HTML AESTRACT * LINKEES

JOURNAL OF CHEMICAL PHYSICS VOLUME 120, NUMBER 7 15 FEBRUARY 2004

van der Waals interactions across stratified media
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Working at the Lifshitz level, we investigate the van der Waals interactions across a series of layers
with a periodic motif. We derive the complete form of the van der Waals interaction as an explicit
function of the number of periodic layers. We then compare our result with an approximation based
on an anisotropic-continuum representation of the stratified medium. Satisfactory agreement
between discrete-layer and continuum models is reached only for thicknesses of ten or more layers.
© 2004 American Institute of Physic§DOI: 10.1063/1.1640338

I. INTRODUCTION and transparent formulas for the van der Waals interactions
across finely layered systems. We use this reformulation to

Once one starts looking for them, multilayers are every luate the int " il d th
where. (Bio)macromolecules such as phospholipid layers evaluale the Interactions across a muitiayer and then com-
pare these with a continuum uniaxial-dielectric approxima-

are prone to create multilamellar assemblies either in solu® : ! . .

tion or in apposition to supporting interfackd.ayer upon tion _based on van der Waals interactions across anisotropic

layer of polymer multilayers, assembled eithermed'a'

electrostatically or through interlayer hydrogen bondifig,

al!ow the fabrication_of muItigomposite molecular assem-| tORMALISM

blies of tailored architecturewith important technological

applications. Understanding molecular interactions in these We consider a symmetric periodic array, Fig. 1, between

systems is an important step in controlling the assembly proa leftmost half-spacé and a rightmost half-space. The

cess. Though these interactions are due to many differemgeriodic motif is the sequence &B pairs repeatedN times

specific processes, the van der Waals interactions are thdietweenL andR, schematicallL ABAB --ABAR

common feature. Unless one is satisfied with the pairwise Recently, we showéahat in the Lifshitz theory, a com-

additive formulation of van der Waals interactions in putation of the secular determinant of the electromagnetic

multilayer geometrie§ their general and exact derivation on field modes can be mapped onto an algebraxof2matrices.

the Lifshitz level is complicated, abstruse, and seldom atThe secular determinant, in fact, follows from the 11 element

tempted. of a transfer matrix that can be simply constructed from the
Here we will set up a new approach to the van derinteraction geometry as a product of discontinuityand

Waals—Lifshitz interactions in multilayer geometries basedpropagatofl’ matrices. In the case considered here, following

on a recent reformulation of the Lifshitz thedry terms of  the “mnemonic” introduced in Ref. 7, the transfer matrix

an algebra of X2 matrices that allows us to derive simple assumes the form

M=Dgy X Ty X Dyp X TgX Dy X -+ - X Ty X Dyp X TpX Dy X Ty X Dy . 1)

A A
N

In this notation the discontinuity and the propagator matrices
become Dag=

1 _
31 =—Dga, (2
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N+1 layers of A 2 ) EA’BwZ

and N layers of B pap=Q e (5)
e We will assume that regioA corresponds to hydrocarbon,
alb ea(w), and regiond., B, Rto water, eg(w), dielectric re-

sponse. We use the standgrtfforms forex(w) andeg(w),
where the dielectric response of water is described with one
microwave relaxation frequency, five infrared relaxation fre-
quencies and six ultraviolet relaxation frequencies and that
L |A|B| ...|B/[AB|A|R of the hydrocarbons with four relaxation frequencies.

The discontinuity matrix describes the propagation of
the electromagnetic modes across the dielectric boundary
and the propagator matrix their propagation inside a dielec-
trically homogeneous region. The above equations are

TT - strictly valid for the transverse magnetitM) field modes:t
DAD B D The result appropriate for the transverse eledffiE) field
LA"AB AR moded! is obtained analogouslyja a formal substitution,
FIG. 1. The symmetric periodic array between a leftmost redgicand a — [ PaA€B— PBEA PAMB ™ PBMA
rightmost regionR. The periodic motif is theAB pair of layers repeatehl A= m —A= m ) (6)

times betweer and R, symbolically LABAB... ABAR=L(AB)NAR. The
thickness of laye (hydrocarboi is &, and that of layeB is b (watey. ~ whereua g are the magnetic permeabilities of the regiéns

MatricesDia, Dag, Dar, andT, g are defined in the main text. B. The transfer matrix can be written equivalently in the
form
MIZDRAXANXTAX]DAL, (7)
where the matrix\ can be obtained as
1 0
_ A=TaAXDpgXTgX D,
Tag= ( 0 esz‘Ba’b), (3) A Uags Ig” Uga
1—A2e 2rsb A(1— e 2r8b)
wherea andb are the thicknesses of tiheandB regions, and = _Re 20A3(1—e 28b) @ 20n3(e~208b_A2) .
— [ PA€B— PBEA " tS)
~\ paestpgen)’ The productAN can be factored via the Abaldormula for

square matrice$This formula can be reproduced straightfor-
with ex(w) and eg(w) the frequency-dependent dielectric wardly via induction, starting from the triviaN=2 case€’ so

functions of regionsA andB. Finally, that
SINNE—__ sinh(N—1)¢ SinhNg —22
N (detA)N? JdetA JdetA ©
£ = y
snné inhNg -2 ihNE 2 sinh(N—1)¢
sin sin —sinh(N—
vdetA ydetA
|
where where we defined

1 TraA / detA) -,

u:
1— AZ(e*pAa_F eprb) + @ 2(paatpgh)

Heree® ande ¢ are the two eigenvalues of the unitary ma-
trix A* =A/\/detA, viz., for unitary matrices the product of

the eigenvalues equals one. From the definitonéoEg.  and
(10), we derive explicitly
u
_ u f(u,paat+pgh)= = : (12
f—(PAa+PBb)_|091+ \/1—(ue_(PAa+PBb))2 1+ \/1_(ue (pa2+pgh))2
=(ppa+pgb)—logf(u,ppa+pgh), (11 The productAN can be further decomposed as
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(detA)N/2e(N-1¢ where w has been substituted by the imaginary Matsubara
N:WP, (13 frequencies &,=i2w(kT/#)n and the primed sum signifies
that then=0 term is taken with the weight 1/2. What we will
where investigate now is the dependence of the van der Waals in-
p1(N)  proN) teraction free energy, defined as the difference,
o (p21<N> Pzz(N)) F(N;a,b) = F(N;a,b)~ AN—<a,b), 19

) on the number ofAB) layers,N. From the above definition
=(1-e M) ———e {1-e 2N VY] (14)  of the interaction free energy we obtain the corresponding
detA Hamaker coefficienH(N;a,b) as
with the unit matrixI.
In Lifshitz theory the fluctuation free energy is directly F(N:a,b)=
related to the 11 elements of the transfer maifiiX here

(detA) N/2e(N— 1)¢
M= e

H(N;a,b)

127(a+h)°N?" (19

(P11(N) + Poy(N)A g ll. RESULT

o — We first write the 11 elements for the TM modes in a
+e  PAANLP1AN) +P2a(N)Aga)). (15 form that makes explicit the dependence dnWe first no-

The mode equation, or the secular determinant of the TMice that

field modes, can be written as log My ,= —log 2 sinhé-+N Iog\/MegnL log(py(N)

miY'=Dru(@,Q) =0, (16) ¢ o) Bt 6 20 ()
e
with an analogous equation for TE field modeBhe com- = _RA AL{P12
bined secular determinant thus equals the proddeb,Q) + PoA(N)ARY), (20)

=Diu(w,Q)Dre(w,Q). The free energy of the fluctuating .
modes in a system i (AB) layers can now be cdsntoa SO that the corresponding free energy, Etj7), has three

form containing the secular determinant of the TM and TE{€rmMS. The first does not depend dhand is thus not of
modes, immediate concern here. The second term, linea,imep-

resents the chemical potential or the free energy of adding a
single combined layer to the system. As already formulated
in Ref. 10, this chemical potential has the form

w=log+/detA\ "), (21)

wherex(")=¢f is one of the eigenvalues of the matrix .
However, it is the last term of E¢20) that describes the

+kTE zr In mLE(ign Q), 17) interactions in the_multllayer composite. Using E(s7) and
Q n=0 (18) we end up with

]-‘(N;a,b)sz%‘, 2_‘,0’ InD(i&,,Q)

:kT% ZO’ Inm(i&,,Q)

o, P12(N) + P2s(N)Agat €243 (p1o(N) + p22(N)KRA))
F(N:a,b)=kT | ,
(N;a,b) EQ: Z og

A —2ppan e (22
n=0 P11(®) + Por(2) Agat € PATA L (P12() + PoA ) Aga)

the main result of this paper. It gives the complete van deFurthermore, in the same limit we obtain for the matrix
Waals interaction across the stratified mediaBiin a form
with an explicit dependence on the number of laysrdNot 1 0
excgsswely comphcated, it allows for straightforward nu- pZZSianAaerBb)(o 2N(pAa+pBb))' (24)
merical computations. e

Before analyzing Eq(22) in detail, we verify that it has
the correct limiting behavior. Wheg,= €z, so thatA=0 From these, Eq(22) becomes
with pa=pg=p, If the stratified medium behaves homoge-
neously. In this case,

F(N;a,b)=kT>, > log(1
Q n=0
f(u,ppatpgb)=1 and &=(paa+tpsb)=p(atb). _
(23 +Agpdp e 2@ N@tD)) (29

Downloaded 11 Feb 2004 to 128.231.88.2. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



3404 J. Chem. Phys., Vol. 120, No. 7, 15 February 2004 R. Podgornik and V. A. Parsegian

Thus, we recover the standard Lifshitz expression for the interaction of rmeatia R across the mediurA=B of thickness
a+N(a+b). Obviously, in the limit where the dielectric propertiesAandB coincide, this is just the total thickness of the
regionA.

The general formula, Eq22) can be rewritten as

KT &, (= N) + Por(N)Agat e 2PA%A N) + pos(N)A,
F(N;a,b)z—E Q dQlog P12(N) + P )_RA € _AL(plz( )+ P2 )_RA) . 26)
2mn=0 Jo P12(°©) + Pa1(®) Agat e 2PA%A 5| (P1x() + Po ) Arp)

Its consequences can be fully appreciated only after a full We use the result of @lah and Zimet* to derive the

numerical analysis. In Fig. 2 we evaluate thee0 term  van der Waals interactions in a nonisotropic homogeneous

separately and then compare it to the fulsummation that uniaxial slab composed of periodic layers. If we associate the

includes retardation effects, Fig. 3. index A with the continuum uniaxial composite, we have for
the TM modes,

2
IV. NUMERICAL COMPUTATIONS AND CONCLUSIONS pLe_i( 2 S@ ) 28)
A € c |
For intuition about the general result, Eg6), we evalu- :
ate the van der Waals interactions across a slab of material gf,e corresponding values for
thicknessa+N(a+b), the continuum composite of layefs B
and B of Fig. 1. Because of its layered structure, we can A _(PAGA_PAEL) e 29)
. . . . . . _ RA— — - AL 1
associate with it a transverse dielectric functien= e,, PAEAT PAEL

~ €y and a Iongitl_Jdir_laI dielectric_ fu_nctiqra”=e_zz. The and mutatis mutand® for the TE field modes. Thus, we
continuum composite is thus a uniaxial dielectric with two obtain the interaction free energy as

distinct values of the dielectric response parallel and perpen-
dicular to the layer normal. In terms of the dielectric func- . kT &, (=

tions e, and ez by analogy to capacitors in series and in ~ F'(N;a,b)= szo o Q dQlog(1
parallel,

a b +ARpAp e 2PA@TN@TD)) (30
— + —
€A €B

GLZL(ae,ﬁ—beB) and iz— .
atb € 5 plus an analogous term for the TE modes. This is the expres-

@7 sion that we will compare with our exact formula, Eg6).

The longitudinal and the transverse dielectric response of a  Figure 2 gives the dependence of the zeroth-order term,

layered continuum composite thus depend on the volume=0, interaction free energi(N;a,b), in its exact form Eq.

fractionsa/(a+b) andb/(a+b) of the materialsA andBin  (26) as well as its continuum approximate form, E80), on

the system. the number of layerd\, where we have takeA to corre-

-7 -
‘\I.l—\ “"E -
- 2
3 3 ]
g 3
- &
~ [=2] —

Qo
g g
-10 i
-9.5h0 . R et —
2 3 4 S 6789 2
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Log(N) Log(N)

FIG. 2. Zero frequencyn=0 van der Waals interaction free energy across aFIG. 3. The complete van der Waals interaction free energy(Z8).across
multilayered slab of layer# and layersB; a,b=4 nm (circleg; a=1 nm, N layers of hydrocarbord, and waterB, with thicknesses,b=4 nm. The
b=4 nm (triangleg; a=8 nm, b=4 nm (squares RegionA corresponds to  exact formula forN layers, Eq.(26); open circles, bold lines for the com-
lipid, regionsB, L, Rto water with static dielectric functiondRef. 13 €, pleten sum; open squares, dashed line for the0 term(as in Fig. 2. The
=2 andeg g=80. The result of the exact equati¢®6) (bold curve$ as approximate anisotropic continuum model, E®O), with full circles,
well as approximate anisotropic continuum model, 8f) (dashed curves  dashed lines for the completesum and full squares, dashed line for the
are presented. Clearly the exact and the approximate results differ only fan=0 term(same as in Fig. 2 Exact and approximate results again differ
small, N<10, number of layers. only for a small,N<10, number of layers.
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H(N; a, b) [erg] x 1078

H (N; a, b) [erg] x 107°

FIG. 4. Then=0 Hamaker coefficient, Eq(19), of the van der Waals
interaction across a multilayered slab of hydrocarbon layeend water
layers B. Here a=1 nm, b=4 nm (triangles, a,b=4 nm (circles, anda
=8nm, b=4 nm (squares Depending on the dielectric properties and the
volume fractions of material& andB, the effect of the granularity persists
for N on the order of 10 layers. Inset: the variation of the Hamaker coeffi
cient atN=>5 layers as a function of the thickness of the lipid layeat

a+b=8nm. Clearly the largest Hamaker coefficient is obtained for larger

volume fractions of the lipid material.

spond to hydrocarbon an, L, R to correspond to water.
The cases fob=4 nm anda=1, 4, 8 nm are shown. It is

clear from Fig. 2 that the effect of the discreteness of layer

van der Waals interactions across stratified media 3405
layers. It is biggest when the lipid layer volume fraction is
highest. This is indeed as one would expect since for high
water volume fractions the dielectric inhomogeneity and thus
van der Waals interactions are nonexistent. It is only at much
higher values oN that the effect of retardation will set in,
leading to a leveling off of the Hamaker coefficient at about
half itsn=0 value. Since our focus here is the granularity or
stratification of the medium, we do not delve any further on
the retardation effects.

If the Hamaker coefficient were evaluated in the model
based on an isotropic mixture éfandB, it would be about
20% smaller than in the anisotropic continuum model. Also,
unless the thickness @& andB are very dissimilar the pair-
wise summation would give quantitatively unsatisfactory re-
sults.

Taking into account the electrolyte screening of the
=0 Hamaker coefficieht would not change our conclusions
regarding the approach to the continuum anisotropic limit. It
would just make the higher-order terms more important. This
conclusion could be potentially affected only by a more so-
phisticated calculation that would take into account the elec-
trolyte ion correlation effects on a two loop levél.

Comparing the exact dependence of the van der Waals

-interactions across a periodic multilayer on the number of

layers with a continuum approximation based on the van der
Waals interactions across a uniaxial anisotropic composite,
we have been able to assess the validity of the continuum
approximation and show that it indeed reduces to the prop-
erly defined limit after about ten layers. Again, this limit has
to acknowledge the uniaxial continuum structure of the
gnultilayer.

is effectively gone after about ten layers in the stack. Also,
obviously, the interaction free energy is larger the larger theACKNOWLEDGMENT

volume fraction of the lipid in the system.

The same is true also for the complete form, E2p),
with the explicit summation ovem, Fig. 3. The higher-order
terms in then-summation are obviously important only for
small N. In both casesn=0, as well as a full summation
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