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In order to investigate the form of the van der Waals interaction in different multilayer geometries
we reformulate the Lifshitz theory in terms of an algebra gf2Z2matrices. This device allows us to

derive a closed form solution for the secular determinant of the modes in terms of simple
quadratures with explicitN dependence. We specifically investigaig¢ the van der Waals
interactions between a substrate and a multilayer system as a function of the separation between the
substrate and the multilayer system diiglthe interaction between two multilayer systems over a
medium of variable separation. @003 American Institute of Physic$DOI: 10.1063/1.1578613

I. INTRODUCTION propagator matrix describes the propagation of the modes in
the homogeneous regions of the multilayer geometry, while
Recent experiments on bilayers adsorbed to rigid subthe discontinuity matrix describes the effects of the dielectric
strates have shown the complexity of interactions between discontinuities on the electromagnetic modes. This straight-
multilamellar lipid block close to a substrat&ven neglect-  forward decomposition, not noted before, allows us to create
ing the poorly understood effects of substrate rougtnessa simple mnemonic for constructing the transfer matrix in a
there still remains much to learn regarding the interactionsvide variety of multilayer geometry contexts and to recast
between a multilamellar lipid system and a rigid substfate.the Lifshitz theory into a simple and transparent form. We
Similar problems are raised also in other systems with mulwill then show how th&11) element of the transfer matrix is
tilayered geometry such as finite free standing smectic filmsrelated to the secular determinant of the electromagnetic
and smectic block copolymer layetsAmong the different modes and that will allow us to write down the van der
forces acting in these multilayer systems van der Waals inyaals free energy in terms of this element of the transfer
teractions are the most ubiquitous deserving to be studied imatrix. This transparent formalism will allow us to treat the
detail. We will formulate the theory of van der Waals forcescases of(i) the van der Waals interactions between a sub-
in different multilayer geometries and derive closed formstrate and a multilayer system as a function of the separation
solutions that explicitly depend on the number of layers inbetween the substrate and the multilayer system,(ianthe
the multilayer system. interaction between two multilayer systems over a medium
Though some problems of this type have been addressasf variable separation.
before!® the explicit dependence of the interaction on the  The reformulation of the Lifshitz theory derived here
number of layersN, has remained hidden in implicit, recur- simplifies and schematizes the calculation of the van der
sion formulas. Here we go beyond this formulation that al-Waals interaction in multilayer systems into a transparent
lows us to solve the recursion relation analytically and use€orm particularly suitable for numerical computations. Be-
this solution to write down the van der Waals interaction freecause all results are derivable in terms of simple quadratures
energies in a form with expliciN dependence. and contain explicit dependence on the number of layers in
The plan of the paper is as follows: Following and ex- the multilayer system, the fundamental decomposition of the
panding upofiwe will first solve the electromagnetic wave transfer matrix into a product of the propagator and the dis-
equation in the case of a multilayer geometry with dielectri-continuity matrices adds much-needed transparency and a
cally homogeneous layers. The solution of the wave equatiosonvenient bookkeeping to the computation of van der Waals
in this geometry will be obtained in terms of th&2 trans-  interactions in complicated multilayer geometries.
fer matrix which will be decomposed into a product of two
separate matrices, the diagomabpagator matrixand the Il. MODEL
symmetricdiscontinuity matrix valid for the nonretarded as Begin by focusing on a particular multilayer geometry in
well as retarded cases of van der Waals interaction. Théhe z direction: a semi-infinite substrate) with a frequency
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N+1 layers of B’ [ll. SOLUTION OF THE WAVE EQUATION
» separaled by N layess of B — A. The wave equation
- — We first derive the secular determinant for the EM
—>le> modes between a half-spaceand a multilayered half-space
1 b’l b R (see Fig. L We use Maxwell equations in standard form

(W|th C2 = 1/60,(140)

enw?

V2E(r)+ 5
Cc

E(r)=0, V:E(r)=0, (2)

for the electric field and

2 e,uwz
VAH(r)+ ——H(r)=0, V-H(r)=0, (3
c
ot [EEE S for the magnetic field. For succinctness we drop the explicit
T .. T dependence om in E(r,w) and H(r,»), but it is always
D D D understood. Similarly for the displacement fields
Lm  mB’ B'R
D(r)=eeoE(r), B(r)=puoH(r), 4

FIG. 1. A schematic presentation of the model. The multilayer slab com-
posed ofN+1 layersB’ andN layers ofB at a distancé,, away from the  valid in each homogeneous domain of the multilayer system.
semi-infinite regio_n(L) on the lhs, ending in'a semi—ir_ﬁinite regidR) on We treat the electric field in detail then write the mag-
the rhs. The matrice;; and'Tj; are defined in the main text. " .

netic field results by analogy. Because the system is homo-

geneous in thex,y) plane, the solution of the wave equation

for the electric field, Eq(2), has the form
dependent dielectric functiog (w) separated by a layer of .O- 0
mepdiumem(w) with thicknesstr: frg)m zfn array cgmpoged of E(r)=e(2)e®*, H(r)=h(z)e", ®)
N layers B',B) with dielectric functionseg: (w) and eg(w) wherep=(x,y) is the two dimensional radius vector aqd
and thicknesseb’ and b, respectively(see Fig. 1 Atthe  =(Q,,Q,). In each dielectric medium the functione(z)
right hand boundary we have a semi-infinite dielectric me-must satisfy the Helmholtz equation
dium (R) with eg(w). We will then generalize this geometry, 5
case(i), to the casqii) where on the |hs we also have a d°e(2)
semi-infinite layer(L), covered with a multilayer stack com- d2
posed ofM (A,A") layers, interacting across the medium
again of thickness$,,, with a multilayer stack oN (B’,B)
layers on the rhs ending in a semi-infinite subst(&e If the e(z)=Ae”*+B;e "% (7)
materialsA andB, as well asA’ andB’ are the same, the lhs
multilayer is a mirror image of the rhs multilayer.

2
W€ ML

> —Q2>a<z>=o, )

whose solution has the form

with

In the Lifshitz theory of van der Waals interactions the € 110
electromagnetic field fluctuation free energ@yis obtained pi2=Q2— L (8)
ad c?
* Because both electric as well as magnetic fields are diver-
F=kTY, X' InD(i&,.Q), (1)  gence free, the spatial componentsfgf B; satisfy
Q n=0

where the summation over the two-dimensional wave vector  A; ,= — i(QXAi'XjL QA ),

Q takes care of the homogeneity of the system in the)( pi

plane. Then summation is over the characteristic boson fre- . ©)

guencies of the electromagnetic field given b, Bi ;= — (QxBi xTQyBi ).

=2mnkT/#, in standard notation. The prime in the summa- Pi

tion indicates the fact that the=0 term is given a weight In each homogeneous domain of the multilayer system, we

1/2. The secular mode equati®f{w,Q) =0 gives the eigen- write €, i, D;, andB; without explicit w dependence. At

frequencies of the EM field modes in the specified geometnthe interfaces between these homogeneous domains the
In order to evaluate van der Waals interactions first ondransverse components &f i.e., E, andE,, are continuous,

has to solve the wave equation with all the discontinuitieswhile in the longitudinal direction it is the dielectric dis-

implied by the system geometry. In this way one obtains glacemenD that is continuous

system of equations for the constant coefficients of the solu- B _ _

tion whose determinant gives the mode equation. From this Bi-1x=Bix Ei-1,=E andBi-1,=Diz (10

secular determinanthe van der Waals free energy emergesThe same holds also for tH® and H. This constraint be-

from Eq. (2). tween coefficients reduces to enforcing the transitive relation

iy
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between successivg;, B;, from i=L to i=R across the
entire layered structure of Fig. 1. For two neighboring layers  Ti_1=
i—1,i Egs.(10) and(9) yield

1 0

0 e 2ridi-1)’ (18)

. tep so that the transitive relation for the vector of the coefficients
A= TP AP oo eliuip, a; between two successive media can be written as

' 2€ip;
— | M:Di,i*lXTi*l' (19)
_Ai_l’ie*(m—rﬂi)i—MBi_l), _ _ _ _
(11) We can now easily generalize this relation to three consecu-

€_1pit+ €pi_ — tive media:i—1, i—1 andi. In this case the coefficien
Bi:M(_Aiil‘ie(Pi—l_Pi)li—lﬁAi71 &

2€pi are connected with the coefficients in the third lager, via
| a relation
+e Pi-imrli-uiB, _,),
a=M-a_ , 20
W|th 1 i—2 ( )
where one can now derive that the transfer maltiis of the
A, =Sim1PiT €iPi-1 (120  form
M e _pitepig _
. - 1 A 1 0
HereA; andB; stand forA; , andB; , andl; is the position of M= — : % o
the discontinuity between thigh and thei—1st layers. The —Ajiog 1 0 e “ri-1fi-1
same analysis holds for the magnetic field starting from 1 —
equation Eq.3). The only difference compared to electric «| — A2
field is the substitution —A_1j-2 1
~ _€i-1PiT €&pi-1 _ Mi—1Pi T MiPi-1 =Dy i XTio X Dy_qj-0, (21)

i—1; i—1j

- - - .
€i—1pi T €pi—1 Mi—1pit Mmipi-1

13) thusM is the product of matrices that enforce boundary con-

) o _ ) ditions across interfaces and propagate fields traversing lay-

In this spirit we derive results only for the electric compo- grs of finite thickness. These matrices are applied for regions

nent of the EM modes and let the results for the magneti%tamng on the lhs and ending on the rhs.

component follow. The meaning of the diagonal matri%_, and the sym-
metric matricesD,_,; andD;_,;_, is as follows:T;_,, the
propagator matrix describes the propagation of the EM

B. A mnemonic to construct the transfer matrix modes across the dielectrically homogeneous material of

Because of the transitive relation between succegsiye €i-1 1om the discontinuitye;_,, €, to the discontinuity

B; we can cast this result in a much more appealing form byfi—1: €i- ]D;]*L‘_ and Difzﬁfl’ the _d||scont|nU|_ty matrltr:]e,s EM
introducing avectoaiT=(Ai ,Bi), in order to write Eq(11) represent the jump n the materia p__ropertles as t €
as modes pass, respectively, from mateiiall to materiali

and from material —2 to materiali — 1.
a=M-aj_q, (14 This notation can now be used for any number of layers,
where the newly introducettansfer matrixM, apart from  Starting at the leftmost layer and ending at the rightmost
some multiplicative constant factors that are irrelevant for@Yer Rwith N layers in between
the. ;qbsequent analysis and have been absorbed into a re- M=Dg n-1X Tn-1X Dy 12X T2
definition ofa;, can be written in the form

XDnonog...TyXDy . 22
1 —Ai_lyie’ZPifldifl N—2N-3 1 1L ( )
M=| — “2p ydi 4 , (15 Still the relation between the coefficients in the first and the
A e last media keeps the form
with di =1 1;—1i 25 1. ag=M-a, . (23)

We now observe that this transfer matrix can be factored
into a product of two matrices describing the propagation ofWe have thus found a simplanemonidor constructing the

EM modes,viz. transfer matrix for EM modes in an inhomogeneous system
— composed of a variable number of layers each with different
1 —Aji 1 1 0 ; ; ; ; i
M= ; « (16) dielectric properties. The mnemonic can be described as fol-
‘ —Ajio1 1 0 e 2ri-abi-a) lows: with each discontinuity between mediandi—1 as-

sociate a symmetric matrik;_,; , with each homogeneous
slab of material between the discontinuities1, i and i
—2,1—1, associate a diagonal matri%_,. The transfer

With each discontinuity between mediaandi—1, we can
thus associate a symmetric matiix;_,, of the form

1 —Ajio1 matrix M is then given by Eq(22).
Dii-1= X 1 ) , 17) The above analysis renders the many layers problem ef-
hi-1 ficiently solvable. By constructing the appropriate form of
and a diagonal matri¥; of the form the transfer matrix, composed of the matrix products of the
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propagator matrix and the discontinuity matrix, we can now
show how the transfer matrix is connected with the secular

equation for the EM eigenmodes.

IV. THE SECULAR DETERMINANT

Because medidl) and (R) are both semi-infinite, the

Lifshitz—van der Waals interactions in multilayered systems 1073
F=kT 2" InD(iéy,Q)
Q n=0
=kTX X" InDe(iéy,Q)
Q n=0
+kT% go’ In Dy (ién,Q). (26)

If one is interested in the interaction free energy as a function

fields from surface modes must decay far from the outermosis 5 variable spacing;,,, see Fig. 1, one has to consider the

dielectric boundaries; hencé&gz=0 and B, =0, or aﬁ
=(0,Bg) anda[=(AL,0). This can only happen if
ar=Ma —my;=Dg(i§y,Q)=0. (24

The unnormalized secular determinant is thus giggactly
by the (11) element of the transfer matriX. The only exci-

tations of the electric field that satisfy the boundary condi-

tions are those obtained from solving the secular equation.
My, =Dg(ién,Q)=0. For the magnetic part analogously
My, =Dy(i&n,Q)=0. The complete electromagnetic spec-
trum of the problem can thus be deduced from the followin

EM mode secular equation

D(ién,Q)=De(ién,Q)Dy(ién,Q)=0. (25

The free energy of the fluctuating EM modes is cast into
form containing the secular determinant of the electric and

magnetic modes

difference between the fluctuation free energy from 26)

and its “zero,” obtained atl,—. This form of analysis
completely reproduces the well known results on the van der
Waals interactions across a single or double 8lab.

V. A PERIODIC ARRAY OF SLABS BETWEEN TWO
SEMI-INFINITE MEDIA

With this general theory where the transfer matrix is
given as a product of propagator and discontinuity matrices
we are now in a position to treat first the cabedepicted on
Fig. 1. The multilayer slab is composed of one layer of ma-

Serial m of thicknessl,, and N periodic units of lengthb

+b’, composed of materidB and B’. All parameters are
assumed to be independentlgf.

dﬂ\. Formulation through the transfer matrix

In this geometry the transfer matrix can be immediately
written as

M:DRB’XTB’XDB’BXTBXDBB’X"'XTB’XDB’BXTBXDBB’XTB’XDB’MXTMXDW[L’

A

A , 27)

or
M:DRBV X ANXTBV X ]DB/mX me ]DmL,
where

1_K|238'e_2p8b
A:TB’XDB’BXTBXDBB':

Defining the elements of the power of the matfix

(N) (N)
a7 A
A= ( (N 5(N) (30
a;° axp

and introducing them into Eq28) yields the 11 element of
matrix M, i.e., the secular determinant

_ /(N N)A A AN L—2pab’
m11—(3(11)_a(zl)AB'R)(1+ABrmAf3,Re 2pg'b")

AN) \—2pp'b’
AgrmtAg g€ 78

e 2pmlm , (3D

with

_ KBB,e*ZPB'b’(l_ e 208b) @ 20m'b’ (g 2p8b_ A2

(28)

Apg/(1—e~2eb)
(29)
BB’)

N N) A
=Ny afy —ayy Ap g

ol ol are %

As writtenmy, includes physically irrelevant,, independent
factors that will add a constant term to Eg6), and will thus

not contribute to the interaction free energy. Thedepen-
dent part of the secular determinant can be on the other hand
written as

Mya(1 ) — (1= ALpASR(N) e~ 2Pnlm), (33
where obviously

_ Bprm+ A0 e 208

ATR(N) = — (34)

N (N) ,—2pg/b""
1+ gAY e 208
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In the case ofN=0 layers this result straightforwardly re-
duces to the case of interactions in theab’R slab.

B. Connection with a recursion formula

We will now show that the above formulation is not only

equivalent to an earlier recursion relation formulafidmut

Podgornik, Hansen, and Parsegian

The recursion relation Eq35) becomes

piy +pf )AB’R

N 1
p(z) p21)AB’R

AN
B'R™

(40

the p(N) now stand for the elements of the matki¥. From

also gives an explicit analytical solution of the recursion re-this we see that Eq32) is equivalent to a recursion relation

lation.

What differs between the cases Bf-1 andN layers
betweenL and R? Consider first the following recursion re-
lation:

T(IN—1
Pzt PllAfg/R :

A(N—1)
P22t leAEg'R :
with p;, the elements of a matrik. Let the boundary con-

AN _

B'R ™ (35)

dition beBBO,)R=AB,R. This recursion relation can be solved

exactly using the form

R e A (30
Inserting thisansatzinto Eq.(35) and defining
FN g\
C(N):(em) h<N>)’ (37)
we find
cN=pcN~1), (39)

or, taking into account the boundary condition fo=0

of the form
ANN-—1)
— a1~ axAy,
(N) B’'R
AB’R -1)" (41)

ann— a21A|3r R

If the elements of matriX, a;,, are taken from Eq29), the
above recursion relation can be written in the following
form:

A AN) ,—2pgb
N
B'R 1+AB,BA(BNR)e*2pBb’

(42)
Agg +AD Ve 20e

1+ Agg Al Ve 20e’

(N) —
BR ™

with the boundary conditioﬁal,)R=KB,R. This recursion re-
lation coincides with the result derived by Parsegian and
Ninham?®

C. Application of the Abele s formula

With the secular determinant for the multilayer problem
derived in terms of the elements of the mathX, Eq. (32),

cN=pN, (39  we now invoke an identifyvalid for square matrices
|
N¢ k] —sin(N—1)¢ sinhN¢ A2
y_ (detA)N? JdetA JdetA
N Sinhg . hNg aqo . hNg aq i }"(N 1)5 , (43)
sin — sin —sinh(N—
ydetA ydetA
|

where tion starting from the rather trivial case Nf=2. If we define

coshé= = 1 Tra (44) U '=a—e ¢J/detA and U\ =a;—ef\detA,
2 Jdeth (45)

Following Abeles’ this formula can be reproduced via induc-

then we obtain foEB,R of Eq. (32),
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ap —
- —2Ngy | (+
U(zz)_e §U<22) a
—a;, —
EN)_ U22
B'R™ —uy'{H
1
2, +Ap/R
+ABIR
as

—aj,+ Agir(as,—€f) )
—aj+Agig(al,—e %)
(af;—ed)—alApr )

(aj,—e” £ — arAsR

(a5, e‘%( 1-e 2N

_ 3-31( 1—e~ 2NE&

(46)

Here we have substituted;,=a; /detA to normalize A.
Thenet ande™ ¢ are nothing but eigenvalues of this matrix
with the property(see below

(af—e %) (az,—e %) =aras;, (47
which is just a different way of writing down Eq44).
Clearly in the limit of a very large number of layerh|
—c, the limiting value ofA(BN,)R should not depend on the
presence of thb’R discontinuity, i.e., on the value df; .
This expectation is verified directly from Ed46) in the
specified limit

Us,'  (as,—e %)

—an

AN=2)
Agig =

(48)
—az,

This limit can be reached alsoa the recursion relation Eq.
(42) which shows that for larg&l there is no difference in
the solution of the recursion relation between the—(1)st

Lifshitz—van der Waals interactions in multilayered systems 1075

VI. GENERALIZATIONS AND SPECIALIZATIONS

We can now write results for the following cases perti-
nent to the multilayer geometryi) interactions between a
substrate and a multilayered slab afid interactions be-
tween two multilayered slabs.

A. Interactions between a substrate
and a multilayered slab

For this geometry we derive the secular determinant by
putting together the secular determinant E83) and the
form of the Ag\,')R derived in Eq.(46). Disregarding now all
the physically irrelevant terms that do not dependl grwe
derive the secular equation for the EM modes in this case in
the form

My— (1= A pAST(N) e 20mlm) (51)

This result can also be written in the form explicitly contain-
ing the properties of the individual layers making up the
system. We first introduce the associated unitary matrix

wa b
ydet A
derived from Eq(29). A* has two eigenvalues.. such that

N A_=1. These can be represented by

aj; a’fz) 52

* *
a1 3y

Ai=ef anda_=e ¢, (53
so that the eigenfunction equation becomes
coshé= 3 Tr A*. (54)
Written in extenso
NSLLE N PR S deth ) (55)
~ 2 [detA (Tr A)?

andNth iteration. In other words the recursion relation has a

AN=D_ X (N)

fixed pointdefined byAg, 5 s'r Which leads immedi-

ately to Eq.(48) This can be seen as follows: inserting the

ansatzK(BN,;lEKgN,)R back into Eq.(42) we obtain the fol-

lowing equation satisfied at the fixed po'mg\,';“),

(N—)
T (N—o) ap— aZZAB’R
Agig = —N=) (49)
ai1—anlgig

or equivalently, if we divide the numerator and the denomi-

nator on the rhs by det

_N*)QC _Nﬂw
(MY ™)%as,+ (ak,—at) Al L ™ —a%,=0. (50)

Solving this quadratic equation and taking into account that

by definition detaj;,=1, we immediately obtain back Eq.
(48) exactly.

From Eq.(29),

Tr A=1-A2, (e 26’ + g~ 20aP) + g~ 2perd +peb),
. 56
detA=(1-A3, ;)% 20red *reb), %0

SO thatBB“,')R, Eq. (46), can be written

(@ )( 1o\ 2N _a§1+AB’R(a§2_)\+))
227 A . —
_(N) _a§1+ ABIR(a;2_)\,)

Agr=

oy (@1~ M) —alApr

~(afi—No)—afhpir

_ agl( -
(57)

Becausexn _ <1 in the limit of N— o we derive

AgimAgrge 28" (1—e™208P) 4 (e 48P (@ 2080 — A2 )=\ _(1—AZ, )e (Ped+3eeD"))

ATR(N=—2) = —

—2pg'b’ —2pgby 1 A —4pgrb’ [ a—2pgb__ A2 A2 —(pgb+3pg’b" )y’
Agge B8P (1—e “PB%)+ Ag/y(e P87 (e “PB°— A5, ) —N_(1—Ag p)e (pgb+3pg ))

(58)
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where we have used the explicit form of the Tr and det fromBE}“f)R is given by Eq(57). K(AN)L , on the other hand, is given
Eq. (56). The van der Waals interaction free energy in thispy the same formula but with reversed direction of the dis-
case can thus be written as continuities, which amounts to the transformation
- , — _ef'f o AB’vaB’R_)_AA’m!_AA’R'
F=KTD, Z IN(1— A ARR(N—o)e™ “Pm'm) - (59) In the limit of a large number of layeld, M — o with

Q n=0 furthermoreN=M, the same limiting expressions apply as
We have omitted the magnetic terms of an analogous formin the previous case except that they can now be obtained for
This form of the interaction free energy becomes morehe left multilayered slab as well as for the right-hand side.
simple in the asymptotic limit of largé,,. In this case we We thus get
derive after some heavy algebra that — —

Yo My (14 (AFH(M ) AFE(N ) Je2orim) (64)

F=—kT2, >’ KLmeB,e*ZPmlm_kTE > KLm The interaction free energy is thus obtained in the form
Q n=0 Q n=0

1- A7 g€¥e— A_(1- A7 g)elret e FoRTZ 2 In(LH (A (M=) AT(N =)
Agp(1-e ?0e0) X e~ 2nim), (65)
X @ 2(pmlmt pg'b+ pgh), (60)  plus an equivalent magnetic term. In the asymptotic limit of

largel ,, and for the case that the multilayers to the left and to
the right of m are symmetric we obtain in complete analogy
ﬁNith the analysis in the preceding sections that

To the lowest order ith,,, we are simply back to the interac-
tions between two semi-infinite slalhisandB’ over m, the
first term in the above equation, plus a first order correctio
because of the finite thickness of the regidh © *
The approach to the limiN—x is governed by the F=—kTY, > A2 e 2min—kT> >’
terms e 2N¢ in Eq. (46), where as we know, Eq53), & Q n=0 Q n=0

=log\, . We can get two explicit limiting forms of in the 1_Ké,BeZpBb_xi(l_Ké,B)e(pBb+pBrbf) 2
case of the zero order=0 van der Waals term, that shows X — —
the N dependence most prominently. First of all for snizll Agp/(1—e r87)

b’ we geté~\/2(1+ A2, /1-AZ,,)Q\bb’. In the opposite
limit of large b, b’ we geté~Q(b+b’). Introducing now
the dimensionless form of the wave vector Ql,,,, we ob-  plus again an analogous magnetic term. To the lowest order
tain the correlation length in the first limit ag. in I, we are simply back to the interactions between two
~Im1— A%, /2(1+A%,,) (b+b')/\bb” and in the second semi-infinite slabsB’ over m, the first term in the above
limit as 7~ ~1,,. Thus for smallb, b’, if the total thickness equatlon, plus a f|r§t order correction because of the finite
of the multilayersN(b+b') is larger then/_ we have Eq. thickness of the regioB’.

(59) and mutatis mutandigor largeb, b’.

Xe72(9m|m+PB’b,+PBb), (66)

VII. CONCLUSIONS
B. Interactions between two multilayered slabs
) We have reformulated the theory of van der Waals forces
By symmetry we can generalize the above results also tg, yreat interactions within finite and infinite multilayered

the case of two multilayered slabs interacting over the regio’&rrays by a straightforward and simple formalism that con-

m of thicknessl,, where on the |hs we have a semi-infinite nects the secular mode equation with properties of the trans-
layer (L), covered with a multilayer stack composed of tar marix for the EM field.

M (A,A’) layers, interacting across tme with a multilayer The key is to decompose the<2 transfer matrix into a

stack ofN (B”,B) layers on the rhs ending in a semi-infinite roquct of propagator and discontinuity matrices in such a
substrate(R). Using our mnemonic for constructing the \yay that the Gaussian boundary conditions at successive in-
transfer matrix or applying symmetry arguments directly ©tefaces of the different layers are properly enforced. The

Eq. (59 we arrive at decomposition of the transfer matrix into a product of propa-

m11*>(1+EE(M)KEnﬁR(N)e_ZPmlm)i (61) g_ator and discontinuity matr_ices allowed us to create a
— — simple but powerful mnemonic for constructing the secular
whereAFT (M), AfR(N) are determinant and consequently the free energy of van der

A AN g-2pp0b’ Waals interactions in general multilayer geometries. This
B’'m

KrenffR(N): ‘m ;B(’NFje : (62) mnemonic works for the retarded as well as nonretarded
1+AB,mAB,Re‘2PB'b cases and reduces the formula for the van der Waals free

energy to simple quadratures involving explicitly the number

and of layers. We applied this novel formulation of the Lifshitz—
_ KA,mjLKX\,‘)Leprafa’ van der Waals interaction to two different cases involving
Affr;(M)z — . (63 multilayer geometries, but it can be used in many other

N (M) .—2p.ra’ . .
1+AamApr € P multilayer geometries.
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If the multilayer geometry contains a repeating motif, between two semi-infinite homogeneous layers where their
e.g., in our case the repeatinBB') layers, the transfer ma- effective dielectric properties depend again on the dielectric
trix is then reduced to an explicit form by invoking the response of theR’) and the(B) layers and their respective
Abeles formula for the power of a*22 matrix. This device thicknesses.
allowed us to derive the secular determinant of the EM  The formal reduction of the van der Waals interaction
modes in multilayer geometries in a form explicitly involv- problem onto an algebra ofxX2 matrices, presented in this
ing the number of these repeating layers. Our procedure iwork, allows us to succinctly and effectively formulate the
formaly equivalent to an exact solution of the implicit recur- evaluation of the van der Waals interactions in complicated
sion relation obtained in the previous wdrk. multilayer geometries that are much more difficult to treat in

In the case of van der Waals interactions between #he framework of the standard approach.
multilayer slab and a substrate we were able to show that the
slab can be represented by an effective value of the dielectrier. podgornik and V. A. Parsegian, Biophys72, 942 (1997).
response of the slab as a whole, as describeﬁﬁﬁy_ In the 2Sl.g'gistram-Nagle, H. I. Petrache, R. M. Suégral, Biophys. J.74, 1421
I|m|t-o-f a large ”“”f'ber of l?'yers in the slab we de.nved ?‘n 33. F.?\iagle and J. Katsaras, Phys. Re\6g=7018(1999.
explicit form for this quantity dependent on the dielectric 45 ponierewski and R. Holyst, Phys. Rev.43, 9840(1993.
response of theB’ and theB layers and their respective °M. W. Matsen and F. S. Bates, Macromolect®Ss 1091 (1996.
thicknesses. Similar arguments can be used for the interac’J- Mahanty and B. W. NinhanDispersion ForcesAcademic, London,
tion between t'wo ;emi-infinite mirror symmetric slabs of é?@'mnham and V. A. Parsegian, J. Chem. PH5a. 3398(1970.

(BB’) composites interacting across In this case as well sy A parsegian and B. W. Ninham, J. Theor. Bi88, 101 (1973.
the interaction formula reduces to the form of interaction °F. Abeles, Ann. Phys(Parig 5, 777 (1950.
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