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In order to investigate the form of the van der Waals interaction in different multilayer geometries
we reformulate the Lifshitz theory in terms of an algebra of 232 matrices. This device allows us to
derive a closed form solution for the secular determinant of the modes in terms of simple
quadratures with explicitN dependence. We specifically investigate~i! the van der Waals
interactions between a substrate and a multilayer system as a function of the separation between the
substrate and the multilayer system and~ii ! the interaction between two multilayer systems over a
medium of variable separation. ©2003 American Institute of Physics.@DOI: 10.1063/1.1578613#
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I. INTRODUCTION

Recent experiments on bilayers adsorbed to rigid s
strates have shown the complexity of interactions betwee
multilamellar lipid block close to a substrate.1 Even neglect-
ing the poorly understood effects of substrate roughne2

there still remains much to learn regarding the interacti
between a multilamellar lipid system and a rigid substra3

Similar problems are raised also in other systems with m
tilayered geometry such as finite free standing smectic fil4

and smectic block copolymer layers.5 Among the different
forces acting in these multilayer systems van der Waals
teractions are the most ubiquitous deserving to be studie
detail. We will formulate the theory of van der Waals forc
in different multilayer geometries and derive closed fo
solutions that explicitly depend on the number of layers
the multilayer system.

Though some problems of this type have been addre
before,7,8 the explicit dependence of the interaction on t
number of layers,N, has remained hidden in implicit, recu
sion formulas. Here we go beyond this formulation that
lows us to solve the recursion relation analytically and u
this solution to write down the van der Waals interaction fr
energies in a form with explicitN dependence.

The plan of the paper is as follows: Following and e
panding upon7 we will first solve the electromagnetic wav
equation in the case of a multilayer geometry with dielec
cally homogeneous layers. The solution of the wave equa
in this geometry will be obtained in terms of the 232 trans-
fer matrix which will be decomposed into a product of tw
separate matrices, the diagonalpropagator matrixand the
symmetricdiscontinuity matrix, valid for the nonretarded a
well as retarded cases of van der Waals interaction.
1070021-9606/2003/119(2)/1070/8/$20.00
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propagator matrix describes the propagation of the mode
the homogeneous regions of the multilayer geometry, wh
the discontinuity matrix describes the effects of the dielec
discontinuities on the electromagnetic modes. This straig
forward decomposition, not noted before, allows us to cre
a simple mnemonic for constructing the transfer matrix in
wide variety of multilayer geometry contexts and to rec
the Lifshitz theory into a simple and transparent form. W
will then show how the~11! element of the transfer matrix i
related to the secular determinant of the electromagn
modes and that will allow us to write down the van d
Waals free energy in terms of this element of the trans
matrix. This transparent formalism will allow us to treat th
cases of~i! the van der Waals interactions between a s
strate and a multilayer system as a function of the separa
between the substrate and the multilayer system, and~ii ! the
interaction between two multilayer systems over a medi
of variable separation.

The reformulation of the Lifshitz theory derived he
simplifies and schematizes the calculation of the van
Waals interaction in multilayer systems into a transpar
form particularly suitable for numerical computations. B
cause all results are derivable in terms of simple quadrat
and contain explicit dependence on the number of layer
the multilayer system, the fundamental decomposition of
transfer matrix into a product of the propagator and the d
continuity matrices adds much-needed transparency an
convenient bookkeeping to the computation of van der Wa
interactions in complicated multilayer geometries.

II. MODEL

Begin by focusing on a particular multilayer geometry
thez direction: a semi-infinite substrate~L! with a frequency
0 © 2003 American Institute of Physics
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1071J. Chem. Phys., Vol. 119, No. 2, 8 July 2003 Lifshitz–van der Waals interactions in multilayered systems
dependent dielectric functioneL(v) separated by a layer o
mediumem(v) with thicknessl m from an array composed o
N layers (B8,B) with dielectric functionseB8(v) andeB(v)
and thicknessesb8 and b, respectively~see Fig. 1!. At the
right hand boundary we have a semi-infinite dielectric m
dium ~R! with eR(v). We will then generalize this geometr
case~i!, to the case~ii ! where on the lhs we also have
semi-infinite layer~L!, covered with a multilayer stack com
posed ofM (A,A8) layers, interacting across the mediumm,
again of thicknessl m , with a multilayer stack ofN (B8,B)
layers on the rhs ending in a semi-infinite substrate~R!. If the
materialsA andB, as well asA8 andB8 are the same, the lh
multilayer is a mirror image of the rhs multilayer.

In the Lifshitz theory of van der Waals interactions t
electromagnetic field fluctuation free energyF is obtained
as6

F5kT(
Q

(
n50

`

8 ln D~ i jn ,Q!, ~1!

where the summation over the two-dimensional wave ve
Q takes care of the homogeneity of the system in the (x,y)
plane. Then summation is over the characteristic boson f
quencies of the electromagnetic field given byjn

52pnkT/\, in standard notation. The prime in the summ
tion indicates the fact that then50 term is given a weight
1/2. The secular mode equationD(v,Q)50 gives the eigen-
frequencies of the EM field modes in the specified geome

In order to evaluate van der Waals interactions first o
has to solve the wave equation with all the discontinuit
implied by the system geometry. In this way one obtain
system of equations for the constant coefficients of the s
tion whose determinant gives the mode equation. From
secular determinantthe van der Waals free energy emerg
from Eq. ~1!.

FIG. 1. A schematic presentation of the model. The multilayer slab c
posed ofN11 layersB8 andN layers ofB at a distancel m away from the
semi-infinite region~L! on the lhs, ending in a semi-infinite region~R! on
the rhs. The matricesDi j andTi j are defined in the main text.
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III. SOLUTION OF THE WAVE EQUATION

A. The wave equation

We first derive the secular determinant for the E
modes between a half-spaceL and a multilayered half-spac
R ~see Fig. 1!. We use Maxwell equations in standard for
~with c251/e0m0)

¹2E~r !1
emv2

c2
E~r !50, “"E~r !50, ~2!

for the electric field and

¹2H~r !1
emv2

c2
H~r !50, “"H~r !50, ~3!

for the magnetic field. For succinctness we drop the expl
dependence onv in E~r ,v! and H~r ,v!, but it is always
understood. Similarly for the displacement fields

D~r !5ee0E~r !, B~r !5mm0H~r !, ~4!

valid in each homogeneous domain of the multilayer syste
We treat the electric field in detail then write the ma

netic field results by analogy. Because the system is ho
geneous in the (x,y) plane, the solution of the wave equatio
for the electric field, Eq.~2!, has the form

E~r !5e~z!eiQ"r, H~r !5h~z!eiQ"r, ~5!

wherer5(x,y) is the two dimensional radius vector andQ
5(Qx ,Qy). In each dielectric mediumi the functionei(z)
must satisfy the Helmholtz equation

d2ei~z!

dz2
1S v2e im i

c2
2Q2D ei~z!50, ~6!

whose solution has the form

ei~z!5A ie
r i z1Bie

2r i z, ~7!

with

r i
25Q22

e im iv
2

c2
. ~8!

Because both electric as well as magnetic fields are di
gence free, the spatial components ofA i , Bi satisfy

Ai ,z52
i

r i
~QxAi ,x1QyAi ,y!,

~9!

Bi ,z5
i

r i
~QxBi ,x1QyBi ,y!.

In each homogeneous domain of the multilayer system,
write e i , m i , Di , andBi without explicit v dependence. At
the interfaces between these homogeneous domains
transverse components ofE, i.e.,Ex andEy , are continuous,
while in the longitudinal direction it is the dielectric dis
placementD that is continuous

Ei 21,x5Ei ,x, Ei 21,y5Ei ,y, and Di 21,z5Di ,z. ~10!

The same holds also for theB and H. This constraint be-
tween coefficients reduces to enforcing the transitive rela

-
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1072 J. Chem. Phys., Vol. 119, No. 2, 8 July 2003 Podgornik, Hansen, and Parsegian
between successiveAi , Bi , from i 5L to i 5R across the
entire layered structure of Fig. 1. For two neighboring lay
i 21, i Eqs.~10! and ~9! yield

Ai5
e i 21r i1e ir i 21

2e ir i
~e~r i 212r i !l i 21/iAi 21

2D̄i 21,ie
2~r i 212r i !l i 21/iBi 21!,

~11!

Bi5
e i 21r i1e ir i 21

2e ir i
~2D̄i 21,ie

~r i 212r i !l i 21/iAi 21

1e2~r i 212r i !l i 21/iBi 21!,

with

D̄i 21,i5
e i 21r i2e ir i 21

e i 21r i1e ir i 21
. ~12!

HereAi andBi stand forAi ,z andBi ,z andl i is the position of
the discontinuity between theith and thei21st layers. The
same analysis holds for the magnetic field starting fr
equation Eq.~3!. The only difference compared to electr
field is the substitution

D̄i 21,i5
e i 21r i2e ir i 21

e i 21r i1e ir i 21
→D i 21,i5

m i 21r i2m ir i 21

m i 21r i1m ir i 21
.

~13!

In this spirit we derive results only for the electric comp
nent of the EM modes and let the results for the magn
component follow.

B. A mnemonic to construct the transfer matrix

Because of the transitive relation between successiveAi ,
Bi we can cast this result in a much more appealing form
introducing a vectorai

T5(Ai ,Bi), in order to write Eq.~11!
as

ai5M•ai 21 , ~14!

where the newly introducedtransfer matrixM, apart from
some multiplicative constant factors that are irrelevant
the subsequent analysis and have been absorbed into
definition of ai , can be written in the form

M5S 1 2D̄i 21,ie
22r i 21di 21

2D̄i 21,i e22r i 21di 21
D , ~15!

with di 215 l i 21,i2 l i 22,i 21 .
We now observe that this transfer matrix can be facto

into a product of two matrices describing the propagation
EM modes,viz.

M5S 1 2D̄i ,i 21

2D̄i ,i 21 1
D 3S 1 0

0 e22r i 21di 21
D . ~16!

With each discontinuity between mediai and i 21, we can
thus associate a symmetric matrixDi ,i 21 , of the form

Di ,i 215S 1 2D̄i ,i 21

2D̄i ,i 21 1
D , ~17!

and a diagonal matrixTi of the form
Downloaded 26 Jun 2003 to 128.231.88.2. Redistribution subject to AI
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Ti 215S 1 0

0 e22r i di 21
D , ~18!

so that the transitive relation for the vector of the coefficie
ai between two successive media can be written as

M5Di ,i 213Ti 21 . ~19!

We can now easily generalize this relation to three conse
tive media:i 21, i 21 and i. In this case the coefficientsai

are connected with the coefficients in the third layerai 22 via
a relation

ai5M•ai 22, ~20!

where one can now derive that the transfer matrixM is of the
form

M5S 1 2D̄i ,i 21

2D̄i ,i 21 1
D 3S 1 0

0 e22r i 21di 21
D

3S 1 2D̄i 21,i 22

2D̄i 21,i 22 1
D

5Di ,i 213Ti 213Di 21,i 22 , ~21!

thusM is the product of matrices that enforce boundary co
ditions across interfaces and propagate fields traversing
ers of finite thickness. These matrices are applied for regi
starting on the lhs and ending on the rhs.

The meaning of the diagonal matrixTi 21 and the sym-
metric matricesDi 21,i andDi 21,i 22 is as follows:Ti 21 , the
propagator matrix, describes the propagation of the E
modes across the dielectrically homogeneous materia
e i 21 from the discontinuitye i 22 , e i 21 to the discontinuity
e i 21 , e i . Di 21,i and Di 22,i 21 , the discontinuity matrices,
represent the jump in the material properties as the
modes pass, respectively, from materiali 21 to materiali
and from materiali 22 to materiali 21.

This notation can now be used for any number of laye
starting at the leftmost layerL and ending at the rightmos
layer R with N layers in between

M5DR,N213TN213DN21,N223TN22

3DN22,N23 ...T13D1,L . ~22!

Still the relation between the coefficients in the first and
last media keeps the form

aR5M•aL . ~23!

We have thus found a simplemnemonicfor constructing the
transfer matrix for EM modes in an inhomogeneous syst
composed of a variable number of layers each with differ
dielectric properties. The mnemonic can be described as
lows: with each discontinuity between mediai and i 21 as-
sociate a symmetric matrixDi 21,i , with each homogeneou
slab of material between the discontinuitiesi 21, i and i
22, i 21, associate a diagonal matrixTi 21 . The transfer
matrix M is then given by Eq.~22!.

The above analysis renders the many layers problem
ficiently solvable. By constructing the appropriate form
the transfer matrix, composed of the matrix products of
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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1073J. Chem. Phys., Vol. 119, No. 2, 8 July 2003 Lifshitz–van der Waals interactions in multilayered systems
propagator matrix and the discontinuity matrix, we can n
show how the transfer matrix is connected with the secu
equation for the EM eigenmodes.

IV. THE SECULAR DETERMINANT

Because media~L! and ~R! are both semi-infinite, the
fields from surface modes must decay far from the outerm
dielectric boundaries; henceAR50 and BL50, or aR

T

5(0,BR) andaL
T5(AL,0). This can only happen if

aR5MaL→m11[DE~ i jN ,Q!50. ~24!

The unnormalized secular determinant is thus givenexactly
by the~11! element of the transfer matrixM. The only exci-
tations of the electric field that satisfy the boundary con
tions are those obtained from solving the secular equa
m11[DE( i jN ,Q)50. For the magnetic part analogous
m11[DH( i jN ,Q)50. The complete electromagnetic spe
trum of the problem can thus be deduced from the follow
EM mode secular equation

D~ i jN ,Q!5DE~ i jN ,Q!DH~ i jN ,Q!50. ~25!

The free energy of the fluctuating EM modes is cast int
form containing the secular determinant of the electric a
magnetic modes
f
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F5kT(
Q

(
n50

`

8 ln D~ i jN ,Q!

5kT(
Q

(
n50

`

8 ln DE~ i jN ,Q!

1kT(
Q

(
n50

`

8 ln DH~ i jN ,Q!. ~26!

If one is interested in the interaction free energy as a func
of a variable spacingl m , see Fig. 1, one has to consider th
difference between the fluctuation free energy from Eq.~26!
and its ‘‘zero,’’ obtained atl m→`. This form of analysis
completely reproduces the well known results on the van
Waals interactions across a single or double slab.6

V. A PERIODIC ARRAY OF SLABS BETWEEN TWO
SEMI-INFINITE MEDIA

With this general theory where the transfer matrix
given as a product of propagator and discontinuity matri
we are now in a position to treat first the case~i! depicted on
Fig. 1. The multilayer slab is composed of one layer of m
terial m of thicknessl m and N periodic units of lengthb
1b8, composed of materialB and B8. All parameters are
assumed to be independent ofl m .

A. Formulation through the transfer matrix

In this geometry the transfer matrix can be immediat
written as
~27!

or

M5DRB83AN3TB83DB8m3Tm3DmL , ~28!

where

A5TB83DB8B3TB3DBB85S 12D̄BB8
2 e22rBb D̄BB8~12e22rBb!

2D̄BB8e
22rB8b8~12e22rBb! e22rB8b8~e22rBb2D̄BB8

2
!
D . ~29!
and
Defining the elements of the power of the matrixA

AN5S a11
~N! a12

~N!

a21
~N! a22

~N!D ~30!

and introducing them into Eq.~28! yields the 11 element o
matrix M, i.e., the secular determinant

m115~a11
~N!2a21

~N!D̄B8R!~11D̄B8mD̄B8R
~N! e22rB8b8!

3S 12D̄Lm

D̄B8m1D̄B8R
~N! e22rB8b8

11D̄B8mD̄B8R
~N! e22rB8b8

e22rml mD , ~31!

with
D̄B8R
~N!

5
a12

~N!2a22
~N!D̄B8R

a11
~N!2a21

~N!D̄B8R

. ~32!

As writtenm11 includes physically irrelevantl m independent
factors that will add a constant term to Eq.~26!, and will thus
not contribute to the interaction free energy. Thel m depen-
dent part of the secular determinant can be on the other h
written as

m11~ l m!→~12D̄LmD̄mR
eff ~N!e22rml m!, ~33!

where obviously

D̄mR
eff ~N!5

D̄B8m1D̄B8R
~N! e22rB8b8

11D̄B8mD̄B8R
~N! e22rB8b8

. ~34!
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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In the case ofN50 layers this result straightforwardly re
duces to the case of interactions in theLmb8R slab.

B. Connection with a recursion formula

We will now show that the above formulation is not on
equivalent to an earlier recursion relation formulation7 but
also gives an explicit analytical solution of the recursion
lation.

What differs between the cases ofN21 and N layers
betweenL andR? Consider first the following recursion re
lation:

D̄B8R
~N!

5
p121p11D̄B8R

~N21!

p221p21D̄B8R
~N21! , ~35!

with pik the elements of a matrixP. Let the boundary con-
dition beD̄B8R

(0)
5D̄B8R . This recursion relation can be solve

exactly using the form

D̄B8R
~N!

5
g~N!1 f ~N!D̄B8R

h~N!1e~N!D̄B8R

. ~36!

Inserting thisansatzinto Eq. ~35! and defining

C~N!5S f ~N! g~N!

e~N! h~N!D , ~37!

we find

C~N!5PC~N21!, ~38!

or, taking into account the boundary condition forN50

C~N!5PN. ~39!
c-

Downloaded 26 Jun 2003 to 128.231.88.2. Redistribution subject to AI
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D̄B8R
~N!

5
p12

~N!1p11
~N!D̄B8R

p22
~N!1p21

~N!D̄B8R

, ~40!

the pik
(N) now stand for the elements of the matrixPN. From

this we see that Eq.~32! is equivalent to a recursion relatio
of the form

D̄B8R
~N!

5
a122a22D̄B8R

~N21!

a112a21D̄B8R
~N21! . ~41!

If the elements of matrixA, aik , are taken from Eq.~29!, the
above recursion relation can be written in the followin
form:

D̄B8R
~N!

5
D̄B8B1D̄BR

~N!e22rBb

11D̄B8BD̄BR
~N!e22rBb

,

~42!

D̄BR
~N!5

D̄BB81D̄B8R
~N21!e22rB8b8

11D̄BB8D̄B8R
~N21!e22rB8b8

,

with the boundary conditionD̄B8R
(1)

5D̄B8R . This recursion re-
lation coincides with the result derived by Parsegian a
Ninham.8

C. Application of the Abele `s formula

With the secular determinant for the multilayer proble
derived in terms of the elements of the matrixAN, Eq. ~32!,
we now invoke an identity9 valid for square matrices
AN5
~detA!N/2

sinhj S sinhNj
a11

AdetA
2sinh~N21!j sinhNj

a12

AdetA

sinhNj
a12

AdetA
sinhNj

a11

AdetA
2sinh~N21!j

D , ~43!
where

coshj5
1

2

Tr A

Adet A
. ~44!

Following Abelès9 this formula can be reproduced via indu
tion starting from the rather trivial case ofN52. If we define

Uik
~2 ![aik2e2jAdet A and Uik

~1 ![aik2ejAdet A,
~45!

then we obtain forD̄B8R
(N) of Eq. ~32!,
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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D̄B8R
~N!

5

U22
~2 !2e22NjU22

~1 !

2a12

U22
~1 !

1D̄B8R

2a12

U22
~2 !

1D̄B8R

2a21S 12e22Nj

2U11
~1 !

a21
1D̄B8R

2U11
~2 !

a21
1D̄B8R

D
5

~a22* 2e2j!S 12e22Nj
2a21* 1D̄B8R~a22* 2ej!

2a21* 1D̄B8R~a22* 2e2j!
D

2a21* S 12e22Nj
~a11* 2ej!2a12* D̄B8R

~a11* 2e2j!2a12* D̄B8R
D .

~46!

Here we have substitutedaik* 5aik /detA to normalizeA.
Thenej ande2j are nothing but eigenvalues of this matr
with the property~see below!

~a11* 2e2j!~a22* 2e2j!5a12* a21* , ~47!

which is just a different way of writing down Eq.~44!.
Clearly in the limit of a very large number of layers,N
→`, the limiting value ofD̄B8R

(N) should not depend on th
presence of theb8R discontinuity, i.e., on the value ofD̄B8R .
This expectation is verified directly from Eq.~46! in the
specified limit

D̄B8R
~N→`!

5
U22

~2 !

2a21
5

~a22* 2e2j!

2a21*
. ~48!

This limit can be reached alsovia the recursion relation Eq
~42! which shows that for largeN there is no difference in
the solution of the recursion relation between the (N21)st
andNth iteration. In other words the recursion relation ha
fixed pointdefined byD̄B8R

(N21)
5D̄B8R

(N) which leads immedi-
ately to Eq.~48! This can be seen as follows: inserting t
ansatzD̄B8R

(N21)
5D̄B8R

(N) back into Eq.~42! we obtain the fol-
lowing equation satisfied at the fixed pointD̄B8R

(N→`),

D̄B8R
~N→`!

5
a122a22D̄B8R

~N→`!

a112a21D̄B8R
~N→`! , ~49!

or equivalently, if we divide the numerator and the denom
nator on the rhs by detA

~D̄B8R
~N→`!

!2a21* 1~a22* 2a11* !D̄B8R
~N→`!

2a12* 50. ~50!

Solving this quadratic equation and taking into account t
by definition detaik* 51, we immediately obtain back Eq
~48! exactly.
Downloaded 26 Jun 2003 to 128.231.88.2. Redistribution subject to AI
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VI. GENERALIZATIONS AND SPECIALIZATIONS

We can now write results for the following cases per
nent to the multilayer geometry:~i! interactions between a
substrate and a multilayered slab and~ii ! interactions be-
tween two multilayered slabs.

A. Interactions between a substrate
and a multilayered slab

For this geometry we derive the secular determinant
putting together the secular determinant Eq.~33! and the
form of the D̄B8R

(N) derived in Eq.~46!. Disregarding now all
the physically irrelevant terms that do not depend onl m we
derive the secular equation for the EM modes in this cas
the form

m11→~12D̄LmD̄mR
eff ~N!e22rml m!. ~51!

This result can also be written in the form explicitly contai
ing the properties of the individual layers making up t
system. We first introduce the associated unitary matrix

A* 5
A

Adet A
5S a11* a12*

a21* a22*
D ~52!

derived from Eq.~29!. A* has two eigenvaluesl6 such that
l1l251. These can be represented by

l15ej and l25e2j , ~53!

so that the eigenfunction equation becomes

coshj5 1
2 Tr A* . ~54!

Written in extenso

l65
1

2

Tr A

Adet A
S 16A124

detA

~Tr A!2D . ~55!

From Eq.~29!,

Tr A512D̄B8B
2

~e22rB8b81e22rBb!1e22~rB8b81rBb!,

~56!
det A5~12D̄B8B

2
!2e22~rB8b81rBb!,

so thatD̄B8R
(N) , Eq. ~46!, can be written

D̄B8R
~N!

5

~a22* 2l2!S 12l2
2N

2a21* 1D̄B8R~a22* 2l1!

2a21* 1D̄B8R~a22* 2l2!
D

2a21* S 12l2
2N

~a11* 2l1!2a12* D̄B8R

~a11* 2l2!2a12* D̄B8R
D .

~57!

Becausel2,1 in the limit of N→` we derive
D̄mR
eff ~N→`!5

D̄B8mD̄B8Be22rB8b8~12e22rBb!1~e24rB8b8~e22rBb2D̄B8B
2

!2l2~12D̄B8B
2

!e2~rBb13rB8b8!!

D̄B8Be22rB8b8~12e22rBb!1D̄B8m~e24rB8b8~e22rBb2D̄B8B
2

!2l2~12D̄B8B
2

!e2~rBb13rB8b8!!
, ~58!
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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where we have used the explicit form of the Tr and det fr
Eq. ~56!. The van der Waals interaction free energy in th
case can thus be written as

F5kT(
Q

(
n50

`

8 ln~12D̄LmD̄mR
eff ~N→`!e22rml m!. ~59!

We have omitted the magnetic terms of an analogous fo
This form of the interaction free energy becomes m
simple in the asymptotic limit of largel m . In this case we
derive after some heavy algebra that

F52kT(
Q

(
n50

`

8 D̄LmD̄mB8e
22rml m2kT(

Q
(
n50

`

8 D̄Lm

3
12D̄B8B

2 e2rBb2l2~12D̄B8B
2

!e~rBb1rB8b8!

D̄BB8~12e22rBb!

3e22~rml m1rB8b81rBb!. ~60!

To the lowest order inl m we are simply back to the interac
tions between two semi-infinite slabsL and B8 over m, the
first term in the above equation, plus a first order correct
because of the finite thickness of the regionB8.

The approach to the limitN→` is governed by the
terms e22Nj in Eq. ~46!, where as we know, Eq.~53!, j
5 logl1 . We can get two explicit limiting forms ofj in the
case of the zero ordern50 van der Waals term, that show
the N dependence most prominently. First of all for smallb,
b8 we getj;A2(11D̄BB8

2 /12D̄BB8
2 )QAbb8. In the opposite

limit of large b, b8 we getj;Q(b1b8). Introducing now
the dimensionless form of the wave vector,u5Qlm , we ob-
tain the correlation length in the first limit asz,

; l mA12D̄BB8
2 /2(11D̄BB8

2 )(b1b8)/Abb8 and in the second
limit as z.; l m . Thus for smallb, b8, if the total thickness
of the multilayersN(b1b8) is larger thenz, we have Eq.
~59! andmutatis mutandisfor largeb, b8.

B. Interactions between two multilayered slabs

By symmetry we can generalize the above results als
the case of two multilayered slabs interacting over the reg
m of thicknessl m , where on the lhs we have a semi-infini
layer ~L!, covered with a multilayer stack composed
M (A,A8) layers, interacting across them with a multilayer
stack ofN (B8,B) layers on the rhs ending in a semi-infini
substrate~R!. Using our mnemonic for constructing th
transfer matrix or applying symmetry arguments directly
Eq. ~59! we arrive at

m11→~11D̄Lm
eff ~M !D̄mR

eff ~N!e22rml m!, ~61!

whereD̄Lm
eff (M), D̄mR

eff (N) are

D̄mR
eff ~N!5

D̄B8m1D̄B8R
~N! e22rB8b8

11D̄B8mD̄B8R
~N! e22rB8b8

~62!

and

D̄Lm
eff ~M !5

D̄A8m1D̄A8L
~N! e22ra8a8

11D̄A8mD̄A8L
~M !e22ra8a8

. ~63!
Downloaded 26 Jun 2003 to 128.231.88.2. Redistribution subject to AI
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n

D̄B8R
(N) is given by Eq.~57!. D̄A8L

(N) , on the other hand, is given
by the same formula but with reversed direction of the d
continuities, which amounts to the transformatio
D̄B8m ,D̄B8R→2D̄A8m ,2D̄A8R .

In the limit of a large number of layersN, M→` with
furthermoreN5M , the same limiting expressions apply a
in the previous case except that they can now be obtained
the left multilayered slab as well as for the right-hand sid
We thus get

m11→~11~D̄Lm
eff ~M→`!D̄mR

eff ~N→`!!e22rml m!. ~64!

The interaction free energy is thus obtained in the form

F5kT(
Q

(
n50

`

8 ln~11~D̄Lm
eff ~M→`!D̄mR

eff ~N→`!!

3e22rml m!, ~65!

plus an equivalent magnetic term. In the asymptotic limit
largel m and for the case that the multilayers to the left and
the right ofm are symmetric we obtain in complete analo
with the analysis in the preceding sections that

F52kT(
Q

(
n50

`

8 D̄mB8
2 e22rml m2kT(

Q
(
n50

`

8

3S 12D̄B8B
2 e2rBb2l2~12D̄B8B

2
!e~rBb1rB8b8!

D̄BB8~12e22rBb!
D 2

3e22~rml m1rB8b81rBb!, ~66!

plus again an analogous magnetic term. To the lowest o
in l m we are simply back to the interactions between t
semi-infinite slabsB8 over m, the first term in the above
equation, plus a first order correction because of the fin
thickness of the regionB8.

VII. CONCLUSIONS

We have reformulated the theory of van der Waals for
to treat interactions within finite and infinite multilayere
arrays by a straightforward and simple formalism that co
nects the secular mode equation with properties of the tra
fer marix for the EM field.

The key is to decompose the 232 transfer matrix into a
product of propagator and discontinuity matrices in such
way that the Gaussian boundary conditions at successive
terfaces of the different layers are properly enforced. T
decomposition of the transfer matrix into a product of prop
gator and discontinuity matrices allowed us to create
simple but powerful mnemonic for constructing the secu
determinant and consequently the free energy of van
Waals interactions in general multilayer geometries. T
mnemonic works for the retarded as well as nonretar
cases and reduces the formula for the van der Waals
energy to simple quadratures involving explicitly the numb
of layers. We applied this novel formulation of the Lifshitz
van der Waals interaction to two different cases involvi
multilayer geometries, but it can be used in many oth
multilayer geometries.
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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If the multilayer geometry contains a repeating mo
e.g., in our case the repeating (BB8) layers, the transfer ma
trix is then reduced to an explicit form by invoking th
Abelès formula for the power of a 232 matrix. This device
allowed us to derive the secular determinant of the E
modes in multilayer geometries in a form explicitly involv
ing the number of these repeating layers. Our procedur
formaly equivalent to an exact solution of the implicit recu
sion relation obtained in the previous work.8

In the case of van der Waals interactions betwee
multilayer slab and a substrate we were able to show tha
slab can be represented by an effective value of the diele
response of the slab as a whole, as described byD̄mR

eff . In the
limit of a large number of layers in the slab we derived
explicit form for this quantity dependent on the dielect
response of theB8 and theB layers and their respectiv
thicknesses. Similar arguments can be used for the inte
tion between two semi-infinite mirror symmetric slabs
(BB8) composites interacting acrossm. In this case as wel
the interaction formula reduces to the form of interacti
Downloaded 26 Jun 2003 to 128.231.88.2. Redistribution subject to AI
,

is

a
he
ric

c-

between two semi-infinite homogeneous layers where t
effective dielectric properties depend again on the dielec
response of the (B8) and the~B! layers and their respectiv
thicknesses.

The formal reduction of the van der Waals interacti
problem onto an algebra of 232 matrices, presented in thi
work, allows us to succinctly and effectively formulate th
evaluation of the van der Waals interactions in complica
multilayer geometries that are much more difficult to treat
the framework of the standard approach.
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