non-monotonic density profiles [62].

The vdW interactions add ionic specificity to the total free energy
since ε(ni(z),ω) depends crucially on the ion species. It is important,
though, to note that this is only one part of the ion-specific effect.
The other part has to be implemented within PB theory itself by
consistently assuming that the static dielectric response depends
on the ionic densities too, as advocated in previous sections of this
review. Only taken together can these two effects constitute a
consistent formulation.

5. Concluding remarks

Ion-specific effects are present in a broad range of chemical and
biological systems. These effects are, however, difficult to model since
they usually involve complicated couplings that emerge from a large
number of species and interactions. Here we have explored several
models with a common theme — all are phenomenological and
highlight one or two aspects of ion-specific interactions. Furthermore,
all the models are discussed within a common theoretical framework
on the mean-field level, leading to relatively simplified and intuitive
picture of ion-specific effects. The drawback of this approach is the
lack of accuracy and microscopic description that can be provided by
other methods, such as simulations and detailed liquid-state theories.
The various models can be grouped into two main types of non-
electrostatic interactions: bulk and surface. For the first type we
reviewed three non-electrostatic interactions.

(i) The finite-size of ions, when non-negligible, leads to steric
repulsion and to an upper bound on the ionic density that
accumulates in the vicinity of charged surfaces. As a conse-
quence, the width of the double-layer is increased for larger
ions and the osmotic pressure in between two surfaces,
separated by a few nanometers, grows.

(ii) Ions influence the dielectric response in their vicinity. Mostly,
ions apply strong electrostatic field on neighboring water
molecules, leading to a local decrement of the dielectric
response. This, in turn, leads to an additional effective inter-
action of ions with charged surfaces. The effect on the ion
density profile is somewhat similar to that of large ions in the
steric interaction model, and the double layer width is
increased. Ion specificity in this model emerges via the strength
of the ionic influence on the local dielectric response.

(iii) When the solvent is composed of several components,
additional interactions lead to modifications of the ionic and
solvent density profiles. In the model described above, the
change of local dielectric response due to local changes of
solvent composition, and the difference in the solvation energy
of the ions in different solvents leads to a decrease in the
osmotic pressure as compared to a homogeneous solvent
composition.

The second type of non-electrostatic interactions is surface
interactions and several cases were discussed.

(i) Surface charge can be self-adjusted by various mechanisms,
such as ionization and ionic dissociation. Such self-adjusted
surfaces interact with the ionic solution in a self-consistent
manner, which leads to changes in the ionic density profiles
and osmotic pressure.

(ii) Adding an in-plane non-electrostatic interaction of the surface
species to the charge regulationmechanismmay further lead to
a phase transition as a function of the osmotic pressure
between two charged surfaces. Furthermore, when coupling
the charge regulation mechanism to the membrane curvature
degrees of freedoms, structural changes in the membrane can
be observed when it is brought in contact with an ionic
solution.

(iii) Considering long-range external surface interactions, such as
dispersion interaction, that result from the dielectric inhomo-
geneities, leads to furthermodifications in ionic density profiles
and osmotic pressure. Here too, the ionic specificity emerges
from the ion-dependent dielectric response of the solution.

Resolving a complete picture of ion-specific effects remains an
ever-challenging task. In order to accomplish this task, it will be
helpful to obtain first a better understanding of each of the myriad
experimental observations in terms of models based on simple
ingredients. Then, combining the separate pieces of knowledge gained
together into a single and complete picture of ion-specific interactions
may be achieved.
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