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Abstract

We show that in nematic liquid crystals, the Casimir effect induced by thermal fluctuations of the orientational order is
characterized by a short-range force due to fluctuations of the degree of order and biaxial excitations on top of the
long-range interaction caused by director modes, the short-range corrections being important in the vicinity of the phase
transition. In the isotropic phase the attraction is entirely short-range. In the case of finite surface coupling, both short- and
long-range fluctuation-induced forces are weaker than in the strong anchoring limit. q 1998 Elsevier Science B.V. All rights
reserved.

In 1948 Casimir showed that the fluctuations of
an electromagnetic field within a conducting vessel

w xgive rise to an attraction between its walls 1 . An
analogous effect occurs in various systems, the fluc-

w xtuations being either quantum or thermal 2,3 . In
liquid crystals, which consist of orientationally or-
dered rod- or disklike molecules, the force induced
by thermal fluctuations of the average molecular

Ž . w xorientation director fluctuations is long-range 4–7 .
However, the liquid-crystalline ordering cannot be

described completely just by the director field. Even
in the simplest mesophase – nematic – the order
parameter is a traceless second rank tensor, rather
than a headless unit vector and, therefore, character-
ized by five fluctuating degrees of freedom instead

w xof two director modes 8 . Deep in the nematic phase
fluctuations of the other three degrees of freedom
Ži.e. the degrees of order and biaxiality and the

.orientation of the secondary director are negligible
and the dynamical properties of the material are

almost completely controlled by the Goldstone direc-
tor modes. However, in the vicinity of the nematic-
isotropic phase transition, the three non-director

Ž w x.modes become more pronounced see, e.g., Ref. 9
– especially in the presence of substrates that pro-
mote nucleation of the nematicrisotropic phase

w xaboverbelow the transition temperature 10 – and
their contribution to the total fluctuation-induced in-
teraction is no longer insignificant. To generalize the
existing theory based on Frank elasticity and the

w xdirector description of the ordering 4,5 and to
assess the relevance of the non-director modes’ inter-
action for the structural forces in liquid crystals
w x11,12 , in this Letter, the behavior of the Casimir
force in the vicinity of the nematic-isotropic phase
transition is studied using the tensorial Landau-de
Gennes formalism.

w xWithin this framework 8 , close to the phase
transition the difference between the free energy
densities of the nematic and isotropic phase is ex-
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panded in terms of scalar invariants of the order
Ž .parameter QsQ r . In a compact form, which is

based on a Q scaled form with the degree of order in
the bulk nematic at the phase transition, its one-elas-
tic-constant approximation reads

L 2y2 2 3 2'fs j u tr Q y2 6 tr Q q tr QŽ .½ 02

.q=Q . =Q , 1Ž .5.

2(where L is the elastic constant, j s 27LCrB is0
Ž 2 .Žthe bare correlation length and us 27ACrB Ty

) . )T is the reduced temperature; A,T , B and C are
w xthe usual parameters of the expansion 10 . The

interaction between the nematic and the wall is often
modeled by

L 2f s tr QyQ , 2Ž . Ž .S S2l

w xwhere l is the extrapolation length 8 and Q is theS

preferred value of the order parameter at the sub-
strate. Both f and f are measured in units ofS

2 B2r27C 2.
The order parameter can be divided into a mean-

Ž . Ž . Ž .field and a fluctuating part, Q r sA r qB r ,
and can be represented in an appropriate five-fold
tensorial base. In uniaxial nematics, a natural choice

'Ž .of the base tensors is T s 3nmny I r 6 , T s0 1'Ž . Že m e y e m e r 2 , T s e m e q e m1 1 2 2 y1 1 2 2' '. Ž .e r 2 , T s e mnqnme r 2 and T s1 2 1 1 y2'Ž . Ž .e mnqnme r 2 , where n the director , e2 2 1

and e constitute an orthonormal triad and I is the2
w xunit tensor 13 . The component of Q along T is0

equal to the sum of the mean-field and fluctuating
part of the degree of order, whereas its projections
onto T and T determine the fluctuations of the"1 " 2

degree of biaxiality, the orientation of the biaxial
Ždirector and the orientation of the director see, e.g.,

w x.Ref. 9 .
Within the mean-field approximation, the equilib-

rium configuration in bulk samples corresponds to
the global minimum of the free energy density. The

Ž .uniaxial nematic phase described by A u
3 's 1q 1y8ur9 T is stable up to u s1Ž . 0 NI4

Ž .nematic-isotropic phase transition temperature and
) ) Žmetastable between u and u s9r8 superheat-NI

.ing limit , whereas the isotropic phase with As0 is

stable for u)u and metastable between u ) s0NI
Ž .supercooling limit and u . In a confined system,NI

the mean-field equilibrium is determined by the total
free energy HfdVqHf dS, which generally leads toS

inhomogeneous order parameter profiles and makes
the analysis of the Casimir effect more involved. To
keep the discussion as transparent as possible for the

Žmoment, Q is assumed to be equal to A so that theS
.equilibrium structure is bulklike and l is set to 0,

implying that fluctuations must vanish at the walls of
the cavity.

The fluctuating part of the ordering is governed
by its Hamiltonian, given by a Gaussian expansion

w xof the free energy around the ground state 13 . Since
both in the uniaxial, homogeneous nematic and in
the isotropic phase, the five types of fluctuations are
uncoupled, the tensorial formalism reduces to an

Žanalysis of five independent scalar fields see, e.g.,
w x.Ref. 9 . In addition, the two biaxial modes in the

nematic phase are degenerate and so are the two
director modes; in the isotropic phase all five types
of excitations are degenerate. In both phases the
Hamiltonian of any of the five fluctuating fields

Ž .b'b r

L 2y2 2w xH b s h b dVs j b q =b dVŽ . Ž .H H
2

3Ž .

consists of a ‘‘mass’’ term and an one-constant
approximation of the elastic Hamiltonian. The ne-
matic director modes are characterized by the infinite

w xcorrelation length j 4–7 , whereas correlation
lengths of fluctuations of the degree of order and
biaxial excitations in the nematic phase are given by

9y2Ž . Ž' 'j rj s 1y8ur9 1q 1y8ur9 soŽ .No 0 4

.that j diverges at the superheating limit andNo
27y2Ž . 'j rj s 1q 1y8ur9 , respectively. –Ž .N b 0 4

In the isotropic phase, the correlation length of the
Ž .y2collective excitations is determined by j rj sI 0

u , which means that j diverges at the supercoolingI

limit.
To evaluate the free energy of the fluctuating

field, it is instructive to introduce its Fourier compo-
nents. Since the excitations are assumed to be sup-
pressed by two infinite plates, normal to e andz

located at zs0 and zsd, the normal modes are of
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Ž .the form b r sexp i q xqq y sin np zrdŽ . Ž .Ž .q x y

with q' q sq e qq e ,n and ns0,"1,"Ž .H x x y y

2, . . . . The partition function can be calculated by
Ž .expanding b r in terms of b to yieldq

kT Hq
Fs ln , 4Ž .Ý

2 kTq

2LSd y2 2where H s j qq q nprd is the en-Ž .q H2

ergy of the normal mode b and S is the area of theq

plates. The sum over q can be replaced by theH
integral.

The finite fluctuation-induced interaction between
the plates can be extracted from the infinite total free

w Ž .xenergy Eq. 4 by dimensional regularization, by
w xcutoff methods, etc. 2 – and also by recognizing

that the diverging part results from unconstrained
fluctuations in a region of volume V and cross-sec-

w xtion S 4,5 . Therefore, the Casimir force can be
defined by

E
FFsy FyF , 5Ž . Ž .bulkE d

where F is characterized by a continuous spec-bulk

trum of n. After some rearrangements one obtains
X`` `kTS

FFsy y dnÝH H3 ž /2p d drj 0ns0

=
u2

u du , 6Ž .22u q npŽ .
where the prime indicates that the ns0 term in the
sum should be multiplied by 1r2 and u2 s
d2 jy2 qq2 . Using the Poisson summation for-Ž .H
mula, this sum can be converted to Ý`

X

ms0
Ž .uexp y2mu and the ms0 term of the new sum

cancels exactly with the bulk free energy. The final
result – the Casimir force induced by a fluctuating

Ž .scalar field with a Hamiltonian described by Eq. 3
–

2`kTS 1 md md
FFsy q qÝ3 ž /2 j j4p d ms1

=
exp y2mdrjŽ .

7Ž .3m

is consistent with the analysis of the phenomenon in
w xcritical magnetic and fluid films 14 .

FF, which is attractive, strongly depends on the
ratio drj . As mentioned above, the nematic phase is
characterized by two director modes with infinite
correlation length and three other types of excitations
whose correlation lengths are finite; in the isotropic
phase all five modes are massive. Therefore, one

Ž .should consider the limiting forms of Eq. 7 for
d<j and d4j , which cover the director modes’
attraction and the asymptotic behavior of the Casimir
force induced by massive excitations, respectively.

Ž .In the first case, Eq. 7 reproduces the one-elastic-
constant approximation of the Casimir interaction

w xobtained within the Frank elastic theory 4,5

kTS
y z 3 . 8Ž . Ž .38p d

This long-range force mediated by director modes is
generally the most important manifestation of the
Casimir effect in nematic liquid crystals. On the
other hand, the force induced by nondirector modes
in the nematic phase and all types of fluctuations in
the isotropic phase

kTS
y exp y2 drj 9Ž . Ž .24pj d

Žare short-range unless, of course, d is smaller than
.j .
In the nematic phase, the Casimir attraction is

obviously dominated by the long-range force caused
by the director modes so that the contribution of the
order parameter and biaxial fluctuations may be re-
garded as a correction, unless d is very small or the
temperature is close to the superheating limit. At
room temperature and for d equal to, say, 20 nm, the
magnitude of the director modes’ attraction is about
50 pNrmm2. Deep in the nematic phase, the correc-

Žtion is negligible and in typical nematics such as
5CB, where the phase transition occurs close to room
temperature and about 1 K above the supercooling

.limit it augments the above estimate only by 3.5%
Ž .at ds20 nm even at the phase transition. How-
ever, if the sample is superheated above the transi-
tion temperature, the correction increases further to
become long-range at the superheating limit, where it
amounts to 50% of the director modes’ force.

The Casimir attraction mediated by fluctuations in
the isotropic phase is entirely short-range and there-
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fore much weaker. For example, at the nematic-iso-
tropic phase transition, j in 5CB is about 8 nm andI

for ds20 nm, the force is approximately equal to 9
pNrmm2. However, as the isotropic phase is cooled
below the bulk transition temperature, the correlation
length increases and eventually diverges at the super-
cooling limit, where the Casimir force reaches some

2 Ž .125 pNrmm at ds20 nm .
As suggested, the crossover from a short- to

long-range force could be detected by approaching
Ž .and surpassing the phase transition temperature by
Ž . Ž .super heating or super cooling, where the energy
levels of the massive modes decrease considerably.
Such an experiment can probably be carried out

w xusing a modified AFM 15 or a surface force appa-
w xratus 12 . An opposite effect can be induced by an

w xexternal field 16,17 : in materials with a positive
anisotropy of electricrmagnetic susceptibility, the
aligning action of the field applied along the equilib-
rium director gives rise to a mass term in the Hamil-
tonian of the director modes, the role of the correla-
tion length being played by the electricrmagnetic
coherence length.

The above analysis, based on strong anchoring,
outlines the main features of the Casimir force in the
nematic and in the isotropic phase and gives an idea
of its magnitude. The effect of a finite anchoring
strength should be studied within a more elaborate
model, which requires a comprehensive regulariza-
tion procedure. The problem can be solved by the
Green function method often used in the theory of

w xCasimir and van der Waals forces 3 and applicable
if the modulation of the correlation length caused by
subsurface variation of the degree of order is ne-
glected. Within this approximation, the interaction
free energy between like substrates characterized by
finite l and uniaxial homeotropic Q is given byS

2
y2 2 y12 (j qq ylkTS d q HHXF s ln 1yH 2 y2 2 y12 � 02p �Ž . (j qq qlH

= y2 2(exp y2 j qq d 10Ž .ž /H 0
with the typical form analogous to the theory of a
screened van der Waals interaction between two
semi-infinite dielectric media separated by a slab of

w xelectrolyte 18 : actually the correspondence is exact
if j is interpreted as the Debye length of the elec-
trolyte and l as the ratio of the dielectric constants
of the electrolyte and the two bounding dielectrics.

Ž .For ls0 infinitely strong anchoring , the force
resulting from the above free energy reduces to Eq.
Ž . Ž .7 . In addition, l™` no anchoring leads to the
same result, which is not surprising: the two limiting

Žcases differ in the type of boundary conditions Di-
.richletrNeumann and, therefore, in the symmetry of

Ž .the eigenmodes sinesrcosines , but their spectra are
identical.

The effect of anchoring can be quantified by a
reduction factor defined as the ratio of the Casimir
forces corresponding to finite l and its strong an-

Ž . Ž .choring counterpart, i.e. R drj ,lrj 'FF d,j ,l r
Ž .FF d,j ,ls0 . Its dependence on drj for finite

Ž Ž . Ž . .lrj as noted above, R drj ,0 sR drj ,` s1 is
illustrated in Fig. 1. If 0-lrj-1, R descends
from 1 to a minimum and then saturates, whereas for
lrj)1, the reduction factor decreases monotoni-
cally to the saturated value. The saturation indicates
that for drj41, the functional form of the leading
term of the interaction remains unaltered, i.e.

Ž .exp y2 drj rd: it can be shown that for small and
large lrj , the reduction factor is given by 1y4lrj

and 1y4jrl, respectively. These two limiting cases
comply with the obvious fact that the saturated value
of R does not change if lrj is replaced by its

Fig. 1. Reduction factor vs. drj for lrj s0.1,0.5,1,2 and 10. If
lrj -1, R reaches a minimum before saturation; for lrj s1,
Ž . 2 2 Ž .R drj 41 fj r2 d which can be demonstrated analytically

and for lrj )1 it decreases monotonically towards the limiting
value. The saturated value of the reduction factor for lrj s Z
matches with the one corresponding to lrj s Zy1.



( )P. Ziherl et al.rChemical Physics Letters 295 1998 99–104 103

inverse. On the other hand, if drj<1 and lrj<

drj , R can be approximated by the asymptotic
expansion 1y6lrd, which means that for large yet
finite anchoring strength the correction to the long-
range dy3-interaction is proportional to dy4.

In order to find out whether the Casimir forces in
nematic liquid crystals are important or not, they
should be compared to the mean-field interaction. In
hybrid cells the mean-field force is caused mainly by
the deformed equilibrium director field, described by

Ž .the tilt angle profile f z , and can be estimated
w xwithin the one elastic constant approximation 8

with the surface free energy of the type fS
K 2w Ž . x Ž .s f z yf , where f f is the preferredi i 1 22l

Ž .value of the tilt angle at z s0 z sd and K is1 2

the Frank elastic constant. In this case, the mean-field
1 Žinteraction is repulsive and equal to KS f y22

.2Ž .y2f 2lqd , which remains finite for d<l and1

decays as dy2 for d4l. The distorted equilibrium
director field also modifies the spectrum of one of
the two director modes and the analysis of the
corresponding Casimir interaction is beyond the
scope of this study. The other mode remains un-
changed, so that at least a part of the director modes’
attraction is proportional to dy3 and dominates at
small ds, whereas the mean-field repulsion is more
important at large ds 1. Moreover, if the anchoring
strengths at the two walls are not equal, the equilib-
rium director field in small cavities is dictated by the
strongest anchoring and is spatially uniform, which
implies that in this case the fluctuation-induced force
is the only interaction mediated by the liquid crystal.

There is another source of the structural mean-field
interaction between plates immersed into either the
nematic or isotropic phase: if the degree of order at

w xthe substrates is different from the bulk one 19 , the
inhomogeneity of the mean-field ordering results in
an attractive force asymptotically given by
Ž 2 2 . Ž .y LSD r4j exp ydrj , where D is the discrep-

1 Should the crossover from repulsion to attraction be de-
Žtectable, the critical thickness d must be neither too small soc

.that the effects of the finite molecular size are unimportant nor
Ž .too large otherwise the force would be too weak , say between 10

Žand 100 nm. These conditions can be met: for l;100 nm i.e.
2 .anchoring strength ;0.1 mJrm and f yf ;308, d is2 1 c

about 25 nm.

ancy between the surface-induced and the bulk de-
Ž .gree of order and j is equal to j j in theNo I

Ž .nematic isotropic phase. At this point it must be
stressed that the present analysis of the Casimir
effect in liquid crystals is consistent only with sub-
surface variations of the degree of order small enough
not to modify the spectrum of the fluctuations quali-

w xtatively 10 and we limit the discussion to small Ds.
In the nematic phase, the short-range mean-field
force is entirely masked by the long-range fluctua-
tion-mediated interaction regardless of the sign of D.
In the isotropic phase, however, a disordering sub-
strate actually promotes the bulk order and in this
geometry the Casimir force is in fact the only inter-
action induced by the medium itself. On the other
hand, an order-inducing substrate gives rise to a
short-range mean-field attraction with a range twice
as large as the range of the Casimir force. Therefore
the mean-field interaction dominates at large dis-
tances, whereas at small ds the fluctuation-induced
force takes over. The crossover, of course, depends
on D and on temperature; for example, for Ds0.01
and ufuq it occurs at df30 nm in a typicalNI

material. This indicates that at separations where the
short-range structural forces are strong enough to be
measurable, the Casimir interaction does represent a
significant part of the total structural force mediated
by the isotropic liquid-crystalline phase even be-
tween order-inducing substrates.

The Casimir force, therefore, dominates in ne-
matic liquid crystals in cavities without surface-in-
duced frustration and in thin hybrid cells and may
well affect the stability of some microconfined liq-
uid-crystalline systems. In this context, the general-

w xization of the basic result 4,5 is important because
it provides a complete description of the fluctuation-
induced interaction in the nematic phase and its
pretransitional behavior. The formalism also covers
the field quenching of director fluctuations in the
nematic phase and the amplitudon and soft modes

Žnear the smectic C-smectic A transition which is
usually continuous, so that the corresponding pre-
transitional increase of the Casimir force must be

.quite prominent as well as the Casimir attraction in
the isotropic phase. However, there remains a broad
class of liquid-crystalline systems in which the fluc-
tuation-induced forces have not been studied so far:
the wetting geometries. The Casimir force in these
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biphase systems stabilized by substrates with large
Ž .dis ordering power and characterized by wetting-

w xspecific slow fluctuations 10 will be analyzed in a
forthcoming paper.
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