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van der Waals interactions across stratified media
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Working at the Lifshitz level, we investigate the van der Waals interactions across a series of layers
with a periodic motif. We derive the complete form of the van der Waals interaction as an explicit
function of the number of periodic layers. We then compare our result with an approximation based
on an anisotropic-continuum representation of the stratified medium. Satisfactory agreement
between discrete-layer and continuum models is reached only for thicknesses of ten or more layers.
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I. INTRODUCTION

Once one starts looking for them, multilayers are eve
where. ~Bio!macromolecules such as phospholipid laye1

are prone to create multilamellar assemblies either in s
tion or in apposition to supporting interfaces.2 Layer upon
layer of polymer multilayers, assembled eith
electrostatically3 or through interlayer hydrogen bonding4

allow the fabrication of multicomposite molecular asse
blies of tailored architecture5 with important technologica
applications. Understanding molecular interactions in th
systems is an important step in controlling the assembly p
cess. Though these interactions are due to many diffe
specific processes, the van der Waals interactions are
common feature. Unless one is satisfied with the pairw
additive formulation of van der Waals interactions
multilayer geometries,6 their general and exact derivation o
the Lifshitz level is complicated, abstruse, and seldom
tempted.

Here we will set up a new approach to the van d
Waals–Lifshitz interactions in multilayer geometries bas
on a recent reformulation of the Lifshitz theory7 in terms of
an algebra of 232 matrices that allows us to derive simp
ce
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and transparent formulas for the van der Waals interacti
across finely layered systems. We use this reformulation
evaluate the interactions across a multilayer and then c
pare these with a continuum uniaxial-dielectric approxim
tion based on van der Waals interactions across anisotr
media.

II. FORMALISM

We consider a symmetric periodic array, Fig. 1, betwe
a leftmost half-spaceL and a rightmost half-spaceR. The
periodic motif is the sequence ofAB pairs repeatedN times
betweenL andR, schematicallyLABAB̄ ABAR.

Recently, we showed7 that in the Lifshitz theory, a com-
putation of the secular determinant of the electromagn
field modes can be mapped onto an algebra of 232 matrices.
The secular determinant, in fact, follows from the 11 elem
of a transfer matrix that can be simply constructed from
interaction geometry as a product of discontinuityD and
propagatorT matrices. In the case considered here, followi
the ‘‘mnemonic’’ introduced in Ref. 7, the transfer matr
assumes the form
~1!
In this notation the discontinuity and the propagator matri
become

a!Electronic mail: rudi@helix.nih.gov
s
DAB5S 1 2D̄

2D̄ 1
D 52DBA , ~2!

and
1 © 2004 American Institute of Physics
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TA,B5S 1 0

0 e22rA,Ba,bD , ~3!

wherea andb are the thicknesses of theA andB regions, and

D̄5S rAeB2rBeA

rAeB1rBeA
D , ~4!

with eA(v) and eB(v) the frequency-dependent dielectr
functions of regionsA andB. Finally,

FIG. 1. The symmetric periodic array between a leftmost regionL and a
rightmost regionR. The periodic motif is theAB pair of layers repeatedN
times betweenL and R, symbolicallyLABAB...ABAR5L(AB)NAR. The
thickness of layerA ~hydrocarbon! is a, and that of layerB is b ~water!.
MatricesDLA , DAB , DAR , andTA,B are defined in the main text.
a-
f
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rA,B
2 5Q22

eA,Bv2

c2 . ~5!

We will assume that regionA corresponds to hydrocarbon
eA(v), and regionsL, B, R to water,eB(v), dielectric re-
sponse. We use the standard12,13forms foreA(v) andeB(v),
where the dielectric response of water is described with
microwave relaxation frequency, five infrared relaxation fr
quencies and six ultraviolet relaxation frequencies and
of the hydrocarbons with four relaxation frequencies.

The discontinuity matrix describes the propagation
the electromagnetic modes across the dielectric bound
and the propagator matrix their propagation inside a die
trically homogeneous region. The above equations
strictly valid for the transverse magnetic~TM! field modes.11

The result appropriate for the transverse electric~TE! field
modes11 is obtained analogously,via a formal substitution,

D̄5S rAeB2rBeA

rAeB1rBeA
D→D5S rAmB2rBmA

rAmB1rBmA
D , ~6!

wheremA,B are the magnetic permeabilities of the regionsA,
B. The transfer matrix can be written equivalently in th
form

M5DRA3AN3TA3DAL , ~7!

where the matrixA can be obtained as

A5TA3DAB3TB3DBA

5S 12D̄2e22rBb D̄~12e22rBb!

2D̄e22rAa~12e22rBb! e22rAa~e22rBb2D̄2!
D .

~8!

The productAN can be factored via the Abele´s formula for
square matrices.8 This formula can be reproduced straightfo
wardly via induction, starting from the trivialN52 case,9 so
that
AN5
~detA!N/2

sinhj S sinhNj
a11

AdetA
2sinh~N21!j sinhNj

a12

AdetA

sinhNj
a12

AdetA
sinhNj

a11

AdetA
2sinh~N21!j

D , ~9!
where

j[ log
1

2

Tr A

AdetA
S 11A124

detA
~Tr A!2D . ~10!

Hereej ande2j are the two eigenvalues of the unitary m
trix A* 5A/AdetA, viz., for unitary matrices the product o
the eigenvalues equals one. From the definition ofj, Eq.
~10!, we derive explicitly

j5~rAa1rBb!2 log
u

11A12~ue2~rAa1rBb!!2

5~rAa1rBb!2 log f ~u,rAa1rBb!, ~11!
where we defined

u5
2~12D̄2!

12D̄2~e2rAa1e2rBb!1e22~rAa1rBb!

and

f ~u,rAa1rBb!5
u

11A12~ue2~rAa1rBb!!2
. ~12!

The productAN can be further decomposed as
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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AN5
~detA!N/2e~N21!j

~12e22j!
P, ~13!

where

P~N!5S p11~N! p12~N!

p21~N! p22~N!
D

5~12e22Nj!
A

AdetA
2e2j~12e22~N21!j!I, ~14!

with the unit matrixI.
In Lifshitz theory the fluctuation free energy is direct

related to the 11 elements of the transfer matrixM;7 here

m115
~detA!N/2e~N21!j

~12e22j!
~p11~N!1p21~N!D̄RA

1e22rAaD̄AL„p12~N!1p22~N!D̄RA…!. ~15!

The mode equation, or the secular determinant of the
field modes, can be written as

m11
TM5DTM~v,Q!50, ~16!

with an analogous equation for TE field modes.1 The com-
bined secular determinant thus equals the productD(v,Q)
5DTM(v,Q)DTE(v,Q). The free energy of the fluctuatin
modes in a system ofN (AB) layers can now be cast7 into a
form containing the secular determinant of the TM and
modes,

F~N;a,b!5kT(
Q

(
n50

`

8 ln D~ i jn ,Q!

5kT(
Q

(
n50

`

8 ln m11
TM~ i jn ,Q!

1kT(
Q

(
n50

`

8 ln m11
TE~ i jn ,Q!, ~17!
de

u

e-
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where v has been substituted by the imaginary Matsub
frequenciesi jn5 i2p(kT/\)n and the primed sum signifie
that then50 term is taken with the weight 1/2. What we wi
investigate now is the dependence of the van der Waals
teraction free energy, defined as the difference,

F~N;a,b!5F~N;a,b!2F~N→`;a,b!, ~18!

on the number of~AB! layers,N. From the above definition
of the interaction free energy we obtain the correspond
Hamaker coefficientH(N;a,b) as

F~N;a,b!5
H~N;a,b!

12p~a1b!2N2 . ~19!

III. RESULT

We first write the 11 elements for the TM modes in
form that makes explicit the dependence onN. We first no-
tice that

logm1152 log 2 sinhj1N logAdetAej1 log~p11~N!

1p21~N!D̄RA1e22rAaD̄AL„p12~N!

1p22~N!D̄RA…!, ~20!

so that the corresponding free energy, Eq.~17!, has three
terms. The first does not depend onN and is thus not of
immediate concern here. The second term, linear inN, rep-
resents the chemical potential or the free energy of addin
single combined layer to the system. As already formula
in Ref. 10, this chemical potential has the form

m5 logAdetAl~1 !, ~21!

wherel (1)5ej is one of the eigenvalues of the matrixA* .
However, it is the last term of Eq.~20! that describes the
interactions in the multilayer composite. Using Eqs.~17! and
~18! we end up with
F~N;a,b!5kT(
Q

(
n50

`

8 logS p11~N!1p21~N!D̄RA1e22rAaD̄AL„p12~N!1p22~N!D̄RA…

p11~`!1p21~`!D̄RA1e22rAaD̄AL„p12~`!1p22~`!D̄RA…
D , ~22!
the main result of this paper. It gives the complete van
Waals interaction across the stratified mediumAB in a form
with an explicit dependence on the number of layersN. Not
excessively complicated, it allows for straightforward n
merical computations.

Before analyzing Eq.~22! in detail, we verify that it has
the correct limiting behavior. WheneA5eB , so thatD̄50
with rA5rB5r, if the stratified medium behaves homog
neously. In this case,

f ~u,rAa1rBb!51 and j5~rAa1rBb!5r~a1b!.
~23!
r

-

Furthermore, in the same limit we obtain for the matrixP,

P52 sinh~rAa1rBb!S 1 0

0 e22N~rAa1rBb!D . ~24!

From these, Eq.~22! becomes

F~N;a,b!5kT(
Q

(
n50

`

8 log~1

1D̄RAD̄ALe22r„a1N~a1b!…!. ~25!
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Thus, we recover the standard Lifshitz expression for the interaction of mediaL andR across the mediumA5B of thickness
a1N(a1b). Obviously, in the limit where the dielectric properties ofA andB coincide, this is just the total thickness of th
regionA.

The general formula, Eq.~22! can be rewritten as

F~N;a,b!5
kT

2p
(
n50

`

8 E
0

`

Q dQ logS p11~N!1p21~N!D̄RA1e22rAaD̄AL„p12~N!1p22~N!D̄RA…

p11~`!1p21~`!D̄RA1e22rAaD̄AL„p12~`!1p22~`!D̄RA…
D . ~26!
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Its consequences can be fully appreciated only after a
numerical analysis. In Fig. 2 we evaluate then50 term
separately and then compare it to the fulln summation that
includes retardation effects, Fig. 3.

IV. NUMERICAL COMPUTATIONS AND CONCLUSIONS

For intuition about the general result, Eq.~26!, we evalu-
ate the van der Waals interactions across a slab of materi
thicknessa1N(a1b), the continuum composite of layersA
and B of Fig. 1. Because of its layered structure, we c
associate with it a transverse dielectric functione'5exx

5eyy and a longitudinal dielectric functione i5ezz. The
continuum composite is thus a uniaxial dielectric with tw
distinct values of the dielectric response parallel and perp
dicular to the layer normal. In terms of the dielectric fun
tions eA and eB by analogy to capacitors in series and
parallel,

e'5
1

a1b
~aeA1beB! and

1

e i
5

1

a1b S a

eA
1

b

eB
D .

~27!

The longitudinal and the transverse dielectric response
layered continuum composite thus depend on the volu
fractionsa/(a1b) andb/(a1b) of the materialsA andB in
the system.

FIG. 2. Zero frequencyn50 van der Waals interaction free energy acros
multilayered slab of layersA and layersB; a,b54 nm ~circles!; a51 nm,
b54 nm ~triangles!; a58 nm, b54 nm ~squares!. RegionA corresponds to
lipid, regionsB, L, R to water with static dielectric functions~Ref. 13! eA

52 andeB,L,R580. The result of the exact equation~26! ~bold curves! as
well as approximate anisotropic continuum model, Eq.~30! ~dashed curves!
are presented. Clearly the exact and the approximate results differ onl
small,N<10, number of layers.
Downloaded 11 Feb 2004 to 128.231.88.2. Redistribution subject to AIP
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We use the result of Sˇarlah and Zˇumer14 to derive the
van der Waals interactions in a nonisotropic homogene
uniaxial slab composed of periodic layers. If we associate
index Ā with the continuum uniaxial composite, we have f
the TM modes,

r
Ā

2
5

e'

e i
S Q22

e iv2

c2 D . ~28!

The corresponding values for

D̄RĀ5S r ĀeA2rAe'

r ĀeA1rAe'
D52D̄ ĀL , ~29!

and mutatis mutandis14 for the TE field modes. Thus, we
obtain the interaction free energy as

F~N;a,b!5
kT

2p (
n50

`

8 E
0

`

Q dQ log~1

1D̄RĀD̄ ĀLe22rĀ„a1N~a1b!…!, ~30!

plus an analogous term for the TE modes. This is the exp
sion that we will compare with our exact formula, Eq.~26!.

Figure 2 gives the dependence of the zeroth-order te
n50, interaction free energyF(N;a,b), in its exact form Eq.
~26! as well as its continuum approximate form, Eq.~30!, on
the number of layersN, where we have takenA to corre-

or

FIG. 3. The complete van der Waals interaction free energy Eq.~26! across
N layers of hydrocarbon,A, and water,B, with thicknessesa,b54 nm. The
exact formula forN layers, Eq.~26!; open circles, bold lines for the com
pleten sum; open squares, dashed line for then50 term~as in Fig. 2!. The
approximate anisotropic continuum model, Eq.~30!, with full circles,
dashed lines for the completen sum and full squares, dashed line for th
n50 term ~same as in Fig. 2!. Exact and approximate results again diff
only for a small,N<10, number of layers.
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spond to hydrocarbon andB, L, R to correspond to water
The cases forb54 nm anda51, 4, 8 nm are shown. It is
clear from Fig. 2 that the effect of the discreteness of lay
is effectively gone after about ten layers in the stack. Al
obviously, the interaction free energy is larger the larger
volume fraction of the lipid in the system.

The same is true also for the complete form, Eq.~26!,
with the explicit summation overn, Fig. 3. The higher-order
terms in then-summation are obviously important only fo
small N. In both cases,n50, as well as a full summation
overn, the way the continuum limit is approached obvious
depends on the characteristics of the layers, especially
their respective thicknesses. As is well known13 for the
hydrocarbon–water system, then50 term gives the domi-
nant contribution to the interaction energy and assures t
contrary to the case of other materials, the van der Wa
interactions have a nonretarded form, even at very la
separations.

The n50 Hamaker coefficient, Fig. 4 and Eq.~19!, re-
inforces conclusions based on the evaluation of the inte
tion free energy. Again, the continuum limit of the Hamak
coefficient is safely reached after about ten layers, the sw
ness of the transition to the continuum approximation be
dictated by the thickness and the dielectric properties of
layersA andB. Also, the magnitude of the Hamaker coef
cient, for fixed thickness of the periodic layer,a1b58 nm
in the case examined, depends on the volume fraction of b

FIG. 4. The n50 Hamaker coefficient, Eq.~19!, of the van der Waals
interaction across a multilayered slab of hydrocarbon layersA and water
layers B. Here a51 nm, b54 nm ~triangles!, a,b54 nm ~circles!, and a
58 nm, b54 nm ~squares!. Depending on the dielectric properties and t
volume fractions of materialsA andB, the effect of the granularity persist
for N on the order of 10 layers. Inset: the variation of the Hamaker coe
cient atN55 layers as a function of the thickness of the lipid layer,a at
a1b58 nm. Clearly the largest Hamaker coefficient is obtained for lar
volume fractions of the lipid material.
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rs
,
e

on

at,
ls
e

c-
r
t-
g
e

th

layers. It is biggest when the lipid layer volume fraction
highest. This is indeed as one would expect since for h
water volume fractions the dielectric inhomogeneity and th
van der Waals interactions are nonexistent. It is only at m
higher values ofN that the effect of retardation will set in
leading to a leveling off of the Hamaker coefficient at abo
half its n50 value. Since our focus here is the granularity
stratification of the medium, we do not delve any further
the retardation effects.

If the Hamaker coefficient were evaluated in the mod
based on an isotropic mixture ofA andB, it would be about
20% smaller than in the anisotropic continuum model. Al
unless the thickness ofA andB are very dissimilar the pair-
wise summation would give quantitatively unsatisfactory
sults.

Taking into account the electrolyte screening of then
50 Hamaker coefficient13 would not change our conclusion
regarding the approach to the continuum anisotropic limit
would just make the higher-order terms more important. T
conclusion could be potentially affected only by a more s
phisticated calculation that would take into account the el
trolyte ion correlation effects on a two loop level.15

Comparing the exact dependence of the van der W
interactions across a periodic multilayer on the number
layers with a continuum approximation based on the van
Waals interactions across a uniaxial anisotropic compos
we have been able to assess the validity of the continu
approximation and show that it indeed reduces to the pr
erly defined limit after about ten layers. Again, this limit h
to acknowledge the uniaxial continuum structure of t
multilayer.
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