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We formulate and evaluate the van der Waals part of the free energy due to a dielectric profile that
varies continuously throughout the space between two interacting bodies. Not considering the work
needed to create the inhomogeneous dielectric profile, focusing only on that part of the free energy
affected by the inhomogeneity, we compare the ensuing interaction free energy with that of the
original Lifshitz formulation with its step function changes at material boundaries and uniform
dielectric medium. Rather than the monotonically varying attraction between like bodies given by
the original formulation, the inhomogeneous continuous dielectric function leads to attractions as
well as repulsions. The Lifshitz result emerges naturally in the limit of separations much larger than
the thickness of the interfaces. ©2004 American Institute of Physics.@DOI: 10.1063/1.1796234#

I. INTRODUCTION

Fifty years after its formulation,1 the Lifshitz theory of
van der Waals interactions thrives,2 its results essential in
condensed matter physics, high-energy physics, colloid sci-
ence, and cosmology.3 The approximations on which it is
based are usually realistic and lead to results that can be
reliably compared with measurement. One restrictive condi-
tion built into the theory is the assumed steplike change in
the dielectric permeability at the interfaces of bodies that
interact across spatially homogeneous media. Several exten-
sions of the theory have relaxed the condition of steplike
interfaces but none has suggested a way to relax the condi-
tion of a uniform dielectric medium. What happens if one
assumes a medium whose local dielectric response varies
continuously across the entire space between bodies? So as
to keep within the conditions of a macroscopic-continuum
theory, we evaluate only that part of the van der Waals inter-
action free energy that is due to the inhomogeneity of the
dielectric profile that varies slowly compared to the inter-
atomic spacing.

We build on a recent reformulation of the Lifshitz
theory4 for media whose dielectric response varies stepwise
in the z direction perpendicular to the planar interacting sur-
faces. We smooth that discrete result to the limit of a con-
tinuous dielectric profilee(z). The new result is that at small
spacings, where the diffuse interface profiles overlap, there is
apparent repulsion; the removal of regions of inhomogeneity
increases the interaction free energy leading finally to a van-
ishing interaction free energy upon the disappearance of in-
homogeneities. At spacings that are large compared to the

width of the inhomogeneous material interfaces, the Lifshitz
form emerges naturally.

For illustration, we examine the consequences of the for-
mulation for a representative form of the dielectric profile.
We derive the interaction free energy as a function of the
separation between diffuse interfaces. The properties re-
vealed here should be relevant to interactions between the
interfaces that exhibit a continuously varying dielectric pro-
file whose form changes with separation.

II. THE DISCRETE LIMIT

We have recently reformulated the Lifshitz theory of
macroscopic van der Waals interactions across a region com-
posed of piecewise continuous dielectric response, by map-
ping it onto an algebra of 232 matrices that allows for a
straightforward computation of the secular determinant of
the electromagnetic~EM! field modes. Here we schematize
the problem as shown in Fig. 1 to apply the reformulated
Lifshitz theory as in Ref. 4.

We build on two fundamental matrices: the first is due to
dielectric discontinuity

D~ i !5F 1 2D̄i

2D̄i 1
G , ~1!

where

D̄i5S r i 21e i2r ie i 21

r i 21e i1r ie i 21
D . ~2!

Here,e i(v) is the~constant! dielectric function in the region
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zi 21,z,zi andr i(v)25Q22$@e i(v)m i(v)v2#/c2%, where
m i(v) is the magnetic permeability,Q is the wave vector
perpendicular to the transverse direction,v is the frequency,
andc is the velocity of light in vacuum. The second matrix is
due to the propagation

T~ i !5F1 0

0 e22r i ~zi2zi 21!G5F1 0

0 ci
G . ~3!

D( i ) describes the effect of the boundary conditions on the
EM modes at the dielectric boundary andT( i ) their propaga-
tion across a dielectrically homogeneous region. The above
definitions are for the TM field modes. TE field modes are
described analogously via a formal substitution

D̄i5S r i 21e i2r ie i 21

r i 21e i1r ie i 21
D→D i5S r i 21m i2r im i 21

r i 21m i1r im i 21
D . ~4!

The region betweenL and R in Fig. 1, with its dielectric
function continuously varying in the transversez coordinate,
is now discretized intoN layers, where each of the layers of

thicknessai5a5zi2zi 21 is characterized by a constant di-
electric function. In the limit ofN→` and/orai5a→0 the
discretized scheme smoothly approaches the continuum
limit. More on this will be discussed later.

We introduce the transfer matrixM,

M5D~L!3T3D~R!

5F 1 2D̄L

2D̄L 1
G3T3F 1 2D̄R

2D̄R 1
G , ~5!

where

T5 lim
N→`

T~1!3D~1!3T~2!3D~2!...T~N21!3D~N21!3T~N!.

~6!

Van der Waals interactions are then evaluated via an equation
connecting the secular determinant~determinant of the coef-
ficients of the EM modes in the prescribed geometry! with
the fluctuation free energy of the form4

F5kT(
Q

(
n508

`

ln m11~ i jn ,Q!, ~7!

wherem11 is the 11th element of the transfer matrixM, with
an analogous form for the TE modes. Then sum goes over
all the Matsubara frequencies,jn52p(kT/\)n. The prime
in the summation means that then50 term is given weight
1/2.

The matrixM can be evaluated explicitly to all orders in
the discontinuity matricesD( i ) only for very simple dielectric
profiles, most notably for profiles with a periodic motif as in
Ref. 4. In the present case there is no periodicity in the pro-
file. The methods of explicit evaluation ofM11 to all orders
do not apply. Nevertheless, if we limit ourselves to the low-
est order limit~pairwise approximation! in the powers of the
discontinuity matrices, we can still obtain anapproximate
form of the transfer matrix.

Consider the case ofN52, then N53 and so on, to
determine by induction the general form ofT to the
lowest order inD̄i . To terms up to second order inD̄i , we
derive

T5F 11(
i 51

N

(
k5 i 11

N21

D̄iDk )
j 5 i 11

k

cj1¯ 2 (
k51

N21

D̄k )
j 5k11

N

cj1¯

2 (
k51

N21

D̄k )
j 5k11

k

cj1¯ )
i 51

N

ci1 (
i 51

N21

(
k5 i 11

N21

D̄iD̄k)
j 51

i

)
m5k11

N

cjcm1¯

G . ~8!

FIG. 1. Schematic representation of geometry in the discrete limit. The
region betweenL andR of thickness, is divided intoN layers of thickness
a, leading to the 11th element of the transfer matrix Eq.~9!. In the continu-
ous limit this leads to Eq.~13!. Then we extend the region by moving theL
boundary toz→2` andR to z→`, as well as by assuming that there are
no remainig dielectric discontinuities at these boundaries. This leads to Eq.
~14! in the continuous limit.
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The next order term in the off-diagonal elements would be of
third order in D̄i ; and in the diagonal elements, of fourth
order in D̄i . For smooth dielectric profiles the third and the
fourth order terms are much smaller then the second order
terms and can be omitted. To apply Eq.~7!, we evaluate

m115@D~L!3T3D~R!#11

511(
i 51

N

(
k5 i 11

N21

D̄iD̄k )
j 5 i 11

k

cj1D̄R

3 (
k51

N21

D̄k )
j 5k11

N

cj1D̄L (
k51

N21

D̄k

3 )
j 5k11

N

cj1D̄LD̄R

3S )
i 51

N

ci1 (
i 51

N21

(
k5 i 11

N21

D̄iD̄k)
j 51

i

)
m5k11

N

cjcmD . ~9!

Again this result is exact to third order inD̄i . The inhomo-
geneities in the dielectric response have to be overall small
and, in the limit ofai5a→0, the dielectric function should
be continuous. Under these conditions, we now smooth the
discrete jumps in the dielectric responsee i , a formal conse-
quence of the discretization procedure, into a continuous
variation ofe(z).5 Specifically

e i→e~z!, r i→r~z!, ~10!

as well as

e i 112e i→S de~z!

dz Ddz, r i 112r i→S dr~z!

dz Ddz, ~11!

and with Eq.~2!

D̄i→D̂~z!dz, D̂~z!5
1

2

d ln e~z!/r~z!

dz
. ~12!

The summation overi in Eq. ~9! become integrals overz. In
this way we obtain thecontinuousform of Eq. ~9! as

lim
N→`

m11511E
0

,

dzE
z

,

dz8D̂~z!D̂~z8!expS 22E
z

z8
r~z9!dz9D 1DRE

0

,

dzD̂~z!expS 22E
z

,

r~z9!dz9D 1DLE
0

,

dzD̂~z!

3expS 22E
0

z

r~z9!dz9D 1DRDL expS 22E
0

,

r~z9!dz9D S 11E
0

,

dzE
z

,

dz8D̂~z!D̂~z8!expS 2E
z

z8
r~z9!dz9D D .

~13!

If the dielectric slab is homogeneous with small dielectric
discontinuities atL andR, the above result for the secular
determinant obviously reverts to the standard form of the
Lifshitz interaction6 on the pairwise level in the limit of
small inhomogeneities in the dielectric and magnetic perme-
abilities.

We now extend the region of inhomogeneity betweenR
and L so that it comprises the wholez axis. We assume
further that there are no discontinuities at the two bound-
aries, i.e.,D̄R , D̄L50. Then, to lowest order, the secular
determinant can be written as

lim
N→`

m11511E
2`

`

dzE
z

`

dz8D̂~z!D̂~z8!

3expS 22E
z

z8
r~z9!dz9D . ~14!

Note that the range of integration is now2`, 1` and that
e(z) is defined over the wholez axis. Should there be any
additional discontinuities in thee(z) the appropriate terms
would have to be retained in Eq.~14!, just as they were in
Eq. ~13!.

From Eq.~7! we obtain the surface density of the Lif-
shitz free energy as a functional of the continuously graded
dielectric function profilee(z)

F@e~z!#5kT(
n50

`

8(
Q

ln m11

.kT(
n50

`

8E d2Q

~2p!2 E2`

`

dzE
z

`

dz8D̂~z!D̂~z8!

3expS 22E
z

z8
r~z9!dz9D , ~15!

derived to the lowest order in the gradient of the dielectric
function. In the nonretarded limitc→` only then50 term
survives, leading tor(z,v)5Q. We can perform theQ in-
tegral explicitly, obtaining

F@e~z!#5
kT

16p E
2`

`

dzE
z

`

dz8
D̂~z!D̂~z8!

uz2z8u2

5
kT

64p E
2`

`

dzE
z

`

dz8

d ln e~z!

dz

d ln e~z8!

dz8

uz2z8u2
. ~16!

This limiting form of the free energy corresponds to a sum-
mation of the (z2z8)22 interactions between thin slabs lo-
cated at differentz andz8 and is thus intuitively very simple
to understand. One could refer to it as the Hamaker limit for
the continuous inhomogeneous dielectric. However atz5z8
this form of the free energy contains a spurious divergence,
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due to the continuum limit, which needs to be subtracted
appropriately so as to regularize the free energy.

Note that Eq.~16! is a functional of thegradientsof the
dielectric function. The more inhomogeneous the dielectric
profile the larger the integrand in the free energy Eq.~16!.
For vanishing inhomogeneities this free energy likewise van-
ishes by definition.

III. THE CONTINUUM LIMIT

Because we derived the result Eq.~13! via a continuum
limit of a discretized problem, we have to be careful to ex-
clude the self-interaction term, atz5z8, correctly from the
expression Eq.~16!. For pointsz5z8, we would obtain an
infinite value of the integrand. This divergence is neverthe-
less spurious and is due to the following fact: in the discrete
version of Eq.~15!, the first term in Eq.~9!, the indexk starts
at k5 i 11, and is thus never equal toi. When going to a
continuous limit, Eq.~15! the integral overz8 should not
start at z, but at a valuez85z1a, where at the end we
should leta→0. In this way we exclude the van der Waals
interaction self energy from Eq.~15!.

We introduce the cutoffa into Eq.~15! that will take care
of the self-interaction term. Then Eq.~15! becomes

F@e~z!#5
kT

16p E
2`

`

dzE
z

`

dz8
D̂~z!D̂~z8!

~z82z1a!2
, ~17!

so that the two discrete layers in the sum, converted into an
integral, cannot coincide. We now take the limit of this ex-
pression asa→0 and subtract this limit fromF@e(z)#. In
this way we eliminate the infinite but artificial self-
interaction term and thus regularize the interaction free en-
ergy. Regularization of the van der Waals interaction energy
is well known in many different contexts.3 First we expand

D̂~z8!5D̂@z1~z82z!#;D̂~z!2~z2z8!D̂8~z!1¯,
~18!

whereD̂8(z) stands for the derivatives ofD̂(z) with respect
to z. It will be clear that the first term gives the largest con-
tribution in the limit a→0, and we can stop there. Inserting
the above three terms into Eq.~17! and introducing new
variables of integration, we obtain

F0@e~z!#5
kT

16p E
2`

`

dzE
z

`

dz8
D̂~z!D̂~z8!

~z82z1a!2

5
kT

16p E
2`

`

dzD̂2~z!
1

a E0

` dy

~11y!2

2
kT

16p E
2`

`

dzD̂~z!D̂8~z!E
0

` ydy

~11y!2
1¯ .

~19!

Clearly the first term diverges in the limita→0, and thus
gives the largest contribution to the self-energy. The omitted
higher order terms go to zero with different positive powers
of a. Subtracting this divergent self-energy from Eq.~17! we
remain with a well-defined and well-behaved regularized re-
sult

F~, !5 lim
a→0

$F@e~z!#2F0@e~z!#%

5
kT

16p E
2`

`

dzE
z

`

dz8
D̂~z!D̂~z8!

~z82z1a!2

2
kT

16p E
2`

`

dzD̂2~z!
1

a
. ~20!

This regularized form of the free energy, where we have
explicitly extracted the divergent self-interaction term is our
objective. We should point out that the above regularization
procedure is not extraordinary in any respect, one just needs
to carry through the continuum limit of Eq.~9! appropriately.

In order to become familiar with the physical meaning of
this result we consider the general and plausible spatially
dependent dielectric function of the form

e~z!5e02
De

2
@ f ~z,0,s!2 f ~z,,,s!#, ~21!

where for smalls, f (z,z0 ,s) is almost steplike atz5z0 , of
width s. De is the difference betweene(uzu→6`)5e0 and
the dielectric function at the midpointz5,/2, see Fig. 2.

In standard Lifshitz theoryf (z,z0 ,s) is indeed a zero
width Heaviside step function. Becausef (z,z0 ,s) is step-
like, its derivative with respect toz, f 8(z,z0 ,s), must be
deltalike. Here we give it a Gaussian form

f 8~z,z0 ,s!5
e2~z2z0!2/~2s2!

A2ps
~22!

together with the condition of small difference in the dielec-
tric response, (De/4e0)!1. Then

D̂~z!5
1

2

d ln e~z!

dz
'

De

4e0
@ f 8~z,0,s!2 f 8~z,,,s!#. ~23!

Inserting this into the free energy Eq.~20!, we obtain

FIG. 2. The model inhomogeneous dielectric functione(z) given by Eqs.
~30! and~31! with s51 Å; ,50.7, 2, and 8 Å. For small,→0 the dielectric
profile goes smoothly to a homogeneous dielectric response; for large, it
approaches a box with diffuse boundaries. Heree0580 andDe540. The
origin of , and the position of the second interface for,50.7, 2, and 8 Å are
indicated with arrows.
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F~, !5F01F1~, !, ~24!

where the,-dependent part of the free energy can be written
as

F1~, !52
kT

8p S De

4e0
D 2S E

2`

`

dzE
z

`

dz8

3
f 8~z,0,s! f 8~z8,,,s!

~ uz2z8u1a!2

2
1

a E2`

`

dz f8~z,0,s! f 8~z,,,s!D
52

kT

8p S De

4e0
D 2S E

2`

`

dzE
0

`

du

3
f 8~z,0,s! f 8~z1u,,,s!

~u1a!2

2
1

a E2`

`

dz f8~z,0,s! f 8~z,,,s!D . ~25!

The ,-independent part of the free energyF0 is not of con-
cern here. In the limit of large separations,, wheres!z0 so
that f 8(z,z0 ,s) is a deltalike function, Eq.~25! takes on the
form

F1~, !52
kT

8p S De

4e0
D 2 g~s/, !

,2
~26!

where lim,→`g(s/,)5const the expected lowest order
inverse-square Lifshitz form for the attraction between two
like, semi-infinite media ofe0 across a medium ofe02De.
The Hamaker coefficient is slightly modified due to the
smooth, diffuse boundaries.

Trickier, the small, limit leads to a more fundamental
insight. In the first integral of Eq.~25!, it is clear on inspec-
tion that the only nonvanishing part of the integral is due to
the region close tou50. Thus we expandf 8(z1u,,,s)
5 f 8(z,,,s)1u f9(z,,,s)1(1/2)u2f-(z1u,,,s)1¯ . In-
serting this expansion into Eq.~25! and rearranging terms,
we are left with

F1~, !52
kT

8p S De

4e0
D 2F f 1~, !2

f 8~0,,,s!

a

1
1

2
s2S f 3~, !2

f-~0,,,s!

a D G , ~27!

where

f 1~, ![E
0

`

du
f 8~u,,,s!

~u1a!2

~28!

f 3~, ![E
0

`

du
f-~u,,,s!

~u1a!2
.

Performing these integrals and taking thea→0 limit we ob-
tain

F1~, !52
kT

8p S De

4e0
D 2 ,e2~,2/2s2!

A2ps3 S 12
,2

s2D . ~29!

This expression represents the qualitative features of the
small, limit of the interaction free energy. Obviously in this
limit attractive van der Waals interactions give way to repul-
sions. These are due to the fact that because the van der
Waals interaction free energy Eq.~16! is a bilinear functional
of @d ln z(z)/dz#, it prefers gradients in the dielectric function.
With the form of the dielectric function Eq.~21! for small,,
the state with larger inhomogeneities corresponds to larger
spacings,. Thus repulsion takes place.

Because of the repulsive small, and the attractive large
, limit, the interaction free energy must have a minimum.
Numerical computation with a specific model of the inhomo-
geneous dielectric function confirms these general traits.

IV. MODEL CALCULATIONS

Assume that the dielectric profile can be described as a
box with diffuse boundaries, i.e.,

e~z!5e02
De

2
@ f ~z,0,s!2 f ~z,,,s!#, ~30!

where now we consider

f ~z,x,s!5tanh
z2x

s
, ~31!

with s the width of the dielectric interface, a step function if
s→0. As a convenient numerical example we takee0580
and e1540. The dielectric profile for this form ofe(z) is
presented in Fig. 2. It clearly shows how gradients in dielec-
tric response develop for small, and then lead to a diffuse
box profile for large,. This form of the inhomogeneous di-
electric function is consistent with recent experimental re-
sults on the refractive index profile between two closely ap-
posed grain boundaries.7

What are the consequences of assuming the above form
of the inhomogeneous dielectric response for the van der
Waals interaction free energy Eq.~20!? Does subtraction of
the self-energy part of the interaction using the correct tran-
sition to the continuum limit in Eq.~20!, really lead to a
regularized free energy? Figure 3 shows the dependence of
the regularized free energy on the self-energy cutoffa. For
a,0.01 Å, this free energy effectively ceases to vary as a
function of a. Thus the regularized free energy is indeed a
well-behaved, finite function of separation,.

Next we see from Fig. 4 that for large, the van der
Waals interaction free energy asymptotically approaches a
constant value that reflects the van der Waals part of the
formation energy of the interfaces. Because one usually de-
fines the van der Waals interaction free energy to equal zero
at large,, it would be instructive to subtract the value found
here at infinite spacing and plot the rescaled resultFRS(,)
5F(,)2F(,→`). Also, in order to be able to compare the
interaction for different values of the width of the diffuse
interfacess, we define an effective spacingD5,2,min ,
where the rescaled interaction free energy goes through zero
at ,min ~usually at about,;1.7s!. The corresponding res-
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caled free energy would then beFRS(D)5F(D)2F(D
→`). These rescaled plots for three values ofs, s52, 1,
and 0.5 Å, are presented on Fig. 5.

The rescaled interaction free energy turns repulsive in
the regime of the rescaled separations where diffuse inter-
faces start interpenetrating. As indicated in the preceding
section, reversal from attraction to repulsion is due to the
suppression of inhomogeneities in the dielectric function in
the regime of small separations, see Fig. 2. The same effect
can also be seen if we plot the local pressureP(z,,), such
that the interaction free energy is

F~, !5E
2`

1`

P~z,, !dz. ~32!

Figure 6 showsP(z,,) for three values of, at a constant
diffuseness of the interfacess. Clearly the regions ofz with
largest attraction correspond to regions ofe(z) with the
steepest gradients. As these regions become smaller with di-

FIG. 3. The free energy vs, computed using four different values of cut-off
distance,a50.1, 0.01, 0.001, and 0.0001 Å~curves from top to bottom!. In
all cases interfacial width is taken ass51 Å. For a,0.01 this regularized
free energy losses its dependence ona.

FIG. 4. Variation of the free energy Eq.~20! vs separation, for three
different values of the thickness of the interfaces, s52 ~top!, 1 ~middle!,
and 0.5 Å~bottom curve! in the model inhomogeneous dielectric profile Eq.
~30!. In all three cases the free energy starts from zero and approaches a
constant negative value for large spacings with a minimum in between.

FIG. 5. Variation of the rescaled free energy Eq.~20! as a function of the
interface thicknesss as well as the rescaled separationD[,2,min , where
at ,min the rescaled interaction free energy goes through zero~usually at
about,;1.7s!. Top curves52 Å, middle curves51 Å and bottom curve
s50.5 Å. The continuous dotted line represents the standard Lifshitz result
with a sharp box profile. Clearly at large separations the inhomogeneous
e(z) result goes smoothly to the Lifshitz result. At small values of, the
interaction free energy goes continuously to zero for any finite value of the
interfacial thicknesss. The inset shows the variation of the ratio between
the interaction free energies~as effective Hamaker coefficients! for sharp
@H0(D)# and diffuse@H(D)# interfacial profiles for the case ofs51 Å.

FIG. 6. Variation of the pressureP(z,,), defined in Eq.~32!, as a function
of the positionz, for ,520 ~open circles!, 3 ~squares!, and 2 Å ~filled
circles!; s53 Å in all three cases. Regions ofz that make the biggest
contribution to the free energy are clearly associated with most pronounced
inhomogeneities in thez dependent dielectric function, i.e., the interfacial
regions.
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minishing,, Fig. 6, the attraction itself becomes smaller and
eventually vanishes. This is the reason that the inhomogene-
ity contribution to the interaction free energy between diffuse
interfaces eventually turns repulsive at small spacings,.

In the opposite limit of large, the interaction free ener-
gies approach continuously thes50 Lifshitz limit of sharp
interfaces. The smaller the diffuseness of the interfaces as
quantified bys, the faster the interaction free energy ap-
proaches the Lifshitz limiting form. Also the interaction free
energies for differents go through zero for the same values
of the rescaled separationD.

The way the interaction free energy for diffuse interfaces
approaches the Lifshitz result is more clearly seen if we plot
the effective Hamaker coefficient, defined asH(D)
512pD2FRS(D), as a function of the rescaled separationD.
This is obtained by dividing the interaction free energy cor-
responding to finites with its Lifshitz value for infinitely
sharp interfaces, everything else remaining the same. This is
done in the inset of Fig. 5. We observe first of all that the
effective Hamaker coefficient continuously approaches zero
for small values of the rescaled spacingD. On increase ofD
it first overshoots the Lifshitz value and then approaches it
from above. The reason for this is quite simple. Because of
the diffuseness of the interfaces, parts of their dielectric pro-
files are at a smaller spacing than their average position.
Parts of them are of course at a bigger spacing then the
average position. However the van der Waals interaction de-
cays approximately as the square of the separation and the
parts of the dielectric profile, which are at smaller separa-
tions are weighted more heavily then the parts at larger sepa-
rartions. This leads to an overshooting of the effective Ha-
maker constant that approaches its Lifshitz limit from above.

Though quantitative details will depend on the model
inhomogeneous dielectric function, the qualitative features of
the interaction are model independent.

V. CONCLUSIONS

Using a recent reformulation of the Lifshitz theory in
terms of the transfer matrix, we have explored the effects of
a continuously varying inhomogeneous dielectric response
across the space between interacting planar bodies with dif-
fuse boundaries. In particular, we have focused on that part
of the van der Waals interaction free energy caused by a
smoothly varying dielectric profile. At distances much larger
than the width of the diffuse interfaces, the Lifshitz form of
attraction between like bodies emerges naturally as expected.
At small distances, comparable to the width of the interfaces,
the calculated interaction free energy goes through a mini-
mum, then increases with closer approach, as the diffuse in-
terfaces merge and the region of inhomogeneity is sup-
pressed.

Van der Waals forces feed off gradients, differences in
dielectric response. In principle, an infinite amount of posi-
tive energy is needed to create the hypothetical step-function
boundaries assumed in the original theory. The divergence of
the Lifshitz energy at contact can be seen as a recovery of
interface-creation energy. Conversely, gently graded inter-

faces enjoy gentler interactions. Here as in the original
theory, we raise the question: What energy it takes to create
the interface? We only assume a continuous profile of the
dielectric function rather than the step between homogeneous
media assumed in the original Lifshitz theory. We are able to
extract that part of the interaction free energy that is due to
inhomogeneities and notice its disappearance at small values
of the separation when there are no more gradients. We are
able to see too how this energy varies at all separations and,
pleasingly, how it depends on the shape of the dielectric
function profile.

Here the van der Waals interactions never become infi-
nite for small interfacial separations as is usual in the stan-
dard Lifshitz theory. That divergence was an artifact due to
the assumption of steplike dielectric boundaries preserved
for all separations while in our case at small separations the
interfaces smoothly merge. We can thus describe in detail
how this merger is accomplished and what features of the
interactions emerge at different spacings.

In doing so, we have pushed the continuum Lifshitz
theory to its limit where macroscopic dielectric models must
merge with microscopic considerations such as cost of cre-
ating a dielectric profile and changes in the profile them-
selves as functions of separation. Given a strategy to incor-
porate dielectric inhomogeneity, it is now possible to
consider the continuously changing profile of gas or a solute
molecules between confining walls even as it modifies the
force between them. Van der Waals interactions between mo-
bile molecules—with each other and with the walls—
necessarily create nonuniform distribution. The resulting
profile can be calculated self-consistently by invoking the
Clausius-Mosotti equation, writing the free energy as a func-
tional of solute density, then minimizing with appropriate
constraints such as pressure or chemical potential. The power
of this approach has already been demonstrated in the rela-
tion between ion binding to an interface, driven by van der
Waals attraction, and ion specificity.8 Extension to include
forces of dielectric inhomogeneity from nonhomogeneous
distribution of solute is a logical next step.9
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