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We formulate and evaluate the van der Waals part of the free energy due to a dielectric profile that
varies continuously throughout the space between two interacting bodies. Not considering the work
needed to create the inhomogeneous dielectric profile, focusing only on that part of the free energy
affected by the inhomogeneity, we compare the ensuing interaction free energy with that of the
original Lifshitz formulation with its step function changes at material boundaries and uniform
dielectric medium. Rather than the monotonically varying attraction between like bodies given by
the original formulation, the inhomogeneous continuous dielectric function leads to attractions as
well as repulsions. The Lifshitz result emerges naturally in the limit of separations much larger than
the thickness of the interfaces. @004 American Institute of Physic$DOI: 10.1063/1.1796234

I. INTRODUCTION width of the inhomogeneous material interfaces, the Lifshitz
form emerges naturally.
Fifty years after its formulatioh,the Lifshitz theory of For illustration, we examine the consequences of the for-

van der Waals interactions thriv@sts results essential in mulation for a representative form of the dielectric profile.
condensed matter physics, high-energy physics, colloid scM/e derive the interaction free energy as a function of the
ence, and cosmologyThe approximations on which it is separation between diffuse interfaces. The properties re-
based are usually realistic and lead to results that can beealed here should be relevant to interactions between the
reliably compared with measurement. One restrictive condilnterfaces that exhibit a continuously varying dielectric pro-
tion built into the theory is the assumed steplike change irfile Whose form changes with separation.
the dielectric permeability at the interfaces of bodies that
interact across spatially homogeneous media. Several extel- THE DISCRETE LIMIT
sions of the theory have relaxed the condition of steplike  \We have recently reformulated the Lifshitz theory of
interfaces but none has suggested a way to relax the condiacroscopic van der Waals interactions across a region com-
tion of a uniform dielectric medium. What happens if one posed of piecewise continuous dielectric response, by map-
assumes a medium whose local dielectric response varigsng it onto an algebra of 22 matrices that allows for a
continuously across the entire space between bodies? So stsaightforward computation of the secular determinant of
to keep within the conditions of a macroscopic-continuumthe electromagneti¢EM) field modes. Here we schematize
theory, we evaluate only that part of the van der Waals interthe problem as shown in Fig. 1 to apply the reformulated
action free energy that is due to the inhomogeneity of thd-ifshitz theory as in Ref. 4.
dielectric profile that varies slowly compared to the inter- ~ We build on two fundamental matrices: the first is due to
atomic spacing. dielectric discontinuity

We build on a recent reformulation of the Lifshitz
theory for media whose dielectric response varies stepwise

in the z direction perpendicular to the planar interacting sur- DW= — A , )

faces. We smooth that discrete result to the limit of a con- —4A 1

tinuous dielectric profilee(z). The new result is that at small where

spacings, where the diffuse interface profiles overlap, there is

apparent repulsion; the removal of regions of inhomogeneity S

increases the interaction free energy leading finally to a van- A= (M i (2)
Pi-1€i T pi€i—1

ishing interaction free energy upon the disappearance of in-
homogeneities. At spacings that are large compared to thidere,¢;(w) is the(constank dielectric function in the region
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D D+ thicknessa;=a=1z—z_ is characterized by a constant di-

' electric function. In the limit oN—o and/oraj=a—0 the
discretized scheme smoothly approaches the continuum
limit. More on this will be discussed later.

We introduce the transfer matriX,

M=D®¥xTx D™

L [1]|2] oo fid] ifisff | R 1 —A,

, ®

where

..... T TE
T T= lim TOX DO X T@ x D@, TN=D 5 DIN=D 5 (N

N— oo

FIG. 1. Schematic representation of geometry in the discrete limit. The 6
region betweer andR of thicknesst is divided intoN layers of thickness (6)
a, leading to the 11th element of the transfer matrix &. In the continu-

ous limit this leads to Eq(13). Then we extend the region by moving thie Van der Waals i . h | dvi .
boundary toz— — andR to z—, as well as by assuming that there are an der Waals interactions are then evaluated via an equation

no remainig dielectric discontinuities at these boundaries. This leads to EqzOnnecting the secular determingdéeterminant of the coef-
(14) in the continuous limit. ficients of the EM modes in the prescribed geometwjth
the fluctuation free energy of the fofm

7_1<z<z andp;(0)?=Q%*—{[ /(w) ui(w) ®*]/c?}, where

mi(w) is the magnetic permeabilityQ is the wave vector F= kTE 2 Inmyy(i€,,Q), (7)
perpendicular to the transverse directianis the frequency, n=0’

andc is the velocity of light in vacuum. The second matrix is

due to the propagation wherem;, is the 11th element of the transfer mattik with

an analogous form for the TE modes. Tinsum goes over
all the Matsubara frequencie§,=2m(kT/A)n. The prime
(3 in the summation means that the=0 term is given weight
1/2.
The matrixM can be evaluated explicitly to all orders in
DM describes the effect of the boundary conditions on thehe discontinuity matrice®" only for very simple dielectric
EM modes at the dielectric boundary afit) their propaga-  profiles, most notably for profiles with a periodic motif as in
tion across a dielectrically homogeneous region. The abovRef. 4. In the present case there is no periodicity in the pro-
definitions are for the TM field modes. TE field modes arefile. The methods of explicit evaluation &f;; to all orders
described analogously via a formal substitution do not apply. Nevertheless, if we limit ourselves to the low-
est order limit(pairwise approximationin the powers of the
— [ pi_1€—pi€i_1 i L= P 1 discontinuity matrices, we can still obtain @pproximate
A= (—) —A = (—) (4) form of the transfer matrix.
Pi-1€ T Pi€i—1 Pi— 1M T ik~ Consider the case dil=2, thenN=3 and so on, to
The region betweer and R in Fig. 1, with its dielectric ~ determine by induction the general form df to the
function continuously varying in the transverseoordinate, lowest order inA;. To terms up to second order i, we
is now discretized intdN layers, where each of the layers of derive

1 0

T = :
0 Ci

1 0
0 e 2riz—z-1) -

N N-1 k N-1
1+ AATT et —2 Ay H cj+
=1 k=i+1 j=i+1 k=1 J—k+1
T= N-1 K N N-1 N-1 : (®)
-2 AL et H +2 Z AAKH H Cij+“'
k=1 j=k+1 = =i+1 j=1 m=k
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The next order term in the off-diagonal elements would be ofagain this result is exact to third order ﬁ The inhomo-
third order inA;; and in the diagonal elements, of fourth geneities in the dielectric response have to be overall small
order inA;. For smooth dielectric profiles the third and the and, in the limit ofa;=a—0, the dielectric function should
fourth order terms are much smaller then the second orddre continuous. Under these conditions, we now smooth the

terms and can be omitted. To apply Ed@), we evaluate discrete jumps in the dielectric response a formal conse-
uence of the discretization procedure, into a continuous
m]_l:[D(c)XTX ]D(R)]ll q p

variation of e(z).°> Specifically

N
S — s , — , 10
:1+2 AA, H ¢+ A €—€(2), pi—p(2) (10
i=1 k=i+1 j=i+1 as well as
N-1 N _ N-1 dE(Z) dp(Z)
Xk:1 kizlll cj+ 2y A €i+1_6i—>( iz )dZ, Pi+1_Pi—>(W)dZ, (13)
N and with Eq.(2)
x I ci+AA — . 1dIne(z)/p(z
=Ky TR A—A(z)dz, A(2)== % (12
N N-1 N-1 i N . . _
« H ci+ | AiAkH H CiCm|. (9) The summation overrin Eq_. (9) become integrals ovex In
=1 i=1 kST+1 j=1 m=k+1 this way we obtain theontinuousform of Eq. (9) as

+Aﬁf:dnﬁ(z)

+ ARfoedzA(z)exp{ - 2ij(z")dz"

1+ foedzfjdz’ﬁ(z)ﬁ(z’)ex% Zfzz’p(z”)di’) ) .

4 € ~ ~ Y
lim m11=1+f dzJ' dz’A(z)A(z’)exp(—Zfz p(2)dZ"
0 z z

N— o
z
><exp( —Zf p(Z2")dZ’
0

¢
+ARA, exp{ —Zf p(z"dz'
0

(13
|
If the dielectric slab is homogeneous with small dielectric >
discontinuities atC and R, the above result for the secular Fle(z)]= kTE 2 Inmy,
determinant obviously reverts to the standard form of the
Lifshitz interactiof on the pairwise level in the limit of ” .
small inhomogeneities in the dielectric and magnetic perme- =KkT E f dzf dz'A(z)A(Z')
abilities. (2m)? )= Jz
We now extend the region of inhomogeneity betwé&en S
and £ so that it comprises the whole axis. We assume ><exp( f p(Z")dZ") (15

further that there are no discontinuities at the two bound-

aries, i.e.,Ag, A,=0. Then, to lowest order, the secular derived to the lowest order in the gradient of the dielectric

determinant can be written as function. In the nonretarded limgd—c only then=0 term

survives, leading t@(z,w)=Q. We can perform th&) in-

w . tegral explicitly, obtaining

lim m11=1+J dzf dz' A(z)A(Z")
—®© z

N kT A(2)A(2")
f[e(z)]:—f dzf 22
7! 16/]7' I z |Z_Z!|2
xXexp —2 | p(Z")dZ"|. (14
z dine(z) dine(z’)
Note that the range of integration is nowsw, + and that " 64w ffxdzfz dz 1z—2'|2 - (19

€(z) is defined over the whole axis. Should there be any

additional discontinuities in the(z) the appropriate terms This limiting form of the free energy corresponds to a sum-

would have to be retained in E¢l4), just as they were in mation of the g—z’) 2 interactions between thin slabs lo-

Eqg. (13). cated at differenz andz’ and is thus intuitively very simple
From Eq.(7) we obtain the surface density of the Lif- to understand. One could refer to it as the Hamaker limit for

shitz free energy as a functional of the continuously gradedhe continuous inhomogeneous dielectric. Howevezr=at’

dielectric function profilee(z) this form of the free energy contains a spurious divergence,
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due to the continuum limit, which needs to be subtracted 140(F ' T ' H
appropriately so as to regularize the free energy.

Note that Eq(16) is a functional of thegradientsof the 120 ]
dielectric function. The more inhomogeneous the dielectric 1=07,2,84

profile the larger the integrand in the free energy Hd).
For vanishing inhomogeneities this free energy likewise van-
ishes by definition.

IIl. THE CONTINUUM LIMIT

Because we derived the result E43) via a continuum
limit of a discretized problem, we have to be careful to ex-
clude the self-interaction term, at=z', correctly from the
expression Eq(16). For pointsz=z', we would obtain an 0 :
infinite value of the integrand. This divergence is neverthe- z[A]
less spurious and is due to the following fact: in the discrete
version of Eq(15), the first term in Eq(9), the indexk starts FIG. 2. The model inhomogeneous dielectric functig) given by Egs.

at k=i+1, and is thus never equal fo When going to a (30) and(31) with o=1 A; €=0.7, 2, and 8 A. For small—0 the dielectric
! profile goes smoothly to a homogeneous dielectric response; for {faitge

. - . .
continuous limit, Eq.(15) the integral overz’ should not approaches a box with diffuse boundaries. Hege-80 andAe=40. The
start atz, but at a valuez'=z+a, where at the end we origin of ¢ and the position of the second interface €e0.7, 2, and 8 A are

should leta—0. In this way we exclude the van der Waals indicated with arrows.
interaction self energy from Eq15).

We introduce the cutoff into Eq.(15) that will take care
of the self-interaction term. Then E@L5) becomes

HF
L

Fe)=lim{F e(2)]- Fol (2)]}

Ae@)=q1q- | dz[ az A@AR) an v
€(2)]=— z 7—, ~ A

16m ) ")z " (2 —z+a)? kT fw q fwd , A(2)A(z")

=— z 7/ ——

so that the two discrete layers in the sum, converted into an 167 ) z (z' —z+a)?
integral, cannot coincide. We now take the limit of this ex- KT 1
pr_ession asa—0 gnq subtract t.hi.s .Iimit fronIF[_a(z)]. In - _f dzA%(z) =. (20)
this way we eliminate the infinite but artificial self- 167 ) = a

where we have

¥xplicitly extracted the divergent self-interaction term is our

objective. We should point out that the above regularization

AZY=A[z+(2' —2)]~A(2)— (z—2)A' (2) +- -, procedure is not extraordinary in any respect, one just needs
(18)  to carry through the continuum limit of E(9) appropriately.

here A’ ds for the derivati o ith In order to become familiar with the physical meaning of
w erle 'EIZZ) sta}n S r?r the fgnvaﬂves . (@) ;’]\"tl respect his result we consider the general and plausible spatially
to z It will be clear that the first term gives the largest Con'dependent dielectric function of the form

tribution in the limita— 0, and we can stop there. Inserting

interaction term and thus regularize the interaction free eNThis regularized form of the free energy
ergy. Regularization of the van der Waals interaction energ i
is well known in many different contexfsFirst we expand

the above three terms into E¢L7) and introducing new Ae
variables of integration, we obtain €(2)= €0~ 5 [1(z00)=1(z.(,0)], (21)
KT [ % A(Z)A(z’) where for smallo, f(z,z5,0) is almost steplike at=z,, of
Fole(2)]= 15— de dz,’——+2 width o. Ae is the difference betwee&(|z| — +»)=¢, and
e (z'=z+a) the dielectric function at the midpoiat={/2, see Fig. 2.
KT (> - 1 (= dy In standard Lifshitz theoryf(z,zy,0) is indeed a zero
= FJ dzAZ(z)af 5 width Heaviside step function. Becau$éz,z,,o) is step-
TS 0 (1+y) like, its derivative with respect ta, f'(z,zy,0), must be
e = ydy deltalike. Here we give it a Gaussian form
_ EJldeA(Z)A’(z) J;) 1+ )2 4 e—(Z—Zo)Z/(Z(J’Z)
y £'(2,29,0) = ———— (22)
(19 27

Clearly the first term diverges in the limié—0, and thus together with the condition of small difference in the dielec-
gives the largest contribution to the self-energy. The omittedric response, 4 e/4€;) <1. Then

higher order terms go to zero with different positive powers 1dine(z) Ae

of a. Subtracting this divergent self-energy from Ej7) we A(z)= 3 4 E[f’(z,O,o-)—f'(z,&a')]. (23
remain with a well-defined and well-behaved regularized re- 0

sult Inserting this into the free energy E@O), we obtain
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Fl)=Fot+ Fi(£), (24) kT(Ae)2€e‘“2’2"2) 2
gl —F/—= 1] (29
where thef-dependent part of the free energy can be written 1(6) 87 | 4eg V27ad o?
as

This expression represents the qualitative features of the
KT/ Ae\2[ w0 small ¢ limit of the interaction free energy. Obviously in this
Fi(€)=— 5(?) ( f dzf dz limit attractive van der Waals interactions give way to repul-
0 T U sions. These are due to the fact that because the van der
Waals interaction free energy Ed.6) is a bilinear functional

F'(z00)t'(Z'.¢,0) of [dInz(2)/dZ], it prefers gradients in the dielectric function.

(|z—2'|+a)? With the form of the dielectric function E421) for small ¢,
the state with larger inhomogeneities corresponds to larger
_ EJOC dzf (2,00)f (z,€,0) spacingst. Thus repulsion_takes place. _
alJ-o« Because of the repulsive smdlland the attractive large

) ¢ limit, the interaction free energy must have a minimum.
_ E Ae . dszdu Numerical computation with a specific model of the inhomo-
e 0 geneous dielectric function confirms these general traits.

87\ 4ep

><f’(z,O,(r)f’(z+u,€,cr)
(u+a)?

IV. MODEL CALCULATIONS

Assume that the dielectric profile can be described as a

1 (= box with diffuse boundaries, i.e.,
——f dzf'(z,00)f'(z,¢,0) |. (25)

6(2)260—%[f(Z,O,O')—f(Z,(f,O')], (30)
The ¢-independent part of the free energy is not of con-

cern here. In the limit of large separatiofisvherec<zy, so  where now we consider

thatf’(z,zq,0) is a deltalike function, Eq25) takes on the

z—X
form f(z,x,cr)=tanh7, (31
Fi(0)=— E(f) 2g(alt) (26) with o the width of the dielectric interface, a step function if
! 87\ 4eg €2 0—0. As a convenient numerical example we tadge=80

) and €;=40. The dielectric profile for this form o0&(z) is
where lim_,..g(o/¢)=const the expected lowest order esented in Fig. 2. It clearly shows how gradients in dielec-
inverse-square Lifshitz form for the attraction between twoy. response develop for smalland then lead to a diffuse

like, semi-infinite media ok, across a medium ofp—Ae. 5y profile for largef. This form of the inhomogeneous di-
The Hamaker coefficient is slightly modified due to the gectric function is consistent with recent experimental re-

smooth, diffuse boundaries. sults on the refractive index profile between two closely ap-
Trickier, the small¢ limit leads to a more fundamental posed grain boundariés.

insight. In the first integral of Eq29), it is clear on inspec- What are the consequences of assuming the above form

tion tha_t the only nonvanishing part of the integral is due toy¢ the inhomogeneous dielectric response for the van der

the, region CIOSS" tar=0. Thus we expand’(z+u,£,0)  \yagals interaction free energy E(0)? Does subtraction of

=f _(z,(f,(_r)+uf (z,_€,o)_+(1/2)u f"(z+u,f,0) tee In- the self-energy part of the interaction using the correct tran-

serting this expansion into E¢25) and rearranging terms, gjiion to the continuum limit in Eq(20), really lead to a

we are left with regularized free energy? Figure 3 shows the dependence of

KT/ Ae\2 £1(0,0) the regularizgd free energy on thg self-energy cutoffFor
Fi(€)=— Fyei by fi(€)— a<0.01A, this free energy effectively ceases to vary as a
0 function of a. Thus the regularized free energy is indeed a

1, f"(04,0) well-behaved, finite function of separatidn
+ 57 (fa(‘;)_ T) ' (27) Next we see from Fig. 4 that for largé the van der

Waals interaction free energy asymptotically approaches a
where constant value that reflects the van der Waals part of the
) formation energy of the interfaces. Because one usually de-
f1(0)= fwd f'(u,,0) fines the van der Waals interaction free energy to equal zero

0 (u+a)? at large¢, it would be instructive to subtract the value found

(29 here at infinite spacing and plot the rescaled reg@l(€)
©  f"(u,f,o) =F({£)— F(€—»). Also, in order to be able to compare the
f3(€)zf0 duw- interaction for different values of the width of the diffuse

interfaceso, we define an effective spacing=¢—¢ ,,
Performing these integrals and taking #ne-0 limit we ob-  where the rescaled interaction free energy goes through zero
tain at € ,n (usually at abou¥~1.70). The corresponding res-
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FIG. 3. The free energy W computed using four different values of cut-off
distancea=0.1, 0.01, 0.001, and 0.0001 (&urves from top to bottoim In FIG. 5. Variation of the rescaled free energy E20) as a function of the
all cases interfacial width is taken as=1 A. Fora<0.01 this regularized interface thickness as well as the rescaled separat®re ¢ — € i, Where
free energy losses its dependenceaon at € i» the rescaled interaction free energy goes through gesaally at

about{~1.70). Top curveo=2 A, middle curves=1 A and bottom curve
0=0.5 A. The continuous dotted line represents the standard Lifshitz result
with a sharp box profile. Clearly at large separations the inhomogeneous

_ _ €(z) result goes smoothly to the Lifshitz result. At small valuestahe
caled free energy would then b’é—RS(D) N f(D) f(D interaction free energy goes continuously to zero for any finite value of the

—). These rescaled plots for three valuesogfo=2, 1,  interfacial thicknessr. The inset shows the variation of the ratio between
and 0.5 A, are presented on Fig. 5. the interaction free energigas effective Hamaker coefficientgor sharp

The rescaled interaction free energy turns repulsive ifHo(D)] and diffuse[H(D)] interfacial profiles for the case af=1 A.
the regime of the rescaled separations where diffuse inter-
faces start interpenetrating. As indicated in the preceding .
section, r_eversql from attra(_:t_ion_to repu_lsion i_s due to tr_]e f(g):J P(z,€)dz. (32)
suppression of inhomogeneities in the dielectric function in o

the regime of sma!l separations, see Fig. 2. The same eﬁe?‘igure 6 showsP(z,¢) for three values of at a constant

can also be seen if we plot the local pressiie, (), such ity seness of the interfaces Clearly the regions of with

that the interaction free energy is largest attraction correspond to regions «fz) with the
steepest gradients. As these regions become smaller with di-

-100

(16 n/ kT) F(I)
(16 =/ kT) P(z1) * 10°

-120

~140

2 4 6 10 12 14

IfA]

FIG. 6. Variation of the pressurg(z,¢), defined in Eq(32), as a function
FIG. 4. Variation of the free energy Eq20) vs separation? for three of the positionz, for £=20 (open circley 3 (squares and 2 A (filled
different values of the thickness of the interfagec=2 (top), 1 (middle), circles; =3 A in all three cases. Regions afthat make the biggest
and 0.5 A(bottom curvé in the model inhomogeneous dielectric profile Eq. contribution to the free energy are clearly associated with most pronounced
(30). In all three cases the free energy starts from zero and approachesi@homogeneities in the dependent dielectric function, i.e., the interfacial
constant negative value for large spacings with a minimum in between. regions.
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minishing ¢, Fig. 6, the attraction itself becomes smaller andfaces enjoy gentler interactions. Here as in the original

eventually vanishes. This is the reason that the inhomogenéheory, we raise the question: What energy it takes to create
ity contribution to the interaction free energy between diffusethe interface? We only assume a continuous profile of the
interfaces eventually turns repulsive at small spacifigs dielectric function rather than the step between homogeneous

In the opposite limit of large the interaction free ener- media assumed in the original Lifshitz theory. We are able to
gies approach continuously the=0 Lifshitz limit of sharp  extract that part of the interaction free energy that is due to
interfaces. The smaller the diffuseness of the interfaces ashomogeneities and notice its disappearance at small values
quantified byo, the faster the interaction free energy ap-of the separation when there are no more gradients. We are
proaches the Lifshitz limiting form. Also the interaction free able to see too how this energy varies at all separations and,
energies for differentr go through zero for the same values pleasingly, how it depends on the shape of the dielectric
of the rescaled separatidn function profile.

The way the interaction free energy for diffuse interfaces  Here the van der Waals interactions never become infi-
approaches the Lifshitz result is more clearly seen if we plonite for small interfacial separations as is usual in the stan-
the effective Hamaker coefficient, defined da$(D) dard Lifshitz theory. That divergence was an artifact due to
=127D%Fr4D), as a function of the rescaled separafian  the assumption of steplike dielectric boundaries preserved
This is obtained by dividing the interaction free energy cor-for all separations while in our case at small separations the
responding to finiteo with its Lifshitz value for infinitely  interfaces smoothly merge. We can thus describe in detail
sharp interfaces, everything else remaining the same. This tsow this merger is accomplished and what features of the
done in the inset of Fig. 5. We observe first of all that theinteractions emerge at different spacings.
effective Hamaker coefficient continuously approaches zero In doing so, we have pushed the continuum Lifshitz
for small values of the rescaled spacidgOn increase oD  theory to its limit where macroscopic dielectric models must
it first overshoots the Lifshitz value and then approaches itmerge with microscopic considerations such as cost of cre-
from above. The reason for this is quite simple. Because oting a dielectric profile and changes in the profile them-
the diffuseness of the interfaces, parts of their dielectric proselves as functions of separation. Given a strategy to incor-
files are at a smaller spacing than their average positiorporate dielectric inhomogeneity, it is now possible to
Parts of them are of course at a bigger spacing then theonsider the continuously changing profile of gas or a solute
average position. However the van der Waals interaction denolecules between confining walls even as it modifies the
cays approximately as the square of the separation and tHerce between them. Van der Waals interactions between mo-
parts of the dielectric profile, which are at smaller separabile molecules—with each other and with the walls—
tions are weighted more heavily then the parts at larger sepaecessarily create nonuniform distribution. The resulting
rartions. This leads to an overshooting of the effective Haprofile can be calculated self-consistently by invoking the
maker constant that approaches its Lifshitz limit from above Clausius-Mosotti equation, writing the free energy as a func-

Though quantitative details will depend on the modeltional of solute density, then minimizing with appropriate
inhomogeneous dielectric function, the qualitative features o€onstraints such as pressure or chemical potential. The power

the interaction are model independent. of this approach has already been demonstrated in the rela-
tion between ion binding to an interface, driven by van der
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