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A. Erbaş1,a, R. Podgornik2, and R.R. Netz1

1 Physics Department, Technical University Munich, 85748 Garching, Germany
2 IJS, Jamova 39, SI-1000 Ljubljana, Slovenia

Received 27 November 2009 and Received in final form 29 April 2010
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Abstract. We consider the linearized time-dependent Navier-Stokes equation including finite compress-
ibility and viscosity. We first constitute the Green’s function, from which we derive the flow profiles and
response functions for a plane, a sphere and a cylinder for arbitrary surface slip length. For high driving
frequency the flow pattern is dominated by the diffusion of vorticity and compression, for low frequency
compression propagates in the form of sound waves which are exponentially damped at a screening length
larger than the sound wave length. The crossover between the diffusive and propagative compression
regimes occurs at the fluid’s intrinsic frequency ω ∼ c2ρ0/η, with c the speed of sound, ρ0 the fluid den-
sity and η the viscosity. In the propagative regime the hydrodynamic response function of spheres and
cylinders exhibits a high-frequency resonance when the particle size is of the order of the sound wave
length. A distinct low-frequency resonance occurs at the boundary between the propagative and diffusive
regimes. Those resonant features should be detectable experimentally by tracking the diffusion of particles,
as well as by measuring the fluctuation spectrum or the response spectrum of trapped particles. Since the
response function depends sensitively on the slip length, in principle the slip length can be deduced from
an experimentally measured response function.

1 Introduction

In the last decade, microrheology, which uses micron-sized
particles to probe the local dynamic response to applied
forces, has become a useful tool to investigate the vis-
coelastic behavior of complex fluids such as biopolymer
solutions, composites and complex interfaces [1,2]. Alter-
natively, the thermal mean displacement of spheres ob-
tained from diffusing wave spectroscopy, interferometry,
laser deflection or video-tracking is connected to the re-
sponse function via the dissipation-fluctuation theorem
and essentially yields equivalent information on the lin-
ear response level [3–6]. Likewise, ferromagnetic nanowires
driven by external magnetic fields have been used to in-
vestigate anisotropic features of complex fluids and in-
terfaces [7]. Knowing the hydrodynamic forces acting on
small cylinders is also important for the development of
advanced sensors and actuators [8–10]. In many appli-
cations, the Stokes’ equation for an incompressible fluid
with the no-slip boundary condition is used, but it was
recognized early on that compressibility effects are cru-
cial to describe certain phenomena [11–13]. In addition,
a finite slip length, which is in the nanometer range for
planar hydrophobic surfaces [14] and for curved objects
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shows an intricate dependence on flow direction and flow
speed [15,16], can have drastic effects on the dynamics of
nanometer size objects and thus has to be included in the
treatment as well.

Based on the classical work by Stokes on the time-
dependent response function for a sphere in a viscous in-
compressible medium [17,18], several works reported the
response function for a finite-size sphere including slip and
compressibility [19–22], but the explicit flow field has not
been given. For the cylindrical case, compressibility has
not been considered at all [23,24]. In the previous in-
terpretation of microrheology measurements of complex
fluids such as entangled polymer solutions, the dynamic
response function of water has typically been considered
featureless. In this paper we analyze the response function
and flow profiles of a viscous compressible fluid at the basic
geometries such as planes, spheres, cylinders in detail and
show that the resulting behavior is quite rich, exhibiting
resonant behavior both in the propagative as well as in the
diffusive regime. Knowing the response function in princi-
ple allows to extract the slip length from experimentally
measured spectral properties. The flow profile is important
in situations where the hydrodynamic interaction between
oscillating spheres or cylinders is probed and can help to
rationalize hydrodynamic effects in confinement [25]. In
addition, flows can be explicitly visualized with modern
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particle-image-velocimetry techniques, which would allow
a direct comparison between theoretical and experimental
results.

We first calculate the Green’s function for a point force
as a function of frequency in a compressible viscous fluid.
Although this Green’s function has been derived and used
before, its explicit form is difficult to find in the literature
and we therefore discuss it in some detail. Next, the flow
fields at a plane, sphere and a cylinder are constructed for
arbitrary surface slip length and the frequency-dependent
response functions are derived by calculating the surface
stress. The asymptotic behavior of the response functions
as well as their resonant features are discussed in detail.

2 Constitutive equations

Conservation of the i-th component of the momentum in
an arbitrary finite volume V reads

d
dt

∫
V

ρvid3r +
∫

∂V

ρvivjdfj =
∫

V

Fid3r +
∫

∂V

Πijdfj ,

(1)
where density ρ, velocity vi, volume force Fi, stress ten-
sor Πij are functions of both time t and position r, i.e.
ρ(r, t), vi(r, t), Fi(r, t), Πij(r, t), and the Einstein sum-
mation convention is used throughout this paper. Using
Gauss law, the local momentum conservation follows as

∂ρvi

∂t
+ ∇jρvivj = Fi + ∇jΠij . (2)

With the help of the continuity equation, ∂ρ/∂t+∇jρvj =
0 and the material derivative acting on an arbitrary scalar
field A(r, t), defined as DA/Dt = ∂A/∂t + vi∇iA, the
Navier-Stokes equation in compact notation results

ρ
Dvi

Dt
= Fi + ∇jΠij . (3)

The symmetric stress tensor is divided into the diagonal
pressure contribution and a part that depends on velocity
gradients ∇jvi. To lowest order, which defines a Newto-
nian liquid, one obtains

Πij + pδij = ζδij∇kvk + η

(
∇ivj + ∇jvi −

2
3
δij∇kvk

)
,

(4)
where η is the shear viscosity and ζ denotes the volume
viscosity, which is often set to zero. The Navier Stokes
equation becomes

ρ
Dvi

Dt
= Fi −∇ip + (η/3 + ζ)∇i∇kvk + η∇k∇kvi. (5)

Let us start out by a brief scaling analysis: Introducing
scales for time, length, velocity, and density, T , L, V ,
ρ0, respectively, and dividing the Navier-Stokes equation
by ηV/L2 so that the viscosity terms are of order unity,
the non-linear velocity term scales as the Reynolds num-
ber R ∼ ρ0LV/η, and the time-derivative term scales

as RST ∼ ρ0L
2/(ηT ). The Strouhal number is defined

as ST ∼ L/(V T ) and measures the importance of the
time derivative term compared to the non-linear term.
Assuming water density ρ0 � 103 kg/m3, water viscos-
ity η � 10−3 kg/(m s), and typical length and velocity
scales for biological or colloidal systems in the micron
range, L � 10−6 m, V � 10−6 m/s, the Reynolds number
is R � 10−6 and thus the non-linear term is negligible for
such situations. The Strouhal number on the other hand
can be quite large, depending on the time scale consid-
ered. Assuming a time scale T � 10−6 s, that means fre-
quencies in the MHz range, the Strouhal number becomes
ST � 106 and the time derivative term scales of the or-
der of unity, RST � 1, and thus cannot be neglected.
Such short times scales are important in a number of situ-
ations. By neglecting the non-linear term but keeping the
time derivative, we are led to the so-called transient Stokes
equation,

ρ
∂vi

∂t
= Fi −∇ip + (η/3 + ζ)∇i∇kvk + η∇k∇kvi, (6)

which serves as the starting point for all further investiga-
tions in this paper. This equation is discussed in classical
texts in the incompressible regime, where the term propor-
tional to ∇kvk is absent [17]. For the case of finite com-
pressibility only few and quite recent studies have been
reported [19–22].

In the next section we first calculate the Green’s func-
tion of the transient Stokes equation (6). The Green’s
function includes compression and shear effects, both are
damped (or screened) beyond frequency-dependent length
scales. Interestingly, for water the screening length of com-
pression waves (sound waves) is for typical kHz frequen-
cies in the kilometer range and thus much larger than the
wave length, i.e., compressional perturbations propagate.
For much higher frequencies, the compression screening
length becomes of the order of the wavelength and com-
pression perturbations do not propagate. The screening
length of shear or vortex diffusion is always of the order
of the perturbation wavelength and thus shear perturba-
tions never propagate. From the Green’s function we con-
struct the flow field at a plane, around a sphere and at
a cylinder, using a generalized hydrodynamic boundary
condition that includes a finite slip length b. We deter-
mine the pressure field and surface stress from which the
forces acting on the bodies are derived. We find resonant
features in the response functions, the scaling of which is
analyzed in detail.

3 Calculation of the Green’s function

On the linear level we treat vi, ρ − ρ0, p − p0, Fi as
small quantities. Taking the divergence of the Stokes equa-
tion (6), one obtains on the linear level

∇i∇ip − ∂2p

c2∂t2
= ∇iFi + (4η/3 + ζ)∇i∇i∇kvk. (7)

In deriving this we have used the linearized continuity
equation, ρ0∇i(∂vi/∂t) = −∂2ρ/∂t2 and the linearized
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equation of state ρ − ρ0 = c−2(p − p0), where dρ/dp|p0 =
c−2 defines the speed of sound c, from which follows
∂2ρ/∂t2 = c−2∂2p/∂t2. Note that for most systems and
frequencies, heat flow can be neglected so that the adia-
batic limit is realized, though we hasten to stress that the
linear theory as discussed here is independent of heat flow
and dissipation effects. We define Fourier transforms as

p(r, t) =
1

(2π)4

∫
dωd3kp̃(k, ω)eı(kiri−ωt) (8)

and similarly for vi and Fi. Equations (6) and (7) become

−ıωρ0ṽi = F̃i − ıkip̃ − (η/3 + ζ)kikj ṽj − ηkjkj ṽi (9)

and(
ω2

c2
− kiki

)
p̃ = ıkiF̃i − ı(4η/3 + ζ)kikikj ṽj . (10)

Equation (10) allows to express the pressure field in terms
of the velocity field. Thus eliminating the pressure term in
eq. (9), one obtains an equation that only depends on ve-
locity and external force. Straightforward solution of this
algebraic equation is possible by decomposition of the ve-
locity according to

ṽi = ṽT
i + ṽL

i (11)

into a transverse part defined by kiṽ
T
i = 0 and a longitudi-

nal part characterized by kiṽi = kiṽ
L
i . We define Green’s

functions for the transverse and longitudinal velocities as

ṽT
i = G̃T

ijF̃j , (12)

and
ṽL

i = G̃L
ijF̃j . (13)

The transverse Green’s function describes the velocity
field in the incompressible case and captures vorticity or
shear effects; it has been derived by Stokes [17,18] and is
given by

G̃T
ij =

(δij − kikj/k2)/η

k2 + α2
, (14)

where we have defined the length scale α−1 via

α2 = −ıωρ0/η. (15)

On the other hand, the longitudinal Green’s function de-
scribes compression effects and reads

G̃L
ij =

kikjλ
2

ηα2k2(k2 + λ2)
, (16)

where we have defined the length scale λ−1 via

λ2 =
−ıωρ0

4η/3 + ζ + ıρ0c2/ω
. (17)

The complete Green’s function is defined by

ṽi = G̃ijF̃j (18)

and is obtained from the sum of transverse and longitudi-
nal Green’s functions

G̃ij = G̃T
ij + G̃L

ij . (19)

3.1 Transverse Green’s function

The transverse frequency-dependent Green’s function in
real space is obtained by straightforward back-fourier
transformation and reads

GT
ij =

1
4πηα2r3

{
δij

(
[1 + rα + r2α2]e−rα − 1

)

+3r̂ir̂j

(
1 − [1 + rα + r2α2/3]e−rα

)}
. (20)

Note that eq. (20) is identical to Green’s functions that
are obtained for porous media [26]. For short distances,
high viscosity or small frequencies, rα � 1, the limiting
behavior is

GT
ij � 1

8πηr
(δij + r̂ir̂j) (21)

and corresponds to the static incompressible Green’s func-
tion, the standard Oseen tensor [18]. For large distances or
high frequencies, rα � 1, corresponding to the inviscous
case, the limiting behavior is

GT
ij � 1

4πηr3α2
(3r̂ir̂j − δij) (22)

and exhibits a much faster decay (note that to leading or-
der, the dependence on viscosity has dropped out). The
decay constant α is separated into real and imaginary
parts as

α = αR + ıαI . (23)

By introducing the typical length scale a we obtain

aαR = −aαI =
√

ω/2ω0 , (24)

where we have defined the vorticity frequency scale ω0 as

ω0 =
η

a2ρ0
. (25)

The inverse frequency ω−1
0 is the time that vorticity needs

to diffuse a certain distance a. For water with density ρ0 ≈
103 kg/m3 and viscosity η ≈ 10−3 kg/ms, ω0 ranges from
ω0 � 1 s−1 for a � 1mm to ω0 � 106 s−1 for a � 1μm. In
water, the decay length scales as α−1

R � 10−3(ω s)−1/2 m
and thus is of the order of α−1

R � 1mm for a frequency
ω = 1 s−1 and α−1

R � 1μm for a frequency ω = 106 s−1.

3.2 Longitudinal Green’s function

The longitudinal Green’s function in real space reads

GL
ij =

1
4πηα2r3

{
δij

(
1 − [1 + rλ]e−rλ

)

−3r̂ir̂j

(
1 − [1 + rλ + r2λ2/3]e−rλ

)}
. (26)

For short distances, low compressibility (i.e. high sound
speed) or small frequencies, rλ � 1, the limiting behavior
is

GL
ij � λ2

8πηrα2
(δij − r̂ir̂j) . (27)
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In the incompressible case, characterized by an infinite
sound velocity, c → ∞, one has λ → 0 and thus the longi-
tudinal Green’s function vanishes. For large distances or
high frequencies, rλ � 1, the limiting behavior is

GL
ij � − 1

4πηr3α2
(3r̂ir̂j − δij) (28)

and thus exactly cancels the asymptotic term from the in-
compressible Green’s function given in eq. (22); the large-
distance behavior of the total Green’s function is thus
determined by the next-leading-order terms and will be
discussed in the next section. The decay constant λ is
separated into real and imaginary parts as λ = λR + ıλI ,
where

aλR =
ω

ω0

√√√√
√

1 + [ω/(ω0γ)(4/3 + ζ/η)]2 − 1

2γ(1 + [ω/(ω0γ)(4/3 + ζ/η)]2)
(29)

and

aλI = − ω

ω0

√√√√
√

1 + [ω/(ω0γ)(4/3 + ζ/η)]2 + 1

2γ(1 + [ω/(ω0γ)(4/3 + ζ/η)]2)
(30)

and we have defined the dimensionless parameter

γ =
c2

a2ω2
0

=
(

aρ0c

η

)2

. (31)

Noting that a/c is the typical compression time scale asso-
ciated with the time in which a propagating sound wave
travels a distance a, γ turns out to be the squared ra-
tio of the vorticity time scale ω−1

0 and the compression
time scale a/c. Besides the volume viscosity ζ, the vortic-
ity frequency scale ω0 and the length scale a, γ is the only
remaining parameter. The asymptotic behavior of the real
and imaginary parts of λ are

aλR ={
2/3(ω/ω0)2γ−3/2 −O[(ω/ω0)4], for ω/(ω0γ) � 1,√

3/8(ω/ω0)1/2 −O[(ω/ω0)−1/2], for ω/(ω0γ) � 1,

(32)

and

aλI ={
−(ω/ω0)γ−1/2+O[(ω/ω0)3], for ω/(ω0γ)�1,

−
√

3/8(ω/ω0)1/2−O[(ω/ω0)−1/2], for ω/(ω0γ)�1.

(33)

The intrinsic frequency

ω0γ =
c2ρ0

η
(34)

denotes the boundary between the propagating regime, re-
alized for low frequencies ω < ω0γ and where compression

perturbations lead to propagative waves, characterized by
λ−1

R > |λ−1
I | and a speed of sound c ∼ ω|λ−1

I |, and the dif-
fusive regime, realized for high frequencies ω > ω0γ and
where compression perturbations are damped by viscosity
effects, characterized by λR ∼ |λI | ∼ αR ∼ |αI |. For water
parameters and speed of sound c ≈ 103 m/s, one obtains
the intrinsic frequency ω0γ � 1012 s−1, i.e., for all realistic
frequencies one has ω < ω0γ and thus propagating sound
waves occur. For higher frequencies, the screening length
of compression perturbations is identical to that of shear
waves. We note that the crossover frequency ω0γ can be
much lower for systems characterized by a higher com-
pressibility or higher viscosity, e.g. liquids close to a crit-
ical point or polymers embedded in a solvent. The decay
length in the propagative regime, λ−1

R � (ω0/ω)2aγ3/2,
for water is given by λ−1

R � 1015 (ω s)−2 m. For frequen-
cies ω = 1 s−1 and ω = 106 s−1, the screening lengths of
compression waves are λ−1

R � 1015 m and λ−1
R � 103 m, re-

spectively, which means that for realistic frequencies this
screening length is macroscopic. For non-aqueous systems,
on the other hand, the screening length can become mi-
croscopic.

3.3 Total Green’s function

The total Green’s function reflecting both compression
and shear effects is constructed by summing eqs. (20)
and (26) as

Gij = GT
ij + GL

ij

=
1

4πηα2r3
{δij([1 + rα + r2α2]e−rα − [1 + rλ]e−rλ)

−3r̂ir̂j([1 + rα + r2α2/3]e−rα

−[1 + rλ + r2λ2/3]e−rλ)}. (35)

According to eqs. (32) and (33), for ω < ω0γ the screen-
ing length of compression waves λ−1

R is larger than the
screening length α−1

R of shear waves and thus an inter-
mediate distance range α−1

R < r < λ−1
R exists within

which shear waves are screened and decay according to
eq. (22) but compression waves are unscreened and de-
scribed by eq. (27). For small distances, for which rλ � 1
and rα � 1, the limiting behavior follows from summing
up eqs. (21) and (27)

Gij � 1
8πηr

(
δij [1 + λ2/α2] + r̂ir̂j [1 − λ2/α2]

)
. (36)

Since the ratio λ2/α2 = (4/3 + ζ/η + ıω0γ/ω)−1 is very
small for water, one can neglect this contribution coming
from the compression part. In the large-distance regime,
for which rλ � 1 and rα � 1, cancelation of the leading-
order terms in eqs. (22) and (28) takes place, by including
second-leading-order terms we obtain

Gij � 1
4πηα2r3

{
δij

(
[r2α2 − rα]e−rα − rλe−rλ

)

+r̂ir̂j

(
−[r2α2 + 3rα]e−rα + r2λ2e−rλ

)}
. (37)
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Here an interesting anisotropy of the hydrodynamic re-
sponse exists: When the force is perpendicular to the con-
necting vector between source point and field point, one
has r̂jFj = 0 and thus

G⊥
ij � 1

4πηα2r3

(
r2α2e−rα − rλe−rλ

)
, (38)

for the parallel contribution one obtains

G
‖
ij � 1

4πηα2r3

(
−4rαe−rα + r2λ2e−rλ

)
. (39)

3.4 Surface stress

From the total Green’s function for the velocity field one
can calculate the Green’s function for the stress tensor,
denoted by Πijk, which is defined as

Πij = ΠijkFk. (40)

For a more compact notation, we also define the gradient
of the Green’s function, Gkij , via

∇kvi = ∇kGijFj = GkijFj . (41)

From the constituting equation, eq. (9), and the solutions
given in eqs. (14) and (16), the pressure follows as

p =
ρ0c

2

ıω
∇kvk + p0, (42)

where p0 is the constant background pressure. With the
definition of the stress tensor, eq. (4), the stress tensor
Green’s function follows as

Πijk/η = Gijk + Gjik + (α2/λ2 − 2)Gllkδij . (43)

4 Velocity distribution on a plane

The Green’s function for a compressible fluid given in
eq. (35) can be used to obtain the response function of
bodies of different geometries by distributing a source field
over the body surface chosen such that the hydrodynamic
boundary conditions are satisfied. The simplest case is the
response function of an oscillating plane of infinite extent.
Here, perpendicular and tangential motions of the plane
lead to a clear separation of compression and shear effects
and the influence of surface slip is strikingly displayed.
The Green’s function of an infinite plane is obtained by
the surface integral

Gpl
ij(z) =

∫
S

Gij(x′, y′, z)dS(x′, y′), (44)

where S indicates the surface. Due to lateral translational
invariance, Gpl

ij(z) only depends on the vertical distance z
from the plane and is given by

Gpl
ij(z) = δjzδiz

λe−|z|λ

2ηα2
+ (δjxδix + δjyδiy)

e−|z|α

2ηα
. (45)

In the following we distinguish oscillations perpendicular
and parallel to the surface plane. Note that by using the
Green’s function of an unbounded fluid, we implicitly as-
sume fluid to be present on both sides of the plane. Since
the flow is symmetric with respect to the plane, the asym-
metric case with fluid on one side only trivially follows
from the symmetric solution by multiplying the force by
a factor of two.

4.1 Perpendicular motion

From eq. (45), the velocity field caused by an oscillation
perpendicular to the surface reads as

vpl,⊥
z (z) = F pl

z Gpl
zz(z) =

F pl
z

2ηα2
λe−|z|λ, (46)

where F pl
z is the amplitude of the force acting on the

plane per unit area, i.e. the pressure. Only motion in the
z-direction is generated and exponentially damped away
from the surface. Denoting the oscillation amplitude of
the surface at the position z = 0 as V pl

z and using the
kinematic boundary condition,

V pl
z = vpl,⊥

z (0) =
F pl

z

2ηα2
λ, (47)

we define the perpendicular response function of the plane
via

Gpl
⊥ (ω) =

F pl
z

V pl
z

=
2ηα2

λ

=
√

2ρ0c

√√√√
√

1 +
(

4ωη

3ρ0c2

)2

+ 1

−ı
√

2ρ0c

√√√√
√

1 +
(

4ωη

3ρ0c2

)2

− 1. (48)

Here and in the remainder of the paper, we have set the
volume viscosity to zero, i.e. ζ = 0. Note that for the case
of fluid on one side only the response function is divided by
a factor of two. In the low-frequency propagative regime,
ω < ω0γ, the response function shows saturation at a
constant value

Gpl
⊥ (ω) � 2ρ0c

[
1 + 2

(
ω

3ω0γ

)2

− ı
2ω

3ω0γ

]
, (49)

while in the high-frequency limit, ω > ω0γ, we find

Gpl
⊥ (ω) � 2ρ0c(1 − ı)

(
2ω

3ω0γ

)1/2

. (50)

That the response function saturates at a constant value
for ω → 0 is an artifact of the linearization approximation
and will be discussed further in the next section.
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4.2 Parallel motion

For shearing motion parallel to the plane, the velocity field
is given by

vpl,‖
x (z) = F pl

x Gpl
xx(z) =

F pl
x

2ηα
e−|z|α. (51)

Since no compression occurs, the parameter λ does not ap-
pear in this case. We apply the Navier boundary condition
at the position of the surface,

b
∂v

pl,‖
x (z)
∂z

∣∣∣∣
z=0

= vpl,‖
x (0) − V pl

x , (52)

which relates the fluid shear rate to the tangential velocity
component of the fluid at the boundary via the slip length
b. For b = 0 one has the no-slip boundary condition, finite
b corresponds to variable amounts of surface slip. The re-
sponse function due to the parallel plane oscillations reads

Gpl
‖ (ω) =

F pl
x

V pl
x

=
2ηα

bα + 1
, (53)

or in more explicit form by using eq. (15)

Gpl
‖ (ω) = 2η

bωρ0/η +
√

ωρ0/2η − ı
√

ωρ0/2η

b2ωρ0/η + 2b
√

ωρ0/2η + 1
. (54)

Note that, in contrast to the perpendicular case, the static
response for the parallel geometry is zero, i.e. the force
needed to tangentially move a plane vanishes in the zero-
frequency limit. This is expected since in the static limit
ω → 0 the fluid is comoving with the plane as a whole and
the dissipation (and thus the response function) vanishes.
That the response for the perpendicular motion saturates
at a constant value is due to the neglect of the convective
non-linear term in the Navier-Stokes equation and signals
a break down of the linearization approximation. In con-
trast, no convective term is present for the parallel motion
case and thus the linear approximation is exact. As for the
perpendicular case, if fluid is present on one side of the
plane only, the response function is divided by a factor
of two and coincides with Stokes’ original result [17]. For
small frequency the response becomes

Gpl
‖ (ω) � 2η(1 − ı)

√
ωρ0/2η , (55)

which is the same result obtained from the exact expres-
sion, eq. (54) in the limit of vanishing slip length, b = 0.
For high frequencies, ω > ωb = η/(ρ0b

2), the behavior is
distinctly different and we obtain

Gpl
‖ (ω) � 2η

[
b−1 − ıb−2(2ωρ0/η)−1/2

]
. (56)

Comparison of eqs. (55) and (56) shows that the real part
of the response function saturates at a constant value for
frequencies higher than ωb, whereas the imaginary part
of the response function exhibts a maximum around the
crossover frequency ωb and goes to zero both for very small

and very high frequencies. The crossover frequency ωb for
water and a slip length of b = 10nm as found for hy-
drophobic materials is of the order of ωb � 1010 s−1. We
conclude that for aqueous fluids, very high frequencies
and thus advanced experimental techniques are needed to
probe the high-frequency slip regime. On the other hand,
for fluids with large slip lengths or in confined media, the
crossover occurs at lower and thus experimentally more
easily accessible frequency scales.

5 Velocity distribution around a sphere

To obtain the fluid velocity around a sphere of radius a,
we make a standard singularity ansatz [18]

Gsp
ij = (C0 + C2a

2∇k∇k)Gij , (57)

so that the velocity field follows as vsp
i = FjG

sp
ij and Fj is

a force source. Both coefficients C0 and C2 are functions of
the frequency and are determined such that the boundary
conditions on the sphere surface are satisfied. Note that
the actual force acting on the sphere is not given by the
force source but calculated by integration of the surface
traction over the sphere surface. Our results for the re-
sponse function thus correspond to a solid sphere with no
fluid inside. In the presence of slip, the boundary condition
at the sphere surface splits into the kinematic condition

6πηar̂iG
sp
ij = r̂j , (58)

for |r| = a, which defines the sphere velocity as V sp
i =

Fi/6πηa such that in the steady (zero-frequency) limit,
the source force Fi equals the actual force on the sphere.
The Navier boundary condition for the tangential stress
reads

b(∇kGsp
ij + ∇iG

sp
kj)r̂kPli = (Gsp

ij − δij/6πηa)Pli, (59)

for |r| = a, where the projection operator is defined as
Pli = (δli − r̂lr̂i). The boundary conditions fix both coef-
ficients C0 and C2 and the result for Gsp

ij reads

Gsp
ij =

1
4πηα2r3

×
{
δij

(
E1[1 + rα + r2α2]e−rα − E2[1 + rλ]e−rλ

)
−3r̂ir̂j

(
E1[1 + rα + r2α2/3]e−rα

−E2[1 + rλ + r2λ2/3]e−rλ
)}

(60)

with the coefficients

E1 =
2
3
eα̃ (1 + 2b̃)(3 + 3λ̃ + λ̃2)

W
, (61)

E2 =
2
3
eλ̃ (1 + 2b̃)(3 + 3α̃ + α̃2) + b̃α̃2(1 + α̃)

W
(62)

and

W = (2+2λ̃+λ̃2)(1+b̃(3+α̃))+(1+α̃)(1+2b̃)λ̃2/α̃2. (63)
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Fig. 1. (Color online) The real part of the velocity field of a
sphere, vsp

i = FjG
sp
ij , oscillating in the x-direction in the xy

plane for no slip, b̃ = 0. Combinations for two different values
of γ and ω/ω0 are considered. The arrows indicate the direction
of the velocity field, while the color denotes the velocity magni-
tude; the darker (red) the regions are, the smaller the velocity
magnitude is. For water, γ values of 104 and 105 correspond to
radii of 10−7 m and 10−6 m.

Here, we have defined the dimensionless slip length, b̃ =
b/a, and the dimensionless decay constants α̃ = aα and
λ̃ = aλ. In fig. 1 the real part of the velocity vector field
vsp is represented for different parameters in the xy plane
with the force applied to the right (x-direction). Within
the rows the rescaled frequency ω/ω0 is constant, within
the columns the parameter γ stays constant. The color
scale corresponds to the velocity magnitude, while the
arrows denote the velocity direction. For all parameter
combinations we have ω/(ω0γ) < 1 and are thus in the
propagating wave regime. The discussion is simplified by
defining the rescaled propagation wavelength

Λ̃ =
Λ

a
=

c/a

ω/(2π)
=

2πγ1/2ω0

ω
, (64)

which follows from eq. (33) in the limit ω/(ω0γ) < 1.
For the parameter combinations on the diagonal we have
Λ̃ � 3, in accord with the wavelength found by visual
inspection. In the lower left picture the wavelength is
Λ̃ � 1.2, while in the upper right corner we have Λ̃ � 9 and
thus a full wavelength does not fit in the graph. To connect
to aqueous systems, in water γ = 104 and γ = 105 cor-
respond to radii of 10−7 m and a ≈ 10−6 m, respectively.
The rescaled frequencies ω/ω0 = 172 and ω/ω0 = 535
correspond for a radius a ≈ 10−6 m and water parameters
to oscillation frequencies ω � 108 s−1 and ω � 109 s−1,
respectively. To gain global insight into the flow profiles
at an oscillating sphere, we plot in fig. 2 the real parts

of the normalized velocity profile for an oscillating force
acting along the x-direction; in the upper row we show
vsp

x (x, y = 0), i.e. the radial flow profile in the direction of
the applied force, in the lower row we show vsp

x (x = 0, y),
i.e. the tangential flow profile. Results are shown for the
rescaled wavelengths Λ̃ = 0.2, 1 and 5 and for frequencies
in the propagating and the diffusing wave regimes, i.e. for
ω/(ω0γ) < 1 as well as ω/(ω0γ) > 1, respectively. Indeed,
propagating waves are clearly distinguished from diffusing
waves for the radial velocity component (upper row), for
the tangential flow component (bottom row) the differ-
ence is less pronounced. The other interesting observation
is that for spheres small compared to the propagation wave
length, i.e. for Λ̃ = 5, the amplitude of the velocity field
away from the sphere (which in the figure is rescaled by
the flow velocity at the sphere surface) is much smaller
than for a large sphere. This has to do with destructive
interference effects from waves emanating from different
regions of the sphere surface.

5.1 Surface stress at a sphere

The expression for the stress-tensor Green’s function given
in eq. (43) also applies to the spherical case. The derivative
of the sphere Green’s function reads

Gsp
kij =

1
4πηr4α2

×
{
δij r̂k

(
−E1[3 + 3rα + 2r2α2 + r3α3]e−rα

+E2[3 + 3rλ + r2λ2]e−rλ
)

−3(δkir̂j + δkj r̂i)
(
E1[1 + rα + r2α2/3]e−rα

−E2[1 + rλ + r2λ2/3]e−rλ
)

+3r̂k r̂ir̂j

(
E1[5 + 5rα + 2r2α2 + r3α3/3]e−rα

−E2[5 + 5rλ + 2r2λ2 + r3λ3/3]e−rλ
)}

. (65)

The frequency-dependent hydrodynamic force on a spher-
ical particle follows by projection of the stress tensor on
the surface and integration over the sphere surface,

F sp
i = −6πηaV sp

j

∫
d3rr̂kΠkijδ(|r| − a), (66)

where V sp
j is the frequency-dependent velocity amplitude.

The corresponding response function Gsp(ω) follows as

δijGsp(ω) =
F sp

i

V sp
j

= −6πηa

∫
d3rr̂kΠkijδ(|r| − a). (67)

In the calculation the identities
∫

d3rδijδ(|r| − a) =
4πa2δij and

∫
d3rr̂ir̂jδ(|r|−a) = 4πa2δij/3 are used. The

response function follows as

Gsp(ω) =
2
3
E1e

−aα(1 + aα) +
1
3
E2e

−aλ(1 + aλ) (68)

or, in more explicit form, as

Gsp(ω) =
4πηa

3
W−1

[
(1 + λ̃)(9 + 9α̃ + α̃2)(1 + 2b̃)

+(1 + α̃)(2λ̃2(1 + 2b̃) + b̃α̃2(1 + λ̃))
]
, (69)
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Fig. 2. (Color online) Normalized amplitude of the real part of the velocity field of a sphere for various values of ω/(ω0γ) and
Λ̃ with no-slip boundary condition, b̃ = 0. The upper row shows vsp

x (x, y = 0), i.e. the radial flow profile in the direction of the
applied force; the lower row shows vsp

x (x = 0, y), i.e. the tangential flow profile. The oscillating force acts along the x-direction.

where W is given by eq. (63). To investigate the asymp-
totic behavior of eq. (69), we define real and imaginary
parts according to

Gsp(ω) = G′sp(ω) + ıG′′sp(ω). (70)

For the real part we obtain the asymptotic behavior

G′sp(ω)
6πηa

�
⎧⎪⎪⎨
⎪⎪⎩

for ω → 0 1+2b̃
1+3b̃

+ (1+2b̃)2
√

ω/ω0√
2(1+3b̃)2

+ O[ω/ω0],

for ω → ∞
2
9

√
2
3

√
ω/ω0 + 4(3+4b̃)

27b̃
+ O[(

√
ω/ω0)−1]

(71)

and for the imaginary part we obtain

G′′sp(ω)
6πηa

�
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

for ω → 0

− (1+2b̃)2
√

ω/ω0√
2(1+3b̃)2

+
ω/ω0(9−2γ+63b̃+18b̃2(8+γ)+18b̃3(6+γ))

18(1+3b̃)3γ

+O[(ω/ω0)3/2],

for ω → ∞

− 2
9

√
2
3

√
ω/ω0

+
−24+32(−3+

√
3)b̃+(−96+

√
3(64+3γ))b̃2

54
√

2
√

ω/ω0b̃2

+O[(ω/ω0)−1].

(72)

As ω → 0, the real part of the response function goes to
6πηa for b̃ → 0 and 4πηa for b̃ → ∞, the standard steady-
state results [17]. The compressibility effects (which are

parameterized by the parameter γ) are rather mild and
only show up in higher-order corrections.

As the normalized slip length b̃ goes to zero, which
corresponds to the no-slip boundary condition, eq. (69)
turns into

Gsp(ω) =
4πηa

3
(1 + λ̃)(9 + 9α̃ + α̃2) + 2λ̃2(1 + α̃)

2(1 + λ̃) + (1 + α̃ + α̃2)λ̃2/α̃2
,

(73)
which is consistent with previous results obtained by Be-
deaux and Muzar [12]. In the incompressible limit, when
λ̃ → 0, eq. (73) crosses over to Gsp(ω) = 6πηa(1 + aα +
a2α2/9), the well-known Stokes result [17].

In the limit of b → ∞, the perfect slip case as realized
for bubbles, eq. (69), reads

Gsp(ω) =
4πηa

3

× (1 + λ̃)(18 + 18α̃ + 3α̃2 + α̃3) + 4(1 + α̃)λ̃2

(2 + 2λ̃ + λ̃2)(3 + α̃) + 2(1 + α̃)λ̃2/α̃2
. (74)

Again, taking the incompressible limit, corresponding to
λ̃ → 0, eq. (74) reduces to

Gsp(ω) = 6πηa
(2 + 2α̃ + α̃2/3 + α̃3/9)

(3 + α̃)
, (75)

which is Stokes’ incompressible result for perfect slip
boundary conditions.

Figure 3 illustrates the effect of compressibility for
zero slip, b̃ = 0, corresponding to the result given in
eq. (73). The compressibility is tuned by changing γ from
102 (which is indistinguishable from the γ = 0 limit) to
∞, the higher γ, the more incompressible the liquid. What
is remarkable is that both asymptotic limits, γ = 0 and
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Fig. 3. (Color online) Real and imaginary parts of the rescaled
response function of a sphere, Gsp(ω) = G′sp(ω) + ıG′′sp(ω),
for no-slip boundary condition, b̃ = 0, given by eq. (73), as a
function of the rescaled frequency ω/ω0 for different values of
γ. The volume viscosity ζ is set to 0. Note that for the given
scale, curves for γ = 102 and γ → 0 are indistinguishable.

γ = ∞, corresponding to a fluid of vanishing and infinite
sound velocity, respectively, are finite and well behaved,
in agreement with the asymptotic expansion in eqs. (71)
and (72). Furthermore, the dependence of the response
function on γ is non-monotonic.

In fig. 4 the response function is shown for five different
γ values, γ = 10−3, 10−1, 102, 105 and 1010, which cor-
respond to sphere radii of a = 10−12 m, 10−10 m, 10−8 m,
10−6 m and 10−4 m in water, respectively. These graphs
reveal a pronounced dependence on the slip length, partic-
ularly for high frequencies. From the plots a double reso-
nance behavior of the imaginary part is discerned. A sharp
minimum is observed for high γ values, while for γ � 1,
the minimum is less pronounced and the maximum is more
visible. These extrema are defined by the equation

∂G′′sp(ω)
∂ω

∣∣∣∣
ω∗

= 0. (76)

Based on asymptotic analysis, the minimum ω∗
min obeys

the scaling laws

ω∗
min�

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

for γ → 0
1
2ω0γ

2 − 23
18ω0γ

3 + O(γ4),

for γ → ∞
√

2ω0γ
1/2−2.15822ω0γ

1/4+O(1)≈c/a,

(77)

and the maximum scales as

ω∗
max �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

for γ → 0:
for b = 0

6
11 ω0γ − 0.54628ω0γ

3/2 + O(γ2)
≈ c2ρ0/η,

for b �= 0
6+18b̃
11+30b̃

ω0γ + O(γ3/2),

for γ → ∞:
for b = 0

21/3ω0γ
2/3 − 20

9 ω0γ
1/2 + O(γ1/3),

for b �= 0√
3/2 ω0γ

3/4 + O(γ1/4).

(78)

In fig. 5, ω∗
min/ω0 and ω∗

max/ω0 as determined numerically
from the solution of eq. (76), dotted and broken lines, are
compared to the asymptotic scaling laws (solid straight
lines). The most pronounced features in fig. 4 are ob-
tained for ω∗

min for large γ and for ω∗
max for small γ, for

which we now advance some simple scaling ideas. In fact,
ω∗

min for large γ equals ω∗
min ∼ ω0γ

1/2 ∼ c/a, which is
the inverse time a propagating compression wave needs to
travel a distance corresponding to the sphere size a. This
resonance can therefore be thought of as due to interfer-
ence between waves emanating from different parts of the
sphere. As γ decreases and reaches unity, this scaling law
hits the boundary between the diffusive and propagative
regimes, which scales as ω ∼ ω0γ, and thus the above
scaling description of the resonance becomes invalid. The
diffusive regime is indicated in fig. 5 by a dark shading.
In fact, in the limit of small γ a maximum shows up right
at the boundary between the diffusive and propagative
regime with the scaling ω∗

max ∼ ω0γ. This resonance-like
feature is caused by interference due to the linear addition
of compression and shear effects, and related to the fact
that compression waves are marginally propagative.

6 Velocity distribution around a cylinder

The Green’s function approach is now applied to cylinders.
This problem has been studied in the past for incompress-
ible fluids by several authors [23,24]. We consider a cylin-
der as illustrated in fig. 6 of radius a aligned along the
z-direction and treat oscillations parallel and perpendicu-
lar to the long axis.

We first derive the Green’s function of a line source.
To that end, we integrate the Green’s function given in
eq. (35) over z as

Gline
ij (σ) =

∫ +∞

−∞
dzGij(x, y, z), (79)

where σ = x2 + y2. After some algebra detailed in ap-
pendix A.1, the line Green’s function can be expressed in
terms of Bessel functions and separated into shear (trans-
verse) and compression (longitudinal) contributions. The
result is

Gline
ij = Gline,T

ij + Gline,L
ij (80)
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Fig. 5. (Color online) Rescaled resonance frequencies ω∗/ω0

of a sphere for vanishing slip length, b̃ = 0, as a function of
γ. We distinguish a local maximum of the imaginary response
function G′′sp(ω) (broken line) from the local minimum (dot-
ted line). Asymptotic laws given by eqs. (77) and (78) are de-
noted by solid lines. The extrema are indicated by the ver-
tical dashed lines in fig. 4. The grey area denotes the diffu-
sive regime, where compression perturbations are overdamped,
while in the white area compression perturbations give rise to
propagating waves.

(see appendix A.1 for details). In the following sections,
we explicitly calculate the Green’s functions for parallel
and perpendicular motions.

6.1 Perpendicular motion

We first consider motion perpendicular to the long axis,
i.e. the Cartesian indices i and j take the values x and
y only. Similar to the singularity ansatz for the sphere,
eq. (57), we write the Green’s function for the cylinder

Fig. 6. Illustration of a cylinder with radius a in Cartesian co-
ordinates. The parallel motion is defined along the z-direction.

with finite radius as

Gcyl,⊥
ij = D0G

line
ij + D2a

2∇2Gline
ij ,

= Ecyl
1 Gline,T

ij + Ecyl
2 Gline,L

ij , (81)

see appendix A.1 for details. The coefficients Ecyl
1 and Ecyl

2
are frequency dependent and determined by the boundary
conditions. The normal component of the velocity field at
the cylinder surface satisfies

Fkr̂iG
cyl,⊥
ij = V cyl

k r̂j , (82)

for |σ| = a, where V cyl
k is the velocity of the cylinder in

perpendicular motion and Fk is the source with units of
force per unit length. The Navier boundary condition for
the tangential velocity component reads

b(∇kGcyl,⊥
ij + ∇iG

cyl,⊥
kj )r̂kPli = (Gcyl,⊥

ij − δijFk/V cyl
k )Pli

(83)
and holds for |σ| = a, where the projection operator is
defined as Pli = (δli − r̂lr̂i). Applying these boundary
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Fig. 7. (Color online) The real part of the velocity field of a
perpendicularly oscillating cylinder, vcyl,⊥

i = FjG
cyl,⊥
ij , in the

xy plane for no slip, b̃ = 0. The oscillation is along the x-
direction. The axes are normalized by the cylinder radius, and
the arrows indicate the direction of the velocity vector. The
darker (red) the regions are, the smaller the velocity magnitude
is. Combinations for two different values of γ and ω/ω0 are
considered. For water, γ values of 104 and 105 correspond to

radii of 10−7 m and 10−6 m.

conditions on Gcyl,⊥
ij determines the coefficients as

Ecyl
1 = − 2πηα2

Fi/V cyl
i

N1 + N2

N2M1 − N1M2
,

Ecyl
2 =

2πηα2

Fi/V cyl
i

M1 + M2

N2M1 − N1M2
, (84)

where the coefficients Ni and Mi can be expressed in terms
of Bessel functions as

M1 = −2(α/a)b̃[2K1(αa) + αaK0(αa)] − b̃α3aK1(αa)

−(α/a)[K1(αa) + αaK0(αa)],

M2 = −(α/a)K1(αa),

N1 = 2(λ/a)b̃[2K1(λa) + λaK0(λa)] + (λ/a)K1(λa),

N2 = (λ/a)[K1(λa) + λaK0(λa)]. (85)

In fig. 7, we show the real part of the velocity field, vcyl,⊥
i =

FjG
cyl,⊥
ij , for various fluid parameters. In the columns γ

is constant while in the rows ω/ω0 is constant. The color
scale is a measure of the magnitude of the velocity, in the
dark (red) regions the velocity is zero. For water γ values
104 and 105 correspond to radii of 10−7 m and a ≈ 10−6 m,

respectively. Since with the parameters chosen, all four
systems belong to the propagative regime, the wavelengths
discernable in the plots correspond to the predictions of
eq. (64).

In fig. 8, the real part of the flow field of a cylinder
in perpendicular motion is shown for various normalized
wavelengths Λ̃ = 0.2, 1 and 5, as in the sphere problem.
For each Λ̃ value, velocity fields for different ω/(ω0γ) val-
ues 500, 5, 1/5 and 1/500 are shown. The upper row shows
vcyl,⊥

x (x, y = 0), i.e. the radial flow profile in the direction
of the oscillation, the lower row shows vcyl,⊥

x (x = 0, y), i.e.
the tangential flow profile. For ω/(ω0γ) = 1/500, waves
are clearly seen (blue solid line), however, as ω/(ω0γ) in-
creases, the number of waves observed goes down. As the
rescaled wavelength, Λ̃ = Λ/a, increases, the amplitude
of the velocity in the far field decreases because of inter-
ference effects, however, this effect is smaller than for the
spherical case shown in fig. 2.

6.1.1 Surface stress at a cylinder due to perpendicular
motion

The stress Green’s function defined in eqs. (41) and (43)
also holds for the cylindrical geometry. The force acting
on the cylinder per unit length is calculated by the in-
tegration of the traction force over the perimeter of the
cylinder

F cyl
i = −Fj

∫
d2rr̂kΠkijδ(|r| − a), (86)

where Fj is the source in the units of force per length. The
cylindrical response function is defined as

δijGcyl
⊥ (ω) =

F cyl
i

V cyl
j

= − Fl

V cyl
j

∫
d2rr̂kΠkilδ(|r| − a), (87)

where we make use of the identities
∫

d2rδijδ(|r| − a) =
2πaδij and

∫
d2rr̂ir̂jδ(|r|−a) = πaδij . The final result for

the cylindrical response function reads

δijGcyl
⊥ (ω) =

Fi/V cyl
j

2

(
Ecyl

1 α̃K1(α̃) + Ecyl
2 λ̃K1(λ̃)

)
,

(88)

where α̃ = aα and λ̃ = aλ. Note that the prefactor Fi/V cyl
j

cancels the factors V cyl
j /Fi in the expressions for Ecyl

1 and
Ecyl

2 in eq. (84). In the incompressible limit, λ → 0, and
for the no-slip condition, b = 0, the above equation crosses
over to the known non-steady solution for the incompress-
ible flow field at a cylinder [23], which is explicitly demon-
strated in appendix A.4. The asymptotic behavior of Gcyl

⊥
is obtained by asymptotic analysis of the modified Bessel
function such as K0(x) � − ln x and K1(x) � 1/x for
ω → 0 and Kn(x) � e−x/

√
x for ω → ∞. Using again the

separation into real and imaginary parts as in eq. (70),
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Fig. 8. (Color online) The normalized amplitude of the real part of the velocity field generated by a perpendicularly oscillating
cylinder, for various values of ω/(ω0γ) and Λ̃ with no-slip condition, b̃ = 0. The upper row shows vx(x, y = 0), i.e. the radial
flow profile in the direction of the applied force; the lower row shows vx(x = 0, y), i.e. the tangential flow profile. The oscillating
force acts along the x-direction and the distance is normalized by the wavelength given by eq. (64).

the asymptotic behavior follows as

G′cyl
⊥ (ω)
πη

�

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

for ω → 0

− 8
(1+2b̃)2 ln(ω/ω0)

+ 16b̃
[(1+2b̃) ln(ω/ω0)]2

+O(ω/ω0),

for ω → ∞√
2
3

√
ω/ω0 + 3+4b

3b + O[(
√

ω/ω0)−1].

(89)

G′′cyl
⊥ (ω)
πη

�

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

for ω → 0

− 4π
[(1+2b̃) ln(ω/ω0)]2

+ O(ω/ω0),

for ω → ∞

−
√

2
3

√
ω/ω0 + O[(

√
ω/ω0)−1].

(90)

In contrast to the spherical case, the steady-state solution
obtained in the limit ω → 0 goes to zero logarithmically,
whereas at high frequency a divergence as ω1/2 is found,
identical to the sphere case. Plots of Gcyl

⊥ (ω) are given in
figs. 9 and 10 for b̃ = 0 and b̃ �= 0, respectively. Figure 9
shows the effects of varying the compressibility parameter
γ, fig. 10 demonstrates the effect of varying the slip length
b̃ for given γ. For water, the γ values considered, γ = 10−3,
10−1, 102, 106 and 1010, correspond to radii a = 10−12 m,
10−10 m, 10−8 m, 10−6 m and 10−4 m, respectively.

The effect of surface slip is illustrated in fig. 11 which
shows G′cyl

⊥ (ω) versus b̃ = b/a for fixed γ = 102. Each
curve corresponds to a fixed ω/ω0 value between 10−1 and
103 from bottom (red) to top (green), respectively. At low
frequency, G′cyl(ω) changes only little with varying slip
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Fig. 9. (Color online) Real and imaginary parts of the re-
sponse function of a cylinder for perpendicular motion given
by eq. (88) with no-slip boundary condition, b̃ = 0, as a func-
tion of the compressibility parameter γ. The volume viscosity ζ
is set to 0. Note that, for the given scale, the curves for γ = 102

and γ → 0 are indistinguishable.

length (curves at the bottom), but for higher frequency
the slip length has a considerable effect on G′cyl(ω) (curves
at the top).

As seen from the response functions in figs. 9 and 10,
also for the cylindrical geometry a resonant behavior is ob-
tained. The asymptotic scaling of the resonance where the
imaginary response shows a minimum obeys the asymp-
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totic scaling laws

ω∗
min �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

for γ → 0
−ω0γ ln γ + O(γ2),

for γ → ∞
0.77129ω0γ

1/2 + O(γ1/4) ≈ c/a,

(91)

and the maximum scales as

ω∗
max �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

for γ → 0
4.31252ω0γ + O(γ3/2) ≈ c2ρ0/η,

for γ → ∞
21/3ω0γ

2/3 + O(γ1/2).

(92)
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Fig. 12. (Color online) Rescaled resonance frequencies ω∗/ω0

of a cylinder in perpendicular motion for vanishing slip length,
b̃ = 0, as a function of γ. We distinguish a local maximum of
the imaginary response function G′′cyl

⊥ (ω) (broken line) from
the local minimum (dotted line). Solid lines are scaling laws
given in eqs. (91) and (92). The extrema are indicated by the
vertical dashed lines in fig. 10. The grey area denotes the diffu-
sive regime, where compression perturbations are overdamped,
while in the white area compression perturbations give rise to
propagating waves.

These function are displayed in fig. 12. Except the term
involving the logarithmic correction for small γ, the result
is identical to the sphere case.

6.2 Parallel motion

For parallel oscillations of the cylinder, the velocity field
can be calculated directly from the line Green’s function
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given in eq. (80). The cylinder Green’s function reads

Gcyl,‖
zz = C0G

line
zz , (93)

where the coefficient C0 is determined by the boundary
condition at the cylinder surface. Using results given in
appendix A.1, the line Green function for the parallel mo-
tion can be written as

Gline
zz (σ) =

1
2πη

K0(ασ) (94)

and is independent of the compressibility parameter γ.
Similar to a tangentially moved plane, the parallel motion
of a cylinder generates only shear. The Navier boundary
condition at |σ| = a reads

b
∂v

cyl,‖
z

∂σ
= (vcyl,‖

z − V cyl
z ), (95)

where V cyl
z is the velocity of the cylinder, the fluid velocity

field is v
cyl,‖
z = FzG

cyl,‖
zz , and Fz is the source in units of a

force per length. After some algebra and with the help of
recursion relations introduced in appendix A.1, we obtain

C0 =
2πη

Fz/V cyl
z [bαK1(αa) + K0(αa)]

(96)

and thus, according to eq. (93),

Gcyl,‖
zz (σ) =

K0(ασ)

Fz/V cyl
z [bαK1(αa) + K0(αa)]

. (97)

6.2.1 Surface stress at cylinder due to parallel motion

The force on the cylinder per unit length is calculated by
integrating the surface traction over the perimeter of the
cylinder

F cyl,‖
z = −

∫ 2π

0

∫ a

0

dθσdσ
∂v

cyl,‖
z (σ)
∂σ

δ(|σ| − a)

= FzC0αaK1(αa). (98)

The response function due the parallel motion of the cylin-
der follows as

Gcyl
‖ (ω) =

F
cyl,‖
z

V cyl
z

= 2πη
α̃K1(α̃)

b̃α̃K1(α̃) + K0(α̃)
. (99)

In the limit of infinite radius, a → ∞, this response func-
tion turns into the response function of a tangentially os-
cillating plane given in eq. (53), as expected and demon-
strated in appendix A.3. In fig. 13, the above response
function is illustrated for various slip lengths. The asymp-
totic behavior of eq. (99) in the limit ω → 0 reads

Gcyl
‖ (ω) � 2πη

(
4b̃ − 2 ln(ω/ω0)
(2b̃ − ln(ω/ω0))2

− ı
π

(2b̃ − ln(ω/ω0))2

)
.
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Fig. 13. (Color online) Real part of Gcyl
‖ (ω) given by eq. (99),

the response function for a cylinder oscillating parallel to its
long axis for various slip lengths, b̃ = b/a. Note that there is
no dependence on the compressibility parameter γ.

The ratio of the parallel response function given above
and the perpendicular response function, eq. (89), is
Gcyl
⊥ /Gcyl

‖ � 2 in the limit of ω → 0, in agreement with
slender body theory [18]. On the other hand, the high-
frequency behavior of Gcyl

‖ (ω) is identical to that of a tan-
gentially oscillating plane, eq. (53), times the cylinder cir-
cumference (for a derivation see appendix A.3).

7 Discussion and conclusion

The response of a viscous compressible fluid to the motion
of a plane, a sphere and a cylinder has been calculated as
a function of surface slip length and frequency using a
Green’s function approach. We construct the flow fields
around these objects in closed form. The response func-
tions for the sphere and cylinder display a resonant feature
at a frequency ω∗ ∼ ω0γ

1/2 = c/a for high enough values
of the parameter γ (i.e. for low enough values of the com-
pressibility), where c/a is the inverse time sound needs to
travel a typical distance a corresponding to the sphere or
cylinder radius. For small frequencies a distinct resonance
appears roughly at the boundary between the propagating
and diffusive regimes. The effect of slip on the drag force
is shown to be particularly important for high frequencies.

We have defined the frequency-dependent response
function G(ω) (which corresponds to a frequency-
dependent friction coefficient) in the linear-response limit
and in the absence of inertia effects by Fi(ω) =
δijG(ω)Vj(ω), where Vj(ω) is the frequency-dependent
particle velocity and Fi(ω) the frequency-dependent ex-
ternal force acting on the particle. For a particle with
a finite effective mass m0, corresponding to the particle
mass minus the mass of the displaced fluid, the equation
of motion reads

−ıωm0Vi(ω) + G(ω)Vi(ω) = Fi(ω). (101)
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This shows that the imaginary part of the response
function, G′′(ω), acts like an —in general frequency-
dependent— additional mass of the particle, while
the real part of the response function, G′(ω), corre-
sponds to the frequency-dependent friction coefficient.
The frequency-dependent power dissipation reads P(ω) =
Re(Fi(ω)Vi(−ω)) = G′(ω)|V 2

i (ω)|, which clearly shows
that dissipation is a non-linear effect that does not in-
fluence response functions on the linear level. The real
and the imaginary parts of the response function can be
directly measured by microrheological methods [1,2]. By
external excitation of cylindrical geometries such as nano-
tubes or cantilevers, the slip length can be directly in-
ferred from expressions for the response function given in
eqs. (88) and (99). Since the imaginary and real parts of
the response function are related via Kramers-Kronig rela-
tion, probing either the real or imaginary part is sufficient
to obtain the overall response function. Alternatively, by
measuring the spectral density of particle thermal fluctu-
ations, and invoking the fluctuation-dissipation theorem,
one can also infer the complete response function. Note
that in driven systems non-linear effects can in princi-
ple become important and lead to deviations from our
linear analysis, equilibrium measurements based on par-
ticle fluctuations are by definition in the linear-response
regime. Defining the complex admittance (or frequency-
dependent mobility) μ(ω) via Vi(ω) = μ(ω)Fi(ω), we ob-
tain for a massive particle from eq. (101) the expression
μ(ω) = (G(ω) − ıωm0)−1. The fluctuation-dissipation re-
lations for the position and velocity autocorrelation func-
tions are related to the real part of the admittance by [27]∫ ∞

0

dτ〈Vi(t)Vi(t + τ)〉eıωτ = 3kBTμ′(ω), (102)
∫ ∞

0

dτ〈ri(t)ri(t + τ)〉eıωτ =
3kBTμ′(ω)

ω2
. (103)

In the case of an imposed velocity Vi and coupled fluctu-
ating force Fi, the force autocorrelation function is related
to the frequency-dependent friction coefficient via∫ ∞

0

dτ〈Fi(t)Fi(t + τ)〉eıωτ = 3kBTG′(ω), (104)

where it is to be noted that, in accordance with common
practice, the response function in this case is defined as
Fi(ω) = −G(ω)Vi(ω) (where G has the same functional
form as derived in the main text). This reflects the fact
that the force exerted by the fluid on the particle is on
average opposed to the prescribed velocity. The real part
of the admittance is related to the components of the re-
sponse function by μ′(ω) = G′(ω)/([G′(ω)]2 + [G′′(ω) −
ωm0]2) and thus follows straightforwardly from the ex-
pressions given in our paper.

Viscoelastic effects can be easily taken into account
in various standard models, the Maxwell model couples
elasticity and viscosity in series and corresponds to a vis-
coelastic fluid. It can be incorporated into our framework
by replacing the viscosity with a frequency-dependent
function

η(ω) =
η0

1 − ıωτ
, (105)

with a similar expression for the volume viscosity [11,13,
21]. The viscoelastic time scale τ has empirically been
found to be close to the vorticity time scale, i.e. set-
ting τ � ω−1

0 can be viewed as a good approximation
for simple fluids, but for more complex fluids pronounced
deviations are of course expected. The expression equa-
tion (105) shows that viscoelastic effects only set in at
high frequencies, but at these frequencies they can drasti-
cally change the resultant behavior.

The authors would like to thank the DFG (Grant No. SFB
863) for financial support and acknowledge the Feza Gürsey
Institute Istanbul for the allocation of computation time.

Appendix A.

Appendix A.1. Calculation of the line Green’s function

The Green’s function resulting from eq. (79) can be writ-
ten in terms of integral functions An(ασ) defined as

An(ασ)=
∫ +∞

0

e−α
√

σ2+z2dz

(α
√

σ2 + z2)n
=

1
αn

∫ +∞

σ

e−αrdr

rn−1
√

r2 − σ2

=
1

αnσn−1

∫ +∞

1

e−ασudu

un−1
√

u2 − 1
, (A.1)

and similar for An(λσ). Note that A1(ασ) and A0(ασ)
are connected to second-order modified Bessel functions as
A0(ασ) = σK1(ασ) and A1(ασ) = K0(ασ)/α. Derivatives
of An(ασ) are given by the recursion relation

∂An(ασ)
∂ri

= − r̂i

σ
[(n − 1)An(ασ) − An−1(ασ)] . (A.2)

Furthermore, An functions are related via

(n−1)An(ασ)+An−1(ασ)=α2σ2[nAn+2(ασ)+An+1(ασ)].
(A.3)

Using eqs. (A.1) and (A.3) in eq. (80) gives the line Green’s
functions as

Gline,T
ij (σ) = δizδjz

K0(ασ)
2πη

+
α

2πηα2σ
{(δixδjx + δiyδjy)

×[K1(ασ) + ασK0(ασ)]

−r̂ir̂j(δixδjx + δiyδjy + δixδjy + δiyδjx)

×[2K1(ασ) + ασK0(ασ)]},

Gline,L
ij (σ) =

λ

2πηα2σ
{−(δixδjx + δiyδjy)K1(λσ)

+r̂ir̂j(δixδjx + δiyδjy + δixδjy + δiyδjx)

×[2K1(λσ) + λσK0(λσ)]}. (A.4)
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Appendix A.2. Calculation of the cylinder response
function for perpendicular motion

We start from eq. (81), where here and in the following i
and j can be either x or y. To calculate the effect of the
∇2 operator, we use the following identities:

∇2(rirjAn) = 2δijAn +
rirj

σ2
[(n − 1)(n − 5)An

+(2n − 7)An−1 + An−2],

∇2An =
1
σ2

[(n − 1)2An + (2n − 3)An−1 + An−2].

(A.5)

The above identities give ∇2Gline,T
ij = α2Gline,T

ij and
∇2Gline,L

ij = λ2Gline,L
ij . Using these results in eq. (81) gives

Gcyl,⊥
ij (σ) = (D0 + D2a

2α2)︸ ︷︷ ︸
Ecyl

1

Gline,T
ij

+ (D0 + D2a
2λ2)︸ ︷︷ ︸

Ecyl
2

Gline,L
ij

= Ecyl
1 Gline,T

ij + Ecyl
2 Gline,L

ij

=
αEcyl

1

2πηα2σ
{δij [K1(ασ) + ασK0(ασ)]

−r̂ir̂j [2K1(ασ) + ασK0(ασ)]}

+
λEcyl

2

2πηα2σ
{−δijK1(λσ)

+r̂ir̂j [2K1(λσ) + λσK0(λσ)]}. (A.6)

The coefficients Ecyl
1 and Ecyl

2 are determined by boundary
conditions eqs. (82) and (83) at the cylinder surface. Using
eqs. (A.2) and (A.3), the coefficients Ecyl

1 and Ecyl
2 can be

written as

Ecyl
1 = − (2b̃ + 1)[2λ̃K1(λ̃) + λ̃2K0(λ̃)]

N2M1 − N1M2
,

Ecyl
2 = − (2b̃ + 1)[2α̃K1(α̃) + α̃2K0(α̃)] + b̃α̃3K1(α̃)

N2M1 − N1M2
,

(A.7)

where the Ni and Mi coefficients, the final results for
which are given in terms of Bessel functions in eq. (85),
are determined in terms of the An functions as

M1 = −2α3b̃[2A3(αa) + 2A2(αa) + A1(αa)]

−b̃α3A0(αa) − α3[A3(αa) + A2(αa) + A1(αa)],

M2 = −α3[A3(αa) + A2(αa)],

N1 = 2λ3b̃[2A3(λa) + 2A2(λa)

+A1(λa)] + λ3[A3(λa) + A2(λa)],

N2 = λ3[A3(λa) + A2(λa) + A1(λ)], (A.8)

where b̃ = b/a. The denominator in the expressions for
Ecyl

1 and Ecyl
2 is given by

N2M1 − N1M2 =

(
2πηα̃2

Fi/V cyl
i

)−1 {
λ̃α̃(2b̃ + 1)

×
[
α̃K0(α̃)

(
K1(λ̃) + λ̃K0(λ̃)

)
+ λ̃K0(λ̃)K1(α̃)

]

+ b̃α̃3λ̃K1(α̃)
(
K1(λ̃) + λ̃K0(λ̃)

)}
, (A.9)

where α̃ = aα and λ̃ = aλ.

Appendix A.3. Large-curvature limits of response
functions

In the limit of a → ∞, both cylindrical and spherical
response functions are expected to converge towards com-
binations of the normal and tangential response functions
obtained for a plane. This constitutes a sensitive test on
the validity of our expressions.

Spherical response function: The complete response
function of a spherical particle has been given in the main
text by eq. (69). For a → ∞, eq. (69) takes the form

lim
a→∞

Gsp(ω) � 4πηa2

3
λα2 + bα3λ + 2λ2α

λ2(bα + 1)
,

and after some simplifications, the above equation turns
into

lim
a→∞

Gsp(ω) � 4πa2

(
1
3

α2η

λ
+

2
3

αη

bα + 1

)
. (A.10)

This shows that the response of a sphere in the infinite-
radius limit, a → ∞, is the weighted combination of the
normal and the tangential planar response functions given
in eqs. (47) and (53) times the area of a sphere. Indeed, at
an infinitely large sphere, the vectorial force f acting on
each surface element can be considered as a combination
of normal and tangential components,

fj =
α2η

λ
V sp

i r̂ir̂j +
αη

bα + 1
V sp

i (δij − r̂ir̂j), (A.11)

where V sp
i is the sphere velocity. Integration of this force

over the spherical surface corresponds to

fi =
∫

dr3fiδ(|r| − a), (A.12)

which straightforwardly leads to eq. (A.10).

Cylindrical response function: The same analysis can
be done for the parallel and the perpendicular response
functions of the cylinder. The parallel component of the
cylinder response function has been given in eq. (99) as

Gcyl
‖ = 2πη

αK1(αa)
bαK1(αa) + K0(αa)

.
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As a → ∞, this equation crosses over to

lim
a→∞

Gcyl
‖ = 2πη

αaK1(αa)
K1(αa)(bα + K0(αa)/K1(αa))

� 2πa
αη

bα + 1
(A.13)

and thus equals the tangential response function of a
plane, eq. (53), times the circumference of the cylinder.

The perpendicular component of the cylinder response
function can be treated similarly. Using the asymptotic
behavior of the Bessel functions, limx→∞ Kn(x) � e−x

√
x

,
the coefficients in eq. (85) follow as

lim
a→∞

M1 � −α2e−aα

√
αa

− bα3e−aα

√
αa

,

lim
a→∞

M2 � 0,

lim
a→∞

N1 � 0,

lim
a→∞

N2 � λ2e−λa

√
λa

,

and yield in the limit a → ∞

Ecyl
1 � 2πη

Fi/V cyl
i

eαa

√
αa

bα + 1
,

Ecyl
2 � 2πηα2

Fi/V cyl
i

eλa

√
λa

λ2
. (A.14)

Substitution of these coefficients into eq. (88) gives the fi-
nal form of the cylindrical response function in the infinite
radius limit as

lim
a→∞

Gcyl
⊥ (ω) � 2πa

(
1
2

α2η

λ
+

1
2

αη

bα + 1

)
, (A.15)

which is again a weighted average of the tangential and
normal planar response functions over the cylinder surface
times the cylinder circumference.

Appendix A.4. Incompressible limit for cylinders

Analytical expressions for the response function of a cylin-
der in an incompressible non-steady flow field have been
given by various authors [23]. The limit of an incompress-
ible fluid can be obtained from our more general results by
taking the limit of λ → 0 and constitutes another test of
our results. Suppose that the cylinder oscillates in the x-
direction with a frequency-dependent velocity V cyl

x . From
eq. (A.6) one can calculate v⊥

x and v⊥y with the no-slip
condition by using Gcyl,⊥

xx and Gcyl,⊥
xy . The velocity com-

ponents can be explicitly written as

v⊥x (σ, φ)=V cyl
x

[
2

ασ
A−cos φ2B+

a

ασ2
(2 cos φ2 − 1)C

]
,

v⊥
y (σ, φ)=V cyl

x sin φ cos φ

[
− 2

ασ
B +

2a

ασ2
C

]
,

where

A =
K1(ασ)
K0(αa)

+ ασ
K0(ασ)
K0(αa)

,

B =
2K1(ασ)
K0(αa)

+ ασ
K0(ασ)
K0(αa)

,

C =
2K1(αa)
K0(αa)

+ αa, (A.16)

with the angle φ defined in fig. 6. Since v⊥
σ = v⊥

x cos φ +
v⊥

y sin φ and v⊥φ = −v⊥
x sinφ + v⊥

y cos φ, the velocity com-
ponents in cylindrical components read as

v⊥
σ (σ, φ)=V cyl

x cos φ

[
a2

σ2
− 2K1(ασ)

ασK0(αa)
+

2aK1(αa)
ασ2K0(αa)

]
,

v⊥
φ (σ, φ)=V cyl

x sin φ

×
[

a2

σ2
− 2K0(ασ)

K0(αa)
− 2K1(ασ)

ασK0(αa)
+

2aK1(αa)
ασ2K0(αa)

]

(A.17)

and agree with the expressions derived previously in the
incompressible limit [23].
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