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A variational approach, based on a quadratic trial Hamiltonian is used to determine the 
contlgurational as well as the mechanical properties of a system composed of two point charges 
plus a neutralizing charged polymer, considered as a model of polyelectrolyte-macroion 
interactions. The quadratic variational ansatz used in the context of charged polymers presents 
a variant of the Feynman-Kleinert approach properly generalized to include polymer 
self-interactions. Conditions for chain localization in the field of a point charge are derived and 
its consequences for polymer-mediated forces between two point charges are analyzed. It is 
established that in three dimensions the polymer can confer long range attraction to nominally 
equally charged point ions. At small separations, the polymer mediated force is elastic in origin, 
stemming from the soft electrostatic anchoring of the chain to both point charges, but with a 
force constant much stronger than expected from entropic elasticity alone. At large separations, 
the polymer mediated interactions are of long range and are due to polymer-induced charge - 
reversal on one of the external point charges. 

I. INTRODUCTION 

The interest in forces between macroscopic charged 
bodies mediated by oppositely charged long polymer 
chains grew recently1~2 after it was realized3 that the con- 
nectivity of polymer chains can confer a strong attraction 
to nominaly equally charged bodies-a result quite per- 
plexing from a naive perspective on Coulomb interactions, 
where the force between equally charged bodies is deemed 
to be repulsive. But even with a deeper insight and with a 
knowledge of the correlation attraction in higher valency 
salts,4 one still remains surprised after realizing that the 
polymer-mediated attraction is a mean Jield effect and is 
not connected with any breakdown of the Poisson- 
Boltzmann theory. Rather, it is a consequence of bridging 
of the same polymer chain between two apposed surfaces 
with the electrostatic interactions playing the role of an- 
choring the chain to the surfaces, while the chain’s con- 
nectivity provides the entropic elasti(: force that draws the 
surfaces towards each other. Aside from the Monte Carlo 
simulations,3 three different analytical approaches’-3 to the 
polyelectrolyte-mediated electrostatic interactions have 
been proposed, all of them based on mean-field type ap- 
proximations, trying to upgrade in one way or another the 
Poisson-Boltzmann (PB) equation for inhomogeneous 
electrolytes. In the PB type mean-field theories, the elec- 
trostatic self-interaction of the polyelectrolyte chain does 
not at any point enter the discussion. This is not a problem 
with Coulomb fluids composed of simple entities, e.g., ions, 
but in the case of polyelectrolyte chains, the self- 
interaction severely affects the dimensions and the stiffness 
of the polymer chain that both enter the mean-field equa- 
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tions for the polyelectrolyte local charge density (see Ref. 
3 for details). This effect of the self-interaction should thus 
in one way or another be incorporated into the mean-field 
description of a polymer chain in external fields. 

One approach was exploited by Muthukumar’ in a 
similar context of adsorption of a charged polymer chain to 
an oppositely charged surface. He tried to upgrade the 
work of Wiegel,’ where the chain was considered to be 
Gaussian in an external field describing the interaction 
with the surface, by deriving an independent estimate of 
the effect of the intrachain Coulombic (as well as steric) 
repulsions on the dimensions of the polymer chain. This 
effect was expressed in terms of an effective step length of 
the polymer chain that was then used in the standard 
mean-field equations. These type of “effective medium” 
theories are quite common in polymer physics6 and work 
well for bulk problems. They are, however, inappropriate 
for strongly inhomogeneous systems since they treat the 
(internal) segment-segment interactions and the interac- 
tions with an external field additively. One would thus like 
to see the intrachain interactions included into the theory 
on the same level as the external fields, without invoking 
additivity beforehand. This is what we shall set ourselves 
to do. 

The basic idea is very simple. We try to progressively 
integrate out the polymer configurations in the partition 
function by applying the following basic distinction be- 
tween different configurations: The configurations of a 
highly convoluted chain are not very probable since they 
entail large configurational energy, thus we can treat them 
approximately on an effective (see below) Gaussian level. 
On the other hand, configurations corresponding to dis- 
placements of the whole chain in an external field cost no 
configurational energy, but depend only on the coupling of 
the chain to the external field and they can in principle be 
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treated exactly. When one tries to implement this idea for- 
mally, one is basically applying a modified Feynman- 
Kleinert7 variational principle to the statistics of a self- 
interacting polymer chain. 

forces are not pairwise additive if the separations between 
the external charges are small. 

We start our discussion by considering a self- 
interacting polymer chain in an external field. The parti- 
tion function of a polymer in a continuous chain represen- 
tation is standardly written in the form16 

H(N) = J 9r(n)e-8&“(N), 

where the functional integral measure is represented by the 
usual shorthand d3r(0)d3r( 1)--*d3r(N) +gr(n). The 
configurational part of the chain Hamiltonian has the form 

@Y(N) =$ s,” [ F]‘dn 

N 

ss 
u[r(n),r(n’)]dn dn’ 

0 

Variational principles of a similar type have been ap- 
plied to other problems* as well as to polymers before.g As 

II. MOTIVATION 

already stated, the “effective medium” theory, imple- 
mented for the polymer case by Edwards and Singh, has 
found a wide variety of applications.” It could be thought 
of as a zero-order variational approach since the polymer 
interactions are lumped into an effective free polymer 
Hamiltonian. The next order variational approach corre- 
sponds to a quadratic trial Hamiltonian that has been used 
in the problem of localization of a polymer chain in ran- 
dom media.gy” The variational procedure employed in this 
case was in fact the original Feynman approach.” There 
have also been several recent efforts to implement a general 
quadratic ansatz to the configurational statistics of a poly- 
mer chain with long range interactions.‘3”4 The variational 
equations have been solved numerically for a Coulombic 
chain and found to comply almost exactly with Monte 
Carlo simulations. l5 Our own efforts, as detailed below, 
could be viewed as an application of a “diagonal” effective 
Gaussian ansatz to the problem of polymer configurational 
statistics and polymer-mediated forces. In the “diagonal” 
representation of the variational ansatz, the Euler- 
Lagrange equations emerge in a particularly simple form, 
making various analytical estimates quite straightforward. 
This we consider to be the major advantage of the ap- 
proach advocated here. In our implementation of the di- 
agonal Gaussian variational ansatz, there is one major 
drawback, since we set the formalism up only for a ring 
polymer chain, where the beginning and the end of the 
chain coincide. This proved to be instrumental in terms of 
the complexity of the Euler-Lagrange equations. It is, 
however, not a fatal limitation since it can easily be 
amended, leading to more complex Euler-Lagrange equa- 
tions that do not lend themselves to easy limiting laws. 
Since we will mostly be interested in the scaling limit of 
polymer configurational properties, it does not particularly 
matter whether the polymer chain is open or closed. 

where u[r (n ),r (n’ )] is the intersegment interaction energy, 
&Jr(n)] is the external potential acting on the segments of 
the polymer chain, and N is the number of the segments of 
the chain. Let us choose now the following Rouse (Fou- 
rier) representation’6 for the instantaneous configuration 
of the chain 

r(n)=ro+ i r&)coswp+ iTi r,dp)s~ tip, 
p=l p=l 

with oP=2r p N 

The outline of the paper is as follows: We shall apply 
the general variational equations derived in the first four 
sections of the paper to the problem of an electrostatically 
self-interacting chain. First of all, without any external 
fields, to check the results derived by our method with 
previous work, and then in external fields-most notably to 
the problem of polyelectrolyte chain mediated electrostatic 
interactions between point charges. We will show that long 
range electrostatic interactions (contrary to the short 
range excluded volume interactions) can localize the chain 
in the vicinity of an external point charge, leading to pro- 
nounced consequences in terms of the effective interaction 
between external charges. We shall derive approximate an- 
alytical forms of the polyelectrolyte-mediated electrostatic 
forces valid at small and asymptotically large separations 
between external charges. We shall also argue to the effect 
that with many external charges, the polymer-mediated 

that describes a ring chain where the beginning and the end 
of the chain coincide. We shall nevertheless indicate in the 
following at what points in the discussion the ring polymer 
variational equations would differ from the case of an open 
polymer. The zero order r. term in the sum (2.3) describes 
the center of mass of the polymer chain, while higher order 
p terms in the Rouse representation describe chain cotig- 
urational fluctuations on increasingly smaller scales. 
Clearly, for small N, the “kinetic energy” part of the 
Hamiltonian 

F$ s,” [q12dn=$ il w~I&(p> +&PI I (2 4) 

effectively damps all the higher order (p>l) contributions 
to the polymer total energy that correspond to more con- 
voluted polymer cormgurations. One could thus hope that 
the contribution of the p) 1 terms to the partition function 
would be adequately represented by an effective harmonic 
configurational Hamiltonian of the form 
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BROW) =$ s,” [ $12dn+i &ro) 

X [r(n) -rd2dn+PN~&d, (2.5) 

so that the partition function could be obtained from an 
effective one particle configurational sum as 

E&(N) = J L9r(n)e-fl&“0(N)= J d3rg-~~drd+ 

(2.6) 

The whole polymer chain would be thus represented as an 
effective single particle with the as yet unspecified param- 
eters {o(ro) and 2’o(ro) determined in such a way that 
so(N) would be an “optimal” approximation to the orig- 
inal partition function. The main difference between this 
approach and the formalism of Muthukumarg lies in the 
identification of the variational parameters as well as in the 
form of the variational ansatz [cf. Eq. (2.5) of the present 
work with Eq. (3.21) in Ref. 91. In our case, the varia- 
tional parameters are the variance of the Gaussian describ- 
ing the monomer density distribution, as well as the effec- 
tive “single particle” free energy (co and Yo), while in his 
case, they are the variance of the Gaussian and the effective 
step length (co and Zer). 

The term diagonal that we used in the Introduction 
refers to the form L$J r(n)2dn, which is a diagonalized 
version of a more general ansatz14 11 &&r (n ) r (m ) dn dm. 
The main difference between the two is in the range of 
correlations that they describe. In this sense, the diagonal 
variational ansatz is local, while the general quadratic one 
also includes long range correlations between distant 
monomers along the chain. It is probably due to these long 
range correlations that it is not applicable to the short 
range (excluded volume) interaction potential (see the dis- 
cussion in Ref. 17). 

Thus, in the specified approximation scheme, one can 
recognize a straightforward application and generalization, 
due to the presence of the intersegment polymer interac- 
tion potential, of the Feynman-Kleinert variational prin- 
ciple7 that has already proved to be a valuable tool in other 
areas of statistical mechanics.” 

Ill. LOWER BOUND FOR S(N) 

Let us tlrst write B(N) in a different way, introducing 
the S.C. auxiliary field (the Hubbard-Stratonowich) repre- 
sentation of the partition function. It relies on a represen- 
tation of the Boltzmann factor for the intrachain potential 
by a functional Gaussian integral over auxiliary fields such 
that 

B(N) = J L@r(n)e-Pz(N) 

=E,(N) 
s 

9r(n)SS$(r)e-8F+(N) 

=(((e-B~~‘N)>,c,,))~(,) 
+-@wy. (3.1) 

The triangular bracket notation, as in ( - - -)rCnj, is really 
self-explanatory and we leave it at that, while the auxiliary 
field functional integration measure is deflned again in the 
standard way as limM,,d4 r( l)d+ r(2)*.*d# r(M) 
+ g4(r). Apart from that, the following notation was 
introduced in the above equation: 

E&V) ={det[fiu-‘(r,r’)])1’2 

+iP s,” $[r(n)]dn+ifiJJ 4(r) 

Xu-‘(r,r’)4(rr)d3r d3r’, 

where i is the imaginary unit. We now introduce the zero 
order Hamiltonian @?Yo CEq. (2.5)] into the definition of 
the partition function E(N), thus obtaining an estimate 

> (e-fl&“o(N) ) 
r(n) 

=(,-WOW)> r(n) expl’--P< A~&lJl> I, 
with AX&v) =X&v) -X&v). .BY writing 
( * * *)~oI~Cnjl, we emphasize the fact that X0(N) depends 
only on the chain (and not the auxiliary field) degrees of 
freedom. The Jensen-Peierls inequality, valid for convex 
functionals with any measure,7 was used while deriving the 
above estimate. Equation (3.3) should also serve as a def- 
inition of the average i * * * > . Since the free energy is B 
= - kT In E(N), we can derive the following (Gibbs- 
Bogolyubov) inequality valid between F and r. 
=-kT ln Eo(N), 

F<Fo+ < A2Y&V) > 

=Fo-kT ln( (expl. --P(Z&V) 

-%0(N) )&Po[r(n)] I> >#(r, - (3.4) 

Through variational optimization of the second term in the 
above equation, we will get a good estimate for the free 
energy of the system. 
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IV. CALCULATION OF (AX&V)) 

We start by evaluating 

=ifl 
I oN (rp[r(n)l>~~[r(n,]dn+P I ,” Mdr(n> I128=o~r~nj#f+~ 

1 
--BNGf0(r0) )~Y~[~(~)I +z qS(r)u-‘(r,r’)+(r’)d3r d3r’. (4.1) 

The average ( * * - )A-~[~(~)] in the above equation affects only those quantities that depend on the chain degrees of freedom. 
Since GYo[r( n)] has a general Gaussian form, these averages can be calculated explicitly. First of all, we have 

d3k d3k 
(fb(d 1 LY=~[~(~)~ = mf(k)(e Wn) )qIaol= s mf(k) e ( @exp( -ikzi ([r(n)-ro]2)]) . (4.2) 

‘0 

The fmal averaging over r. is in general non-Gaussian and cannot be evaluated explicitly. We indicate this by ( * . * )b in 
the expressions where the Gaussian integrals have been evaluated. It is in this form of the general average 
bW~)l)&-o~r~n~~ that the ring nature of the polymer chain comes into play. For a ring polymer namely this average does 
not depend on n, since all the positions along the chain are equivalent. 

From Eq. (4.2), we obtain the following simple expression: 

a2~r0)=f([r(n)-r012)=~ piI o~+~o~ro~=&~(~)y 
P 

(4.3) 

with 9 (x) the standard Langevin function 9 (x) =cth x--( l/x). The averaging in the above equation refers only top> 1 
(Gaussian) Rouse components, therefore a2=a2(ro>. Thus we obtain the average of a general function depending on 
polymer coordinates in the form of a convolution 

s 
N (f [r(n) 1 )~o~rcn,+= ( I d3rf (r)pa4r,ro) , 

0 > with p=z( r,r’) =N( 2?ra2) -3’2 
‘0 

exp( -g), (4.4) 

where p,z(r,r’) is the Green’s function of diffusion equation. With this, we can go back to the expression for 
W&V - EoW ~~~~~~~~~ WI. (4.1 )I obtaining 

PW@) -~oOm&poLr(n)l =iP (S d3rm(r)pr(r,s)),o+P( I d3r$,(r)p,&,rc)) r; (i &(ro)Na2(ro)) ‘o 

(4.5) 

We note at this point that the “3” in the third term of the right-hand side of the above equation refers simply to the number 
of components of a vector. In a D-dimensional space, we would thus have 3 + D (see below). What remains now is the fhral 
4(r) integration, which is again Gaussian and can be evaluated exactly leading to 

=det[pu-‘(r,r’)]-1’2 exp[ -P<A%4(N) > I. (4.6) 

We have thus derived the expression for (AZ$(N)) that has a succinctly simple form resembling that of a potential 
energy of a smeared “particle” with a Gaussian density distribution, i.e., 
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P@~+(N>) = -~(~~(ro)N~2(ro)~~o-pN~~~~~~) >,+P s d3r(+&>p,dr,ro) jr0 
+fP ss d3r d3r’(p=2(r,r,)u(r,rl)p,z(r-ro))~o. (4.7) 

It is the last term in the above expression that sets it apart from the original Feynman-Kleinert variational equations. At 
this point, it is also easy to calculate Fo, which apart from the final roeintegration, again reduces to Gaussian integrals 
yielding 

Fo= -kT ln(e- Bq(N))r(n) = -kT In d3ro exp( -PNYo(ro) -3 In sinh([g(ro)N]/2)/[~(ro)N]/2). (4.8) 

V. VARIATIONAL DETERMINATION OF go(ro) AND 
-G(ro) 

We showed before that rttid=Fo+ (AZ&V) > is 
always an upper bound for the exact free energy of the 
system. By minimizing it with respect to co(ro) as well as 
Zo( ro), we obtain, following Kleinert,’ from the first vari- 
ation ~,o(,)~~~[~O(rO),~O(FO)l = 0, 

BNTo(ro) = -~C~(ro>Na2+PW(ro), (5.1) 

where we introduced the “chain smeared” potential energy 
of the form 

Wr0) = I d3r $,(r)p,4r,d 

d3r d3r’pa2(r,ro)u(r,r’)p,2(r’,ro). 

(5.2) 

Also from S~o~,~~~~~[~o(ro),~~(ro,l = 0, it follows, af- 
ter taking into account the definition of a2, i.e., Eq. (4.3), 
that 

9 &&&‘V=B~ Wrd. (5.3) 

Equations (5.1) and (5.3) are the Euler-Lagrange equa- 
tions pertaining to the variational problem. Evaluating the 
minimized free energy, we obtain 

9-=-kTh 
I 

d3r~-B~drO), (5.4) 

where Fo( ro> is now the effective one particle Hamiltonian 
that has the form 

PFo(rd =3 ln sinhCI~(rO>Nl/2)/([~(ro)Nl/2) 

-i &ro>Na2(ro) +OW(ro>.m (5.5) 

One should note here that dependence on r. of the effective 
one particle Hamiltonian is in no way simple in general. 
Only if the external field is zero and the intrachain poten- 
tial is independent of the absolute coordinates, thus restor- 
ing the homogeneity of the space, does Fo(ro) not depend 
on ra and becomes equal to the minimized free energy. 

VI. CONFIGURATIONAL PROPERTIES OF THE 
POLYMER CHAIN 

Configurational properties of the polymer chain are 
represented by different averages that can be traced back to 
a single segment-segment correlation function of the form 

Y00.m) =(r(n>r(m>)~o(N) 

~( 
m 

= 4-t c &p)coswp cos @pm 
p=l 

m 

~~ + z &p)sinwflsinop . 
p=l > PO(N) 

(6.1) 
As before, the ( * * *)Xo(N) average in the above equation 
consists of averaging over the Gaussian variables roti) and 
rS(p) , as well as in the final averaging over r,. Thus we can 
derive from the above definition 

PO(N) 

2 

-m ro’ I> 
(6.2) 

Other quantities that are of importance in the chain statis- 
tics follow simply from this expression. First of all, there 
are the two quantities describing the global statistical prop- 
erties of the chain as a whole. These are the mean dimen- 
sion of the chain (the mean end to end separation of 
the chain for an open chain) defined in the case of a ring 
chain as 

=2[ 90(;,;)-90(;90)] 

2P 
= - tanh @ 

60 > 4 ’ 
‘0 

as well as the mean radius of gyration 

(6.3) 
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WL=$ ( s,” [ r(n> -$ s,” r(m)dm]2dn) do 

= YoW,N> -a 
cr3N 4 4 coth y:- tanh @ 

Gm+ Gm2 4 I) ro’ 
(6.4) 

One can define also quantities that describe the properties of the chain locally. One of them is the mean square distance 
between two segments along the chain that can be derived as 

Another quantity describing a local property of the chain is the orientational correlation function, whose regular part [thus 
the part aside from Z2a(n -m>] can be obtained in the form 

(n(n)n(m))= ([F 
cosh&[(N/2)-In-ml] 

siW GNV21 ’ (6.6) 
‘0 

Some caution has to be exercised while deriving the co-O 
limit in the above equations. The appropriate procedure is 
to include- the p=O term into the different summations, 
and only then make the co+0 limit. This does not effect the 
results for co#O, but gives the correct form of the Gauss- 
ian limit. 

VII. PROPERTIES OF A CHAIN WITH INTRACHAIN 
INTERACTIONS 

If there is no external potential, then we remain with 
the following expression for the “chain smeared” potential 
energy in D-dimensional space: 

dDr dDr’p,z(r,rO)u(r,r’)p,z(r’,ro) 

1 
s 

d% 
=- 

2 ~lpadk) 12dW (7.1) 

that does not depend on r,. In the above equation, we 
assumed that u(r,r’) and pg(r,r’) have Fourier trans- 
forms. 

The first case we treat explicitly is the electrostatic 
intersegment potential, which is a solution of the Laplace 
equation in D dimensions and whose Fourier transform 
should thus have the form u(k) = (e/eeo) kw2, where e. is 
the charge residing on each monomer, while other symbols 
are standard. In this case, we get 

w= 
e3” 

2ee&4r) O”[ (D/2) -11 (a2)(D’2)-1 * (7.2) 

The variational condition (5.3) together with the definition 
(4.3), thus read 

P@ @-(D/2) 

P (‘fl)2=-6~~o(4~) On (a’/N) O” 

and 

a 
3GW 

(7.3) 

and have to be solved simultaneously. It follows from the 
above two equations that co has to be imaginary (its square 
has to be negative). This is no surprise since the presence 
of an intrachain repulsive potential in general swells the 
chain. Also we note that for D>6 [i.e., for 3 - (D/2) < 01, 
the solution of the above equations will always be a2/N 
=const., which corresponds to a random flight chain. The 
borderline dimensionality D=6 is thus the upper critical 
dimension for the electrostatically self-interacting chain, in 
complete accord with the Lagrangian renormalization 
group calculationsi’ Below D=6 (and thus also in three 
dimensions), we derive the following approximate (Glory 
type) equation, satisfied by a2/N in the scaling limit N, 1, 

1 -$$+O(a-‘)I =b( D) 
#-(D/2) 

( a2/N) D’2 ’ 
(7.4) 

where b(D) depends only on the strength of the electro- 
static potential and dimensionality, but does not depend on 
the length of the chain. The lowest order solution of Eq. 
(7.4) is 

(7.5) 

with an appropriate definition of C(D). 
The average dimensions of the chain, de&red in JZq. 

(6.3) for the limiting case of Eq. (7.5), can be obtained in 
the form 

9’= ( [r(~)-r(0)]2),,N,-12a2. ‘(7.6) 

The dependence of 9’ on the length of the chain indicates 
that electrostatic intrachain repulsions substantially stiffen 
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up the chain, as can be easily discerned in three dimensions 
where 9P2(D=3)-N2 (the stiff rod limit). By Eq. (6.4), 
we also have 

.gf&& ( s,” [r(n)-+ ~Nr(m)dm]2dn)xo~N~+3a2. 

(7.7) 

The quantities describing local statistical properties of the 
chain are the mean square distance between two segments 
along the chain obtained from Eq. (6.5 ) 

~2(n,m) =( [r(n) -r(m) 12>Zo(N) 

d6a2 In-ml l--cos2~-~ (7.8) 

while the orientational correlation function can be derived 
in the form (6.6) 

(n(n>dm>)= ([$I [T])dp (N) 
0 

It follows from this form of the orientational correlation 
function that long range orientational correlations along 
the charged chain are possible only if a2/N2 remains tinite 
in the scaling limit, a case attainable for a2 given by Eq. 
(7.5) only if 0~3. This is an interesting result. A charged 
chain in three dimensions should thus not only be fully 
extended, but should also exhibit long range orientational 
correlations along the chain. 

Equations (7.6)-(7.9) describe a chain of a toroidal 
statistical shape, a fact consistent with the original pre- 
sumption of a ring polymer. For an open chain, the situa- 
tion would be more complicated since long range 
monomer-monomer interactions would break the symme- 
try of the space making the polymer chain essentially rod- 
like. 

Let us now examine the excluded volume intrachain 
potential u( r,r’) = baD(r -r’) that can describe not only 
“ordinary” excluded volume effects, but also the “electro- 
static excluded volume” obtained in the case of a strongly 
screened Coulomb potential. In this case, b=egeq?. We 
can derive quite straightforwardly that Eq. (7.3) assumes 
in this case the form 

(7.10) 

We see from these identities that the upper critical dimen- 
sionality in this case is D=4.16 The rest of the analysis is 
the same as in the electrostatic case and we shall not repeat 
it. The tinal result that we get is 

(7.11) 

with the appropriate definition of C’ ( D) . The rest of the 
general formulas (7.6)-(7.9) remain unchanged if we in- 
sert the appropriate definition of a2, i.e., Eq. (7.11)) lead- 
ing thus to Flory’s result for the chain’s dimensions in the 
scaling limit. What needs to be additionally emphasized 
here is that a chain swollen by excluded volume intrachain 
interactions does not, in distinction with the electrostati- 
cally self-interacting chain, exhibit long range orientational 
correlations. This simply follows from Eq. (7.9), since 
with a2 given by Eq. (7.11)) the ratio a2/N2 does not re- 
main finite for N, 1. 

VIII. PROPERTIES OF A CHAIN IN EXTERNAL FIELDS 

External fields break the symmetry of space, and Win 
this case depends explicitly on ro. The analysis outlined in 
previous sections could thus proceed only numerically as 
the final r. integration is in no way trivial. There is never- 
theless a way towards at least a qualitative analytical esti- 
mate of the numerical results. It is similar to the procedure 
used by Biittner and Flytzanis’* and consists of the addi- 
tional (saddle point) minimization of the effective free en- 
ergy F. with respect to r,. This procedure is strictly cor- 
rect only in the limit when F. scales with a positive power 
of N and N> 1. 

Let us first of all derive the variational equations for 
the case of electrostatically self-interacting chain in an at- 
tractive external field produced by a single point charge e 
located at rl . This problem is a distant relative of the prob- 
lem of polymer adsorption to a planar surface.5 By the 
general formula (5.2)) we have in this case 

eeoIv 
W(r,) = -- EE Fdwl) 

0 

ej$V” d% 
f- 2EEo WDI padk) I 2u(k>, (8.1) 

where we introduced 

s 

d% 
F,z(r,r’) = ~~e’k(‘-r’)~(k)~=2(k) (8.2) 

with u(k) again being the Fourier transform of the Cou- 
lomb potential, i.e., u(k) = kv2. Evaluating the last inte- 
gral explicitly in D dimensions, we remain with 

2(0/2)--2 
Fa2(r,ti’)= (2.rrjD121r-r’12-Dy $1; 

1 
=2(2r) D’2[ (-D/2) -I] (a2) (D/2)-1 

x[ l-( 1-$!$+0( ‘r-4JJ4)]. 

(8.3) 

The function y(cr;x) is the incomplete gamma function.20 
We are now ready to write down the variational conditions 
Eqs. (5.3) and (4.3) that assume the form 
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Pf 
f (‘8)2=6~~o(4n) o/2 

#-(D/L?) 

x (ee02 D/2e-[(lro--rl12)/(2d)1-e~) 

and 

P 
3G,N 

(8.4) 

The above relation embodies in the clearest way the dis- 
tinction between the approach devised by Muthukumar,5 
where an effective step length is determined irrespective of 
the strength of the external potential, and the approach 
advocated here where both the external and the interseg- 
ment potentials compete in the determination of the “ef- 
fective step length.” 

As already announced, we shall proceed towards ob- 
mining simpl&d analytic solutions through an additional 
minimization of the effective free energy with respect to r. . 
This gives us r. =rl. A further consequence of this addi- 
tional minimization of the free energy is that the monomer 
density is now simply a Gaussian centered at the value of r 
obtained from the minimization of the free energy, i.e. 
r=rl. The solution of Fqs. (8.4) now depends solely on 
the sign and magnitude of E = ( eeo2D’2 - e$‘V) . If ~40, we 
are back to the solution (7.5). In the opposite case, we 
obtain a new type of behavior 

2/C D-4) 

with an appropriate definition of C” (0) that is indepen- 
dent of N. As is clear from Rq. (8.4), this type of behavior 
can set in only if D < 4 [i.e., for 2- (D/2) > 01. We note 
that a2 in this case does not depend on N at all. It only 
depends on the strength of the external potential I u 1 -e/ 
e,, as a2( D=3) - I u I -2, and a’( D=2) - 1 u I -‘. This ob- 
servation remains valid only for not too long chains, while 
for long chains, we should have a2( D=G 3) -N”/“, if the 
three-body potential would be taken into account.g 

Result (8.5) is typical for a spatially localized chain,” 
where the overwhelming strength of the external field is 
counteracted only by the chain entropy and not by intra- 
chain repulsions. The upper critical dimension for localiza- 
tion of the chain is D=4. For 6 > D>4, the chain is always 
swollen, while for 026, we are back to the free flight re- 
sults. A sequence localized-swollen Gaussian is therefore 
typical for this problem as one goes from low to high di- 
mensionalities. 

Interestingly enough, these results do not hold any 
more for an excluded volume chain in a delta-like (con- 
tact) external potential, thus for &Jr) = -b’6(r-ri). In 
this case, it follows straightforwardly from Eq. (5.3) 

N’ - ( D/2) 

; (Gfl)2+) 6(4~~DE (,2/~)@/2’+f 

x(b’2D’2exp- [ ( Ire-rl 12)/(2a2)] -b2v). 

(8.6) 

Clearly in this case the upper critical dimensionality for the 
localization to set in is D=2 [i.e., for 1 - (D/2) < 0] and 
the physically interesting case is within the domain of a 
swollen chain. This conclusion is quite important for the 
effective polymer chain mediated forces between two point 
attractive potentials. 

Returning now to the statistical properties of a spa- 
tially localized polymer chain, we first of all note that the 
solution ( 8.5) implies a real value for go, as opposed to its 
imaginary value in the case of a swollen chain [Eq. (7.5)]. 
The mean end-end separation squared and the radius of 
gyration squared in this case behave as 

(8.7) 

The local statistical properties of the chain suggest a pic- 
ture of a locally stiff chain, with an effective stiffness de- 
pending on the magnitude of the external potential, 

(n(n)n(m))~o(N)-~exp[--(12/3a2) In-ml 1. 

The polymer chain could thus be envisioned in this limit as 
being stiff on a very small scales [Eq. (8.8)] becoming 
progressively floppier as we go to larger scales, behaving 
finally globally as Eq. (8.7)) a result which is certainly not 
close to a persistent chain limit.21 The statistical properties 
of a localized chain thus belong to a special class, being 
quite different from the properties of a swollen or of a 
random flight chain. 

IX. POLYMER CHAIN MEDIATED ELECTROSTATIC 
INTERACTIONS 

We now address the situation where a polymer chain is 
in an attractive external (electrostatic) potential of several 
(two in this case) point charge carriers. After integrating 
the partition function over the polymer degrees of freedom, 
we remain with a free energy that depends only on the 
coordinates of the external point charge carriers. It thus 
makes sense to talk of a polymer-mediated force between 
point charges, stemming from the dependence of the effec- 
tive free energy on their coordinates. 

If we have two point charges of magnitudes el and e2, 
and of sign opposite to the resident monomer charges (eo> 
situated at r = rl and r = r2, then the variational equations 
can be derived in the form 
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PP jv2- (D/2) 

P (ca)2=6&“(47T)D~2 (a2/N>D’~ 

X{ele02D’2 exp- [( ]ro-r1]2)/(2a2)] 

+e2e02D’2exp-[( ~ro-r2~2)/(2a2)]~e~ 

(9.1) 
together with 

12 
3(5‘oN) 

y G!z =“” 
( 1 2 N’ (9.2) 

The effective free energy (5.5) for this system can be cast 
into the form 

v-tot = 
he2 

STREET 1 rl -r2 I +wf) = 

Pele2 
=4m3soIrl-r21 

+ P[4N2-2 (D’2)-‘(eleo+e2eo)N] 
2&4~)~‘~[ (D/2) -11 (a2)(o’2)--1 ’ 

-- Fs(ro,rd -‘- Faz(ro,r2), 
PeleoN 

=0 CEO 
(9.3) 

where the definition of F,z(r,r’ ) is the same as before. 
Clearly, the dependence of Ftot on the separation between 
the external charges is composed of two terms, the first one 
being the direct electrostatic interaction between the two 
point charges and the second one denoting the polymer 
chain-mediated interaction. The solution of the variational 
equations (9.1) and (9.2) is obviously not straightforward 
and we introduce here the same device as in the previous 
section to make it tractable. However, one immediately 
notes that the minimization of Eq. (9.3) with respect to r. 
is not trivial either. Approximate analytical solutions can 
only be derived for the limit of small and/or large ( jr1 
-r212)/(2a2). 

The limit of ( I rl -r2 I 2)/(2a2) $s. 1 can only be strictly 
attained in the case that u2+const, i.e., in the case of a 
localized chain [Eq. (8.5)]. If the chain is not localized, 
then it is generally swollen and a2 scales with a positive 
power of N. Thus for any value of I rl - r2 I, a can be larger 
if only we choose a large enough N. In the asymptotic limit 
of large I r1 -r2 1, it is thus enough to analyze only the case 
of a localized chain. 

The minimization of the free energy (9.3) in the limit 
of large Irl-r2] gives two solutions, either ro’onrl or r, 
zr2. They are equivalent only if el =e2. If this is not the 
case, then the localized solution is the one, for which one 
has ( e$N2-2D’2e,e,,hT) 40, with index i being either one or 
two [compare the discussion following Eq. (8.4)]. If the 
chain is localized in the vicinity of the charge el and taking 
note of the small argument expansion of the F,z( r,r’ ) func- 
tion, we can derive the total free energy of the system as 

P(v2-woN) 
+ 47reeolrl-r2j ’ (9.4) 

where a2 is given by Eq. (8.5) and depends solely on the 
value of the charges of the two point sources. A similar 
expression can be derived for the chain localization at the 
point ro=r2. The total free energy thus-contains a long 
range interaction term whose magnitude depends on the 
magnitudes of the charges involved. The long range 
polymer-mediated forces have an interesting twist to them 
in the case that el =e,=$e,& corresponding to an overall 
electrically neutral system. Then it follows from Eq. (9.1) 
that only if 2 < D < 4 can there be chain localization and a 
long range attraction at large separations between the two 
charges. This condition is fulfilled only for the physically 
interesting case of 0=3. Also, in this case, the interaction 
between the two charges is the same as if the polymer was 
absent, but with a sign reversed (attraction instead of re- 
pulsion). This result is expected but it is quite surprising 
that it is valid only in 4=3. 

Now we analyze the small separation expansion, i.e., 
the case ( I r-r’ I 2>/(2a2) < 1. For a swollen chain, this is 
the limit valid for practically all separations if only the 
chain is long enough. The minimization of the free energy 
with respect to r. gives in this case ro&rl +r2). By ex- 
panding the free energy (9.3) as well as the variational 
equation (9.1) to the second order in ( lr-r’ 

I 
)/(v’Zz), we 

obtain the following limiting behavior: If [2D 2( el +e,)esN 
- e$V”] % 0, then the solution of the variational equation 
(9.1) is given in the lowest order by Eq. (8.5)) while the 
free energy expansion is 

4-D 2D’2(el+e2)edV lr1-r212 -- 
D-2+2D12(e,+~e2)e,&-e,@2 Da2 +“’ ’ 1 (9.5) 

The polymer-mediated part of this free energy scales as N and is bound to be very large in the scaling limit overwhelming 
the direct Coulomb repulsion for not too small values of I rl -r2 I. If, however, we have [2D’2( er +e2)eeN-eti2] 40, then 
the variational equation has the lowest order solution (7.5) and the free energy has the expansion 

w-+-tot = 
Pv2 

4mfzojrl-r21 
a2 3n2 2D’2(el+e2)e$V lrl-r212 

-D1n~+2e~2-2D/2(el+e2)e~~ 

(9.6) 
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The polymer part of the last result is basically the Gaussian 
limit for a free flight chain under elastic traction. Since the 
polymer-mediated interactions scale inversely to the length 
of the chain in this limit, they are bound to be small. We 
note that for very small separation between external 
charges, the direct Coulomb repulsion always dominates 
the interactions. 

There is another interesting conclusion that follows 
from the approximate expressions above, in the case of a 
chain that is localized at small as well as at large interionic 
separations. Since the minimized rc in both limits is either 
i(r1+r2) or ri, where i= 1 or 2, there should be a symme- 
try breaking transition at an intermediate separation Irl 
-r2 I = DC that we can derive from Eq. (9.1) as 

@S 2Np hl e2 ye+;;;D,2.. 
0 

(9.7) 

For I rl -r2 1 <DC, the chain should be symmetrically dis- 
tributed with respect to both point charges, whereas in the 
opposite case, it should be preferentially localized around 
one of the point charges. This transition is closely related 
to the monomodal-bimodal symmetry breaking transition 
observed with a polyelectrolyte chain confined inside a pla- 
nar slab.2 

X. DISCUSSION 

The variational principle as applied to an effective 
Gaussian ansatz (2.6) proved to be quite instrumental for 
derivation of simple limiting or asymptotic relations valid 
for a charge polymer chain in external fields in the scaling 
limit. In this limit, our original supposition of a closed 
chain is not particularly important, but does help substan- 
tially to keep the algebra as transparent as possible. The 
results obtained in Sec. VII for a bulk electrostatically self- 
interacting chain conform favorably to previous nonpertur- 
bative derivations of the charged polymer properties. Re- 
sult (7.5) together with Eq. (7.6) conforms to the Flory- 
type derivation, but in general differs from the Lagrangian 
renormalization group and scaling results.19 It also con- 
forms closely to the results of other nonperturbative meth- 
ods such as those based on the “effective medium” theo- 
ries22 or the Langer-Zittartz method.23 The result ~for the 
sterically self-interacting chain (7.11) is again the same as 
the one given by the Flory-type derivation. Also, it is in- 
teresting to note that the diagonal variational ansatz leads 
to good approximations even in the case of excluded vol- 
ume interactions (short range delta potential), where the 
more general quadratic ansatz fails.” 

The configurational properties of an electrostatically 
stiffened chain [cf. Eqs. (7.8) and (7.9)] were found to 
display long range orientational correlations even in the 
limit of large N. A Coulombic chain should thus belong to 
a wholly different “universality class” that is not reducible 
to a Gaussian chain in any limit, in contradiction to the 
persistent chain that always attains a Gaussian like behav- 
ior if only it is long enough. 

The picture of a localized chain provided by Eqs. (8.7) 
and (8.8) is intuitively clear. The chain is packed into a 

very small volume and is stiff on the scales of the order of 
I u I -2, where I u I is the strength of the external potential. 
This scale of the stiffening of the chain can become quite 
large in the case that (eeo2D’2-e$N) >, 0. The quantity a 
would in this case essentially play the role of a correlation 
length close to a second order phase transition, corre- 
sponding in the scaling limit N+ cu to a localized -*free 
chain transformation. 

Localization of the charged chain in three dimensions 
in the case of an electrostatically neutral system (the 
charge residing on the polymer is equal but of opposite sign 
to the magnitude of the two point charges) has profound 
influences on their interaction. In this case, the total force 
between the two charges is quasielastic at small separa- 
tions, i.e., it goes approximately as the separation between 
the two [see Eq. (9.5)]. The magnitude of this force is quite 
large and scales linearly with the length of the chain. This 
is quite unexpected since the ordinary elastic energy of the 
chain should look more like Eq. (9.6), being inversely pro- 
portional to N. Even more so is the force at large separa- 
tions, i.e., Coulombic in its form, but of opposite sign [see 
Eq. (9.4)]. The localization of the chain together with its 
symmetry breaking leap to one of the external charges 
leads to a charge reversal of that particular point charge. 
These conclusions are quite intuitive, but it does come as a 
surprise that they are valid only in D=3 (see Sec. IX). 
They are thus not valid for, e.g., polymers adsorbed to a 
surface that lie mostly in the plane of adsorption. 

There is another interesting general conclusion that 
one can draw regarding the polymer mediated interactions. 
If the polymer chain is in a field created by a frozen con- 
figuration of point charges -ei (with i=l, M), then the 
effective free energy would contain terms of. the form 
BE 1Fa2( rs,ri) . The variational condition (9.1) would thus 
contain a sum of Gaussians centered at ri. Should we now 
apply the minimization with respect to r. to the effective 
free energy, we would obtain M approximate solutions r. 
= ri for the case where ( I ri- rk I )/a $- 1. That would mean 
that the polymer mediated interaction in this limit is pair- 
wise additive, In the opposite limit of ( I ri-rk I )/a& 1, an 
approximate solution would be ro= ( l/M) ZE lri. This so- 
lution leads to nonpairwise additive forces. Introduction of 
an effective interparticle potential to describe the interac- 
tions between the M charged particles would thus only 
make sense at extreme dilution. 

There are several obvious ways of generalizing the 
variational approach to self-interacting polymer chains as 
was detailed above. Aside from relaxing the ring chain 
constraint, one direction would be to generalize the ansatz 
(2.5) itself, let us say by treating the first P and not just 

p=O, treating Rouse components explicitly, and the rest 
quadratically. Also the quadratic coupling in Eq. (2.5) 
could be generalized in the sense to include nondiagonal 
Rouse components as well. The generalizations of this type 
have been considered in detail by Kleinert’ and shown to 
lead to no spectacular improvements of the original varia- 
tional ansatz. On the other hand, the introduction of the 
full non”diagonalized” quadratic ansatz, as in the work of 
Jbnsson, Peterson, and Siiderberg, I5 is apparently appro- 
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priate only for long range potentials, where it is extremely 
accurate, and does not lend itself to easily analytical esti- 
mates. Our work might thus be seen as complementary to 
variational approaches of this type. 
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