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We study the properties of an isolated, self-interacting wormlike polymer chain on the basis of a
nonperturbative 1/d-expansion, whered denotes the dimension of embedding space. In the absence
of an external force, we characterize the dimensionR of the chain in embedding space viaR
;Ln, whereL is the internal size.~A! Long-range, repulsive segmental interactions decaying as
1/r a may control chain conformations that are either rodlike,n51(1,a,2), ‘‘wrinkled,’’ 1/2
,n,1(2,a,4), or random-walk-like,n51/2(a.4). ~B! For short-range, screened, repulsive
interactions, the crossover between rodlike and random-walk-like behavior is controlled by the
persistence length whose interaction part we compute focusing on a Debye–Hu¨ckel interaction of
strengthV0 , with inverse screening lengthk0 . The induced persistence length varies asV0

bk0
2g ,

with, as expected, (b,g)5(1,2) when the chain is intrinsically stiff, and, surprisingly, with either
(b,g)5(1/6,7/6) or (b,g)5(1,7) when the chain is intrinsically very flexible. The chances of
experimentally observing the novel regimes may be limited. For a chain subject to an external
stretching forcef, we determine the force-extension relationz5z( f )5z01dz( f ), wherez denotes
the chain extension,z0 is the spontaneous extension.~A! If the interaction potential is either
screened, or if the decay of a long-range interaction potential is fast, i.e., ifa.4, the chain
spontaneously generates an ‘‘effective tension’’ and responds linearly to weak forces with elastic
constants ‘‘renormalized’’ by interactions. By contrast, ‘‘tension-free’’ chains, with eithern51,
wheredz; f 1/2, or with n52/a, wheredz; f 1/3, respond to the weakest force nonlinearly.~B! Near
full extension the chain always responds nonlinearly. When the potential is screened, or ifa.4, we
find the 1/Af corrections typical of wormlike chains. ©2001 American Institute of Physics.
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I. INTRODUCTION

When we ignore possible intrinsic stretchability, we m
characterize wormlike or semiflexible polymer chains
macromolecules that display resistance to bending defor
tions and to torsional deformations. The resistance to s
deformations, of which we shall only be interested in t
bending deformations, is parametrized by elastic const
which summarize numerous short-range, microsco
monomer–monomer interactions. Due to its bending rigid
kBTl p , wherekB denotes Boltzmann’s constant, andT is
the absolute temperature, a wormlike chain is expected t
roughly straight or rodlike on scales below its persisten
length,l p . On length scales much larger thanl p , the chain
is expected to be governed by conformational entropy wh
favors random-walk conformations. Macromolecules t
under favorable circumstances can be modeled as sem
ible polymers include DNA which has an intrinsic or ‘‘bare
persistence length of about 500 Å,1–4 where the ‘‘bare’’ part
is the part found before segmental interactions are taken
account.
8630021-9606/2001/114(19)/8637/12/$18.00
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When segmental interactions of mesoscopic or lo
range are involved, numerous things may happen. For
stance, if the interaction potential corresponds to the
screened Coulomb potential, the polymer,
polyelectrolyte,5 may, as was argued by Katchalsky6 and
de Genneset al.,7 lose most of its conformational flexibility
and adopt rodlike conformations. If the interaction potent
is screened, the polymer must eventually be expected to
gain its conformational flexibility, yet the chain does becom
significantly more rigid, as was first pointed out by Odijk an
Skolnick and Fixman~OSF!,8,9 who made it clear that, at low
salt concentrations, screened electrostatic interactions
count for a significant contribution to the persistence len
that far exceeds the screened interaction range.10 DNA,
again, seems to illustrate the situation well: When DNA
dissolved in salty water, the rigidity depends strongly on
amount of added salt and may, for small salt concentratio
easily contribute as much as half of the total rigidity a
persistence length.2,3 Finally, in rare cases it is possible tha
attractive electrostatic interactions can be generated betw
7 © 2001 American Institute of Physics
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like-charged segments, as was conjectured a long time
by Oosawa.11 Recently, various mechanisms involving co
related fluctuations of12 or positions of13 condensed counte
rions have been proposed to explain the occurrence of s
forces. Attractive interactions will, for instance, significant
lower the persistence length and may play an important
in bringing about a sudden aggregation of single DNA m
ecules, as is sometimes observed.14

In this paper we develop a general statistical mechan
formalism which allows us to assess the interplay betw
conformational properties of an intrinsically inextensib
wormlike chain and its monomer–monomer interactions.
shall only consider cases where the interactions are re
sive. The case involving attractive interactions has been c
sidered elsewhere.15 The formalism we develop here in
volves a nonperturbative expansion which treats chai
conformational properties in a way that is exact when
dimension of embedding space,d, becomes large. Correc
tions to this leading behavior will be of order 1/d. Using this
so-called 1/d-expansion,16 we are allowed to estimate gen
eral chain conformational properties and how segmental
teractions modify elastic properties of the chain inall rel-
evant limits, not the least in the complicated and poo
understood limit where the range of the interaction is la
compared with the ‘‘bare’’ persistence length.

Let us note that the formalism we develop here has
ready proven to be useful as a means of estimating the
formational and thermal properties of other intrinsically fle
ible materials such as fluid membranes17 and tethered
manifolds with18,19and without20 long-range monomer inter
actions. A theoretical analysis somewhat similar to the o
presented here has been proposed for the case of semifle
polymers with noninteracting monomers by Ha a
Thirumalai.21–23 In the present paper we shall, in contra
focus on problems involving semiflexible polymers who
properties are influenced by long-range or screened segm
tal interactions.

We may summarize the main results of our analysis
chains that are not subject to external forces as follows: If
monomer–monomer interaction potential is of long ran
decaying as 1/r a, we find that chain extension is alwaysR
;Ln, whereL is the internal size. The chain conformatio
may be either rodlike,n51(1,a,2), ‘‘wrinkled,’’ 1/2
,n,1(2,a,4), or random-walk-like,n51/2(a.4). All
of these results agree with earlier results obtained by
Doussal and Palmeri and Guitter.18,19 If the monomer–
monomer interaction potential is a screened Debye–Hu¨ckel-
type potential with strengthV0 , and inverse screening lengt
k0 , the chain will adopt random-walk conformations wi
n51/2 for largeL, yet will behave as a rod for smallL. The
crossover from rodlike to random-walk-like behavior is co
trolled by the persistence length whose interaction part
calculate. The induced persistence length varies asV0

bk0
2g .

We find, as expected, the OSF result8–10 (b,g)5(1,2) when
the chain is intrinsically stiff. Surprising new nonperturb
tive regimes emerge when the chain is intrinsically very fle
ible. We identify a regime where (b,g)5(1/6,7/6) as well as
regime where (b,g)5(1,7). Unfortunately a qualitative
analysis shows that chances of observing the new regi
Downloaded 03 May 2001 to 193.2.6.183. Redistribution subject to AIP
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may be limited: The OSF regime is indeed very robust.
Recent experimental advances have allowed us to ob

rather detailed information about self-interacting wormli
chains. In particular, via controlled stretching experime
performed on individual DNA molecules,1–3 it has become
possible to extract elastic constants for DNA molecul
Clearly, these stretching experiments allow us to test dire
various model predictions for the interplay between segm
tal interactions and macroscopic chain properties.

In most cases of experimental interest such model p
dictions may be calculated in a straightforward manner
the basis of the 1/d-expansion technique, once an estima
has been made of how segmental interactions modify
elastic parameters characterizing the polymer. More ge
ally, the predictions follow from an analysis of the forc
extension relationz5z( f ), wherez denotes the chain exten
sion andf denotes the applied force. This relation may
calculated for a wide class of interaction potentials. In t
present paper we wish to illustrate how to obtain it wh
long-range segmental interactions dominate, and how it m
be analyzed for polyelectrolytes that interact via a scree
interaction potential.

Our main results are as follows: If the interaction pote
tial is either screened or if the decay of the long-range in
action potential is fast, i.e., ifa.4, the chain spontaneousl
generates an ‘‘effective tension’’ and responds linearly
weak forces with elastic constants ‘‘renormalized’’ by inte
actions. In this case, it is a simple matter to test how chan
of the parameters that characterize the interaction poten
modifies the force-extension curve. By contrast, if the int
action potential is of long enough range, i.e., ifa,4, the
polymer does not generate an ‘‘effective tension’’ and s
prising nontrivial behavior is predicted: The polymeralways
responds nonlinearly to an applied force, however weak
general, the extension may be decomposed asz5z0

1dz( f ), wherez0 is a spontaneous extension. We find th
for n51, dz; f 1/2, and forn52/a(2,a,4), dz; f 1/3. The
nonlinear response is due to the long range of the poten
and is different from the response one finds near full ext
sion when the interaction is screened~or if a.4!: There one
finds the 1/Af corrections typical of wormlike chains.2,24

The organization of the paper is as follows: In Sec. II w
outline the 1/d-expansion for the self-interacting, semifle
ible polymer. We apply the formalism in the cases of lon
range and short-range interactions in Secs. III and IV,
spectively. In Sec. V we generalize the formalism to the c
where the polymer is subject to a stretching force appl
terminally. We derive the equations determining the conf
mational properties of the chain as well as the forc
extension relation. In Secs. VI and VII we go on to discu
the cases of stretched chains with long-range and short-ra
segmental self-interactions, respectively. Finally, in S
VIII we summarize and discuss our results and offer so
concluding remarks.

II. 1Õd -EXPANSION FOR A SELF-INTERACTING
POLYMER

In this section we will describe the nature of th
1/d-expansion and, in particular, apply it in the special ca
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



ts
ly

n
th

e

il
, t
e

a
d

to

fy
th
he
-

,
a

t

te
fo
n
n
d
si
a-
uc
itl
i

te

nd
n

r–
e

f
a

is

by
al
ch

y

in-

ar-
r-
er
ian
ain
nal-
the

ase
po-

-
in-
, if
r,

l
ent

e-
the

t
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of a linear polymer with self-interacting chain segmen
Generalization to other situations, involving a single po
mer, is rather straightforward~see, e.g., Sec. V below!.

A. General considerations

For a long linear polymer it is most useful to focus o
chain conformations which may be described by
d-dimensional position of its monomers,r (s), each of which
are labeled by the~continuous! internal coordinate,s. We
will assume thats has dimensions of length, and assum
values in the interval@0;L#, with L→`. Our description of
the polymer relies entirely on this parametrization.

Now, often a physically acceptable model of a chain w
involve the constraint that, on the relevant energy scales
individual bonds between monomers have roughly fix
lengths and may, therefore, be considered unstretchable.~For
DNA, this is is only a reasonable approximation at large s
concentrations.3,25! In the continuum language employe
here, this means that the tangent vectort5]r /]s[]sr (s)
must be a vector of fixed length, which we shall take
be unity. The constraint of ‘‘inextensibility’’ is then
]sr (s)•]sr (s)51, and only chain fluctuations which satis
this constraint should be taken into account. Obviously, if
chain is flexible, the chain will fluctuate freely, subject to t
constraint of ‘‘inextensibility’’ and the probability distribu
tion for chain conformations is

P@r ~s!#5)
s

d3~]sr ~s!•]sr ~s!21!, ~1!

involving a functionald-function. The partition function is
in this case, the following path-integral over chain conform
tions:

Z5E D@r ~s!#)
s

d3~]sr ~s!•]sr ~s!21!, ~2!

and the free energy is, as usual,F52kBT ln(Z). This model,
known under the name of the ‘‘freely jointed chain’’~FJC!
model, is the simplest successful model one can sugges
polymers.26,27

In numerous cases of physical interest, monomers in
act via short- or long-range forces. In such cases the con
mational flexibility is hindered further. The chain is the
called wormlike or semiflexible. Most commonly, the actio
of various forces, which decay on length scales of the or
of molecular dimensions, are accounted for via the intrin
or ‘‘bare’’ elastic constants that directly control conform
tional fluctuations. Forces of mesoscopic or long range, s
as electrostatic interactions, are taken into account explic
The program of estimating the effect of all these forces
standard: One calculates the~mesoscopic! Hamiltonian,
H@r (s)# which summarizes the energetic penalty associa
with a particular chain conformation,r (s). The relevant con-
tributions to the Hamiltonian involve the resistance to be
ing, and the direct mesoscopic interactions between mo
mers,

H5
kBTl p

~0!

2 E dsS ]2r

]s2D 2

1
1

2 EEdsds8V~ ur ~s!2r ~s8!u!,

~3!
Downloaded 03 May 2001 to 193.2.6.183. Redistribution subject to AIP
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where l p
(0) denotes the ‘‘intrinsic’’ or ‘‘bare’’ persistence

length, which is directly related to the ‘‘intrinsic’’ or ‘‘bare’’
bending rigidity,kBTl p

(0) . The functionV(ur (s)2r (s8)u) is
a pair-interaction potential describing the monome
monomer interactions. Various forms of this potential will b
studied below.

The probability distribution for chain conformations o
semiflexible polymers deviates from the form given for
FJC by a Boltzmann factor, exp(2bH@r (s)#),

P@r ~s!#5)
s

d3~]sr ~s!•]sr ~s!21!exp~2bH@r ~s!# !,

~4!

whereb51/kBT, and consequently the partition function

Z5E D@r ~s!#)
s

d3~]sr ~s!•]sr ~s!21!exp~2bH!,

~5!

i.e., a path-integral over chain conformations weighted
the Boltzmann factor. As in the FJC model, the function
d-function guarantees that the integral involves only su
configurations that satisfy the condition of inextensibility.

Evaluation of the partition function is complicated b
two factors. The first is imposed by the functionald-function
and the constraint of inextensibility which requires us to
clude in the sum over polymer conformations,r , only those
for which the tangent vectors,t, lie on a unit sphere. The
second problem which complicates the evaluation of the p
tition function, is the fact that a typical intermonomer inte
action potential is a complicated nonlocal function, rath
than a simple quadratic form which yields simple Gauss
integrals. The first problem may be circumvented for a ch
with noninteracting monomers, if one uses an elegant a
ogy between the statistics of semiflexible chains and
quantum mechanics of angular momentum.2 However, such
a technique cannot straightforwardly be applied in the c
where monomers interact via a complicated interaction
tential.

A systematicway of addressingbothproblems takes ad
vantage of a Lagrange multiplier technique. Thus, for
stance, one can enforce the constraint of inextensibility
one introduces an auxiliary field or Lagrange multiplie
l (0)(s), and adds to the Hamiltonian the term,

dH15
1

2 E dsl~0!~s!~~]sr ~s!!221!. ~6!

Similarly, in order to avoid the complicating non-loca
form of the pair-potential, one can introduce the independ
field B5B(s,s8), and make the replacementV((r (s)
2r (s8))2)→V(B). In order to be able to make this replac
ment in a systematic way, one must somehow enforce
constraint (r (s)2r (s8))25B(s,s8). One can do that via ye
another auxiliary field~Lagrange multiplier!18,19 and one is
thus led to introduce another term in the Hamiltonian,
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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dH25
1

2 E dsds8g~s,s8!~~r ~s!2r ~s8!!22B~s,s8!!.

~7!

Given these modifications, the evaluation of the partit
function now involves a much easier, unconstrained sum
tion over polymer conformations,r . The price one has to pa
for this simplification is that, in addition to summing overr ,
one must now sum overl (0), B, andg as well,

Z5E D@r ~s!#D@l~0!~s!#D@g~s,s8!#D@B~s,s8!#

3exp~2b~H1dH11dH2!!. ~8!

In the expression for the partition function, Eq.~8!, it is
understood that the summation overl (0) andg are over con-
tours that begin at2 i` and end at1 i`.

It is easy to see that the introduction of Lagrange mu
pliers provides us with an expression for the partition fun
tion which is quadratic inr and thereforeexactlysolvable as
for the integration over polymer conformations. If one fix
C5$l (0),B,g% and expands about a particular referen
configurationr5r0 ~the average configuration! which has
the property of minimizing H25H1dH11dH2 , i.e.,
dH2@r #/dr u050, then one finds, after integration, an effe
tive Hamiltonian

He@r0 ,C#5H2@r0 ,C#1kBT
d

2
Tr ln~d~s2s8!

3~kBTl p
~0!]s

42]sl
~0!]s!12gc~s,s8!!, ~9!

where

gc~s,s8!5g~s,s8!2 1
2 d~s2s8!E ds9~g~s,s9!1g~s9,s8!!,

~10!

and d is the number of components of the vectorr or,
equivalently, the dimension of the embedding space. If
ignores end effects~by considering a closed polymer, or b
enforcing periodic boundary conditions, say!, one can as-
sume thatl (0) is a constant, and thatB(s,s8)5B(s2s8),
g(s,s8)5g(s2s8). It is then possible to perform the diago
nalization in terms of Fourier modes, so that forL→`,

Tr ln~¯ !→E dsE dq

2p
ln~¯ !,

kBTl p
~0!]s

42l~0!]s
2→kBTl p

~0!q41l~0!q2, ~11!

gc~s,s8!→g~q!2g~q50!,

whereg(q) is the Fourier transformed ofg(s2s8). The cal-
culation ofHe@r0 ,C# is then straightforward.

What remains in the calculation of the partition functio
and the free energy are the more difficult integrations o
l (0), B, andg. In general, these integrations cannot be p
formed exactly. If, however,d→`, the integrals are com
pletely dominated by the contributions from the saddle po
obtained by minimizing w.r.t.l (0), B, andg. In this limit, the
exactexpression for the free energy of the reference confi
ration, r0 , is, therefore
Downloaded 03 May 2001 to 193.2.6.183. Redistribution subject to AIP
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F@r0#5F01S H2@r0 ,C#1kBT
d

2
Tr ln~kBTl p

~0!]s
4

2l~0!]s
212gc~s,s8!! D

SP

, ~12!

where F0 is an unimportant constant. SP implies that t
expression is evaluated at the saddle point and the Tr ln
can be evaluated with the help of Eq.~11!. For finite d,
corrections to the saddle point estimate will be of ordero(d)
and may be calculated via asystematic1/d-expansion.16 We
shall not do so, being content with the calculation by t
saddle point method. It is possible to show that this appro
mation is equivalent to relaxing the local constrain
]sr (s)•]sr (s)51 and (r (s)2r (s8))25B(s,s8), and replac-
ing them by the global constraints^]sr (s)•]sr (s)&51, and
^(r (s)2r (s8))2&5B(s,s8).21,23

B. 1Õd -expansion near the rod limit

One can now carry out a more specific discussion of
properties of semiflexible polymers with pairwise monom
interactions. Within the formalism described above, suc
discussion can, unfortunately, only be performed for sim
choices of reference configurations,r0 . Here we shall con-
fine ourselves to the choicer05zse, where e is a one-
dimensional unit vector, andz is a ‘‘stretching factor’’.28

It turns out that very useful information is contained
the saddle point equations and we shall analyze them
some detail. By functionally minimizing w.r.t.l, B(s2s8),
andg(s2s8), one finds after some manipulations,

15
]r0

]s
•

]r0

]s
1dkBTE dq

2p

q2

kBTl p
~0!q41l~0!q212gc~q!

,

~13!

gc~q!5E ds~12cos~qs!!V8~B~s!!, ~14!

B~s2s8!5~r0~s!2r0~s8!!212dkBTE dq

2p

3
12cos~q~s2s8!!

kBTl p
~0!q41l~0!q212gc~q!

, ~15!

where V8(z)5]zV. These equations are special cases
more general equations obtained by Le Doussal18 and by
Palmeri and Guitter19 in their analysis of elastic manifold
with long-range monomer–monomer interactions. Of the
equations, the first, Eq.~13!, guarantees that the constrai
]sr (s)•]sr (s)51 is satisfied globally, and the third equa
tion, Eq. ~15!, takes care of the constraint (r (s)2r (s8))2

5B(s,s8). Finally, the second equation, Eq.~14!, deter-
mines an effective ‘‘self-energy’’ of the polymer. This ‘‘self
energy’’ may, under favorable conditions, be expanded
powers ofq. For a wide class of interaction potentials, i
cluding short-range interactions, the expansion coefficie
determine contributions to the renormalized elastic consta
Roughly speaking, the expansion coefficients then desc
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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how the nonlocal interactions modify the parameters in
volved in a local description of the polymer. In particula
V8(B(s)) will, in part, determine a contribution to the tota
renormalized bending rigidity. When the interaction poten
is of long range the situation is more complicated~see be-
low!.

If, in addition to minimizing w.r.t.C, one minimizes
w.r.t. z, so as to determine the best choice of configuration
the class of configurations defined by the equationr05zse,
one finds, in agreement with Ref. 18, 19,

l~R!5]q
2G21~q!uq5050 and/or z50, ~16!

where l (R) is a ‘‘renormalized’’ Lagrangian multiplier or
‘‘effective tension.’’ G21(q) is the inverse ‘‘propagator’’
kBTl p

(0)q41l (0)q212gc(q). If zÞ0, the first equation in
Eq. ~16! expresses that if a semiflexible polymer is, on av
age, straight, it is in a stress-free configuration@if the poly-
mer were subjected to external stress, the applied stress
l (R) would have to balance~see Sec. V!#. If, on the other
hand,z50, typical conformations of the polymer will devi
ate significantly from the straight configuration, and it w
fluctuate in ways that are expected to be controlled by
‘‘effective tension’’l (R). Finally, in rather special cases, it
possible to havez50 andl (R)50, at the same time. In tha
case, one expects interactions to produce terms in the ‘‘s
energy’’ of the formgfqf, where 2,f,3, so that elastic
stability is maintained~see further below!.

Given a particular form of the monomer–monomer
teractions, the statistical properties of a chain are comple
determined by Eqs.~13!–~16!. We consider here both long
and short-range interactions. In the case of long-range in
actions the potential decays slowly, as a power law, i
V(r )5V0 /r a, where we assume thata>1. The short-range
interactions we shall be interested in, are screened inte
tions, of the generic formV(r )5V0 exp(2k0r)/r

a, where the
screening lengthl051/k0 is assumed to be a mesoscop
length scale. It turns out that the chain properties are q
sensitive to the range of the potential and we must treat
two cases separately.

III. LONG-RANGE INTERACTIONS

For polymers, whose monomers interact via a repuls
long-range segmental interaction potentialV(r )5V0 /r a,
with V0.0, the results of a 1/d-expansion are in fact con
tained in Refs. 18 and 19, which are concerned with
properties of elastic manifolds of internal dimensionD. The
special case of polymers corresponds toD51. Rather similar
results are also obtained on the basis of the variational an
sis carried out by Bauchaudet al. in Ref. 31. As a conse
quence, we shall merely summarize the main results.

One assumes that the leading behavior ofB(s) is B
5B0s2n, wheren is the exponent that determines the scal
of the radius of gyration,R, with the linear internal dimen-
sion, L, via R;Ln. In the special cases of a straight rodn
51, and for an ordinary random walk one hasn51/2 ~we
neglect here self-avoidance26!. On the basis of this scaling
ansatz, it is simple to show that when the potential is of lo
range, the ‘‘self-energy’’gc(q) can be expressed asgc(q)
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52ug0uqf1, wheref15(n(21a)21) andug0u is some con-
stant determined by the potential. One can now distingu
the following cases:

~i! If the potential does not decay very fast~a not much
larger than 1!, one can look for a stable solution of the sadd
point equations involving rodlike conformations withB0

5z2 and n51. For rodlike conformations to be stable, th
‘‘effective tension’’ l (R) must vanish@cf. Eq. ~16!#. For that
to be possible, one must havea.1(f1.2). However, ifa
becomes too large, the integral in Eq.~13! will be disturbed
by divergences~signaling the loss of stability of rodlike con
formations!. In order to avoid such divergences, one d
mands thata,2(f1,3).

~ii ! The loss of stability of rodlike conformations fora
.2 leads naturally to speculations about the stability
‘‘crumpled’’ or ‘‘wrinkled’’ conformations, with n,1. It is
interesting to look for a ‘‘crumpled’’ chain conformation
described by an ordinary random-walk model wheren
51/2. In order to avoid divergences in Eq.~13! one must
introduce an ‘‘effective tension’’l (R).0, which, in turn,
implies that one must havea.4 ~so thatf1.2!.

~iii ! The question is now, what happens for 2,a,4?
Clearly, rodlike conformations will be unstable, and typic
conformations cannot be described by an ordinary rand
walk model. Instead the polymer is predicted to ado
‘‘wrinkled’’ conformations characterized byn52/a, as may
be inferred from the saddle point equations.29 These confor-
mations will become random-walk-like whena→4, and
rigid-rod-like when a→2. Observe that the ‘‘phase’’ de
scribed here has the unusual property, of describing a s
wherez andl (R) vanish simultaneously. The stability of th
‘‘phase’’ is guaranteed by the fact that there is a posit
term in the ‘‘self-energy,’’ which varies asqf15q4/a11 with
2,f1,3. ~Note that such a term can only appear in the c
where the potential is of long range.!

IV. SHORT-RANGE INTERACTIONS

As mentioned above, when studying short-range s
mental interactions, we will focus on a special class of p
tentials, namely, screened potentials of the formV(r )
5V0 exp(2k0r)/r

a. We shall, again, assume that the intera
tion is repulsive (V0.0) and we pay special attention to th
highly relevant case of a screened Coulomb interaction, w
a51, V05kBTlB /A2, where l B5e2/ekBT is the Bjerrum
length, andA is the ~effective! charge separation.

In view of the fact that an unscreened Coulomb inter
tion is strong enough to limit the conformational flexibility i
such a way that rodlike conformations are favored, o
might ask if the screened Coulomb interaction can favor r
like conformations in a similar fashion. We are not surpris
to find that the answer is no: After all, monomers separa
by distances much larger than the screening length do
interact, and the conformational characteristics must, on
ficiently large scales, resemble those of polymers with
specific segmental interactions, i.e., polymers which ad
random-walk conformations.

A more technical way of seeing this is the following:
one assumes that rodlike conformations, withzÞ0 domi-
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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nate, one finds that the integral in Eq.~13! is disturbed by
divergencies which can only be removed in the special ca
T50 or l p

(0)5`. This result will, as in the previous section
be seen as indicating that the rodlike configuration is
stable and is always destroyed by thermal fluctuations.

If the screened Coulomb interaction cannot stabilize
rigid phase, it can, at least be expected to locally stiffen
chain. This is indeed the case and the effect is importan
was realized long ago by Odijk8 and Skolnick and Fixman9

~OSF!. The parameter which indicates the degree of stiff
ing is the ‘‘effective’’ or ‘‘renormalized’’ persistence lengt
l p

(R) which may be calculated as follows. One expands
~14! and checks that the expansion involves only even p
ers inq. The coefficient in theq4-term is the nonlocal, inter-
action contribution to the persistence length,

kBTdl p522E
2`

`

ds
s4

4!
V8~B!. ~17!

Knowing dl p , one can calculate the ‘‘renormalized’’ pe
sistence length asl (R)5l (0)1dl p .

This ‘‘renormalized’’ persistence length may be calc
lated under various circumstances corresponding to diffe
values of the parameters characterizing the potential and
intrinsic rigidity. The purpose of the next two subsections
to give an overview of the results of such calculations.

A. Intrinsically stiff chain

It is instructive to consider first the limiting casel (0)

→` or, equivalently, the caseT→0. WhenT→0, one may
assumez51 and for the screened Coulomb potential o
finds

dl p522
l B

A2 E
0

`

ds
s4

12
]BS e2k0AB

AB
D

B5s2

5
l B

A2 E
0

` ds

12
e2k0s~k0s21s!5

1

4

l B

A2

1

k0
2 . ~18!

This is the celebrated result obtained a long time ago
Odijk,8 Skolnick and Fixman,9 and, more recently, by Barra
and Joanny.10 The 1/d-expansion thus reproduces we
known and accepted results in the limit of large intrins
rigidity.

B. Intrinsically flexible chain

When the intrinsic persistence length is finite, as inde
it is in all physically relevant cases, the situation becom
significantly more complicated. We must now takez50,
while enforcing the constraint of inextensibility by requirin
that l (R) assumes a nonzero value. We shall assume tha
analyzinggc(q), it is sufficient to retain terms up to an
including the fourth order term in a Taylor expansion
powers ofq. This is expected to be a valid assumption
long asl (0) andl p

(0) are not both small. In the analysis give
below, we shall find this assumption to be satisfied. We t
write gc.(dl)q21kBTdl pq4, wheredl is the contribution
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to the Lagrange multiplier from nonlocal interactions, a
l (R)5l (0)1dl. It is now easy to solve Eqs.~13! and ~15!.
The result is

l~R!5S dkBT

2 D 2 1

kBTl p
~R! , ~19!

B~s!5
d

l p
~R! ~j2s1j3~e2s/j21!!, ~20!

wherej5AkBTl p
(R)/l (R) is a crossover length which, in th

case analyzed here, reduces toj52l p
(R)/d. The results Eqs.

~19!–~20! are typical of a wormlike chain, for which the
correlation functionB(s2s8)5^(r (s)2r (s8))2& behaves as
^(r (s)2r (s8))2&}us2s8u2 for small values ofs2s8 ~rodlike
behavior! and ^(r (s)2r (s8))2&} l̃ p

(R)us2s8u, for large s
2s8 ~random-walk behavior!.

An equation forl p
(R) is obtained if one inserts Eqs.~19!

and ~20! into Eq. ~17!,

l̃ p
~R!5 l̃ p

~0!1Ṽ1~ l̃ p
~R!!2E

0

`

dz̄ z̄ 4e2AB/ j̄S 1

j̄B̄
1

1

B̄3/2D ,

~21!

where l̃ p
(R)5(2/d)l p

(R)(5j) , and Ṽ15 l B /(12&dA2).
B̄( z̄)5 z̄211e2 z̄ is a dimensionless version of the correl
tion functionB. Finally, j̄51/(&k0l̃ p

(R)) is a dimensionless
screening parameter. Observe that this screening param
depends on the intrinsic screening length,l051/k0 , and the
‘‘ renormalized’’ persistence length,l̃ p

(R) .
The analysis of Eq.~21! is complicated by various fac

tors, including the crossover between the rigid-rod regi
and the random-walk regime inB̄, and we have not at-
tempted to obtain from Eq.~21! an analytical solution for
l̃ p

(R) . The results of a qualitative analysis of Eq.~21! can be
summarized as follows:

~i! When j̄!1, B̄( z̄). z̄2/2, and the integral in Eq.~21!,
I ( j̄), receives all its significant contributions from the ran
where the polymer behaves as a straight rod. If one simpli
the analysis by replacing the exponential by unity
‘‘scales’’ smaller than j̄, but ignores the integrand o
‘‘scales’’ larger thanj̄, one finds thatd l̃ p / l̃ p

(0);(Ṽ1l̃ p
(0))

3( l̃ p
(R)/ l̃ p

(0))2j̄2;( l B / l̃ p
(0))/(k0

2A2), i.e., apart from unim-
portant constants, one recovers the OSF result,

d l̃ p

l̃ p
~0!

}
l B

A2

1

k0
2

. ~22!

The above result can also be obtained via aj̄→0 steepest-
descent calculation.

~ii ! In the opposite limit,j̄@1, one can argue that th
most significant contribution to the integral in Eq.~21!
comes from regions where random-walk correlations are
portant. The correlation functionB̄ now behaves approxi
mately asB̄. z̄21. If one again replaces the exponential
Eq. ~21! by unity on ‘‘scales’’ smaller thanj̄, one finds that
the leading term of the integralI ( j̄) behaves asI ( j̄);j̄D,
where D57 @with a rather large and important pre
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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factor of order O(105) ~see below!#. As a consequence
d l̃ p / l̃ p

(0) } (Ṽ1l̃ p
(0)) ( l̃ p

(R) / l̃ p
(0))2j̄7 } (Ṽ1l̃ p

(0)) (k0
27l̃ p

(0))
3( l̃ p

(R)/ l̃ p
(0))25.

One can now distinguish two cases: First, it is possi
for j̄ to be large but, at the same time, forl̃ p

(R)/ l̃ p
(0) to be

O(1). Then to a good approximationd l̃ p / l̃ p
(0);(Ṽ1l̃ p

(0))
3(k0l̃ p

(0))27, or in extenso,

d l̃ p

l̃ p
~0!

}
V0

k0
7

}
l B

A2

1

k0
7

. ~23!

On the other hand, ifj̄@1 and d l̃ p / l̃ p
(0)@1 then d l̃ p

. l̃ p
(R) , and one then findsd l̃ p / l̃ p

(0);(Ṽ1l̃ p
(0))1/(D21)

3(k0l̃ p
(0))2D/(D21)5(Ṽ1l̃ p

(0))1/6(k0l̃ p
(0))27/6, or in extenso,

d l̃ p

l̃ p
~0!

}
V0

1/6

k0
7/6

}S l B

A2D 1/6
1

k0
7/6

. ~24!

Both of these asymptotic results may also be obtained v
j̄→` steepest-descent calculation.

C. Observability of non-OSF behavior

It is clear that in the limitj̄@1 one cannot obtain the
‘‘renormalization’’ of the persistence length by ‘‘kinematic
arguments, i.e., by analyzing the lowest order energy pen
of bending the polymer slightly about an essentially strai
configuration. In this limit, it is segments very far apart alo
the polymer contour that contribute the most to the ‘‘ren
malization’’ leading to non-OSF behavior. It is natural to a
under which, if any, realistic conditions random-walk corr
lations may be important, and the electrostatic part of
persistence length to differ from the OSF prediction. It
intuitively clear that the intersegment interaction poten
has to be weak to allow the polymer to sample these con
mations.

To assess just how weak these interactions must be
analyze the functional dependence betweenj̄ and k0 , and
find that j̄(k0) has a maximum for a particulark05km and
the maximum value isj̄m}( l̃ p

(0)Ṽ1)22/7}( l̃ p
(0)l B /A2)22/7,

with a rather small factor of proportionality. We see, thu
that the parameter which controls whetherj̄ is large or not,
and hence whether one is in the regime where random-w
correlations are important or not, isG05 l̃ p

(0)Ṽ1

} l Bl̃ p
(0)/A2. Others have also concluded thatG0 is the pa-

rameter determining whether random-walk correlations
relevant or not.32 Roughly speaking,G0 is small ~j̄m large!
when the separation between charges,A, is much larger than
the ‘‘bare’’ persistence length,l̃ p

(0) .
Becausej̄(k0) has a maximum, it is, in principle, pos

sible that by varying the screening length, one can start
regime where rigid-rod correlations dominate, then pass
regime where random-walk conformations dominate, a
then, finally, end in a regime where, again, rigid-rod cor
lations dominate. Thus, ifk0@km ,j̄ is dominated by the
‘‘bare’’ part 1/(k0l̃ p

(0)) and may be small, reflecting that th
Downloaded 03 May 2001 to 193.2.6.183. Redistribution subject to AIP
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electrostatic interactions have been eliminated on sc
much shorter than the ‘‘bare’’ persistence length. One th
expects OSF behavior. If, on the other hand,k0!km ,j̄ is
dominated by the electrostatic part, 1/(k0d l̃ p

(R)) and may be
small because now the segmental interactions are unscre
on all length scales of interest, and the polymer will lo
rodlike on all length scales of interest. Again, one finds OS
behavior. One checks easily that if the interaction part of
persistence length is described by Eqs.~23! and ~24!, it is
possible to increase or decreasek0 ~for fixed values ofṼ1!

such that, eventually,j̄,1. This rests in part on the fact tha
l̃ p

(R) / l̃ p
(0) decays faster than 1/(l̃ p

(0)k0).
Unfortunately this interesting scenario can not be e

pected to unfold under very many realistic conditions. T
main difficulty is that the above arguments fail to take in
account the importance of some numerical constants. A
merical analysis of Eq.~21! reveals the problem: If one fixe
l̃ p

(0) and eitherṼ1l̃ p
(0) or k0l̃ p

(0) , one may numerically ob-
tain d l̃ p

(R)/ l̃ p
(0) as a function of eitherk0l̃ p

(0) or Ṽ1l̃ p
(0) .

Figure 1 shows representative results obtained for vari
fixed values ofk1l̃ p

(0) . As shown in Fig. 1, it is indeed
possible to find the new ‘‘scaling’’ regimes for the intera
tion part of the persistence length, the regimes described
Eqs. ~23! and ~24!. Note, however, that these regimes a
observable only in limited regions of parameter space wh
k0l̃ p

(0) is typically of orderO(1022) andṼ1l̃ p
(0) is typically

of orderO(10220) @Eq. ~23!#, or wherek0l̃ p
(0) is typically of

order O(1025) and Ṽ1l̃ p
(0) is typically of orderO(10218)

@Eq. ~24!#. Even in the most favorable case, this correspo
to conditions where the screening length is orders of mag
tude larger than the ‘‘bare’’ persistence length, and, ev
worse, where the effective charge separation is many m
orders of magnitude larger than the ‘‘bare’’ persisten
length. The lesson we learn is that it requires effectiv
macroscopic charge separations, in between which the c
can sample a very large subset of conformations, for it to
possible that random-walk chain fluctuations give rise to
viations from OSF behavior. It follows, obviously, that th
OSF predictions for the interaction part of the persisten
length are rather robust.

V. 1Õd -EXPANSION FOR A STRETCHED,
SELF-INTERACTING POLYMER

The 1/d-expansion introduced in the previous secti
can, rather easily, be generalized to other problems~involv-
ing a single chain!, where various external forces act on th
polymer. In this section we will treat the case where a po
mer is subject to an external stretching force. We shall all
for pairwise monomer interactions as well.

The Hamiltonian we wish to consider is the following

H5
kBTl p

~0!

2 E dsS ]2r

]s2D 2

1
1

2 E E dsds8V~ ur ~s!2r ~s8!u!2 f ez•E dsS ]r

]sD ,

~25!
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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where we assume that the force, of strengthf, is applied
terminally, along thez-direction.

As in the previous sections, we wish, approximately,
enforce a constraint of ‘‘inextensibility.’’ The practical wa
of doing this is via a Lagrange multiplier technique as d
scribed above~Sec. II!. In the present discussion we als
want to introduce a Lagrange multiplier technique in order
be able to deal with the complicated, nonlocal characte

FIG. 1. The dependence of the relative change in persistence le

d l̃ p / l̃ p
(0) on the dimensionless strength of the screened Coulom

monomer–monomer interaction potential,Ṽ1l̃ p
(0)/kBT, for various values of

the dimensionless screening lengthk0l̃ p
(0) . The results were obtained b

numerical evaluation of Eq.~21!. The top curves correspond to the smalle

values and the bottom one to the largest values ofk0l̃ p
(0) . The ‘‘screening

parameter’’ j̄51/k0l̃ (R) is large so deviations from OSF behavior is e

pected: As shown in Fig. 1~a!, for k0l̃ p
(0) in the interval 1026– 1024 ~the

curves were calculated fork0l̃ p
(0)51024, 1025, and 1026! it is possible to

adjust Ṽ1l̃ p
(0)/kBT such that one is in the ‘‘scaling’’ regime described b

Eqs. ~24!, i.e., d l̃ p / l̃ p
(0);V0

bk0
2g with (b,g)5(1/6,7/6). Notice that

k0l̃ p
(0) is very small, typically of orderO(1025) andṼ1l̃ p

(0) is even smaller,

typically of orderO(10218). As shown in~b!, for k0l̃ p
(0) in the interval

1021– 1023 ~the curves were calculated fork0l̃ p
(0)51021, 1022, and 1023!

it is possible to observe the ‘‘scaling’’ regime described by Eq.~23!, i.e.,

(b,g)5(1,7), however only whenk0l̃ p
(0) is small, typically of the order

O(1022) and whenṼ1l̃ p
(0) is very small, typically of the orderO(10220).
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the potential. We thus add to the Hamiltonian Eq.~25! the
terms

dH15
1

2 E dsl~0!~s!~~]sr ~s!!221!, ~26!

and

dH25
1

2 E dsds8g~s,s8!~~r ~s!2r ~s8!!22B~s,s8!!,

~27!

where l will contribute to the ‘‘effective tension,’’g will
play the role of a ‘‘self-energy,’’ andB will ultimately be
shown to coincide with the correlation function̂(r (s)
2r (s8))2&. The total Hamiltonian is thusH2@r ,C, f #5H
1dH11dH2 .

When a stretching force is applied, it is natural to exp
a solutionr (s)5r01dr , with r05zse, wherez is the usual
‘‘stretching factor.’’ As in the previous section, we shall a
sume thatr0 and hencez are adjusted so that the linear ter
in the expansion of the Hamiltonian in powers ofr0 , van-
ishes. The effective Hamiltonian, after integration over po
mer conformations, is then

He@r0 ,C, f #5H2@r0 ,C, f #1kBT
d

2
Tr ln~d~s2s8!

3~kBTl p
~0!]s

42]sl
~0!]s!12gc~s,s8!!,

~28!

where, the same definition as in Sec. II was used
gc(s,s8). Note that the force constantf only appears in the
‘‘bare’’ part H2@r0 ,C, f #.

It is useful here to imagine that the polymer is of fini
linear length,L. The conformational fluctuations of the poly
mer ~subject to periodic boundary conditions, say! then have
Fourier components forq5(2p/L)n, with n561,62,... .
The mode corresponding toq50 must be excluded since
can be identified with the average configurationr0 . When
the system is translationally invariant, we can assume
l (0) is a constant, and assume thatB(s,s8)5B(s2s8),
g(s,s8)5g(s2s8). Then we have

Tr ln~¯ !→E ds
1

L (
qÞ0

ln~¯ !,

kBTl p
~0!]s

42l~0!]s
2→kBTl p

~0!q41l~0!q2, ~29!

gc~s,s8!→g~q!2g~q50!,

where g(q) is the discrete Fourier transform ofg(s2s8).
The calculation ofHe@r0 ,C, f # is then, again, straightfor
ward.

The final steps in the calculation of the partition functio
and the free energy are virtually identical to the steps
volved for a stress-free polymer. In particular, assuming t
the number of components ofr is much larger than the num
ber of auxiliary fields, we may obtain an approximate es
mate of the free energy,

th

ic
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F@r0#5F01S H2@r0 ,C, f #1kBT
d

2
Tr ln~kBTl p

~0!]s
4

2l~0!]s
212gc~s,s8!! D

SP

, ~30!

whereC is adjusted so as to minimize the free energy@the
saddle point~SP! condition#.

Upon minimizing the free energy w.r.t. toC, we find the
following saddle point equations for a semiflexible polym
subject to a stretching force,

15z21dkBT
1

L (
qÞ0

q2

kBTl p
~0!q41l~0!q212gc~q!

, ~31!

gc~q!5E ds~12cos~qs!!V8~B~s!!, ~32!

B~s2s8!5z2~s2s8!212dkBT
1

L (
qÞ0

3
12cos~q~s2s8!!

kBTl p
~0!q41l~0!q212gc~q!

, ~33!

where, again,V8(z)5]zV. As before, the first equation, Eq
~31!, guarantees that the constraint]sr (s)•]sr (s)51 is sat-
isfied globally, and the third equation, Eq.~33!, takes care of
the constraint, (r (s)2r (s8))25B(s,s8). Finally, the second
equation, Eq.~32!, determines an effective ‘‘self-energy’’ o
the polymer. This ‘‘self-energy’’ only depends on the natu
and strength of segmental interactions, and is unaffected
the presence of the stretching force. It will, in part, determ
nonlocal contributions to the elastic constants which h
balance the external force.

Finally, if we minimize w.r.t.z, so as to determine th
optimal stretched configuration, we find

z5
f

l~R!~ f !
, ~34!

wherel (R)5]q
2G21(q)uq50 is the ‘‘renormalized Langrange

multiplier’’ or ‘‘effective tension,’’ obtained by expansion o
the inverse ‘‘propagator’’ G215l (0)q21kBTl̃ p

(0)q4

12gc(q). Equation~34! expresses that, in mechanical equ
librium, the external forcef has to be balanced by the inte
nal forces, involving the ‘‘effective tension,’’l (R), times the
‘‘strain,’’ z. Equation~34! may, equivalently, be considere
as the force-extension relation, or equation of state, for
polymer.

The saddle point equations, Eqs.~31!–~34!, completely
determine the properties of the polymer when it is subjec
to an external stretching force. If we ignore segmental in
actions, these equations coincide with the equations der
and analyzed recently by Ha and Thirumalai.22 When short-
range forces act between monomers, the analysis prese
in the previous section~see Sec. IV!, lead us to consider the
possibility of describing an interacting chain subjected to
stretching force in terms of a stretched, noninteracting ch
with elastic constants ‘‘renormalized’’ by the interaction
When the monomers interact via a long-range potential,
‘‘trick’’ is not expected to work, unlessa.4 ~see Sec. III!
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and we anticipate that the calculation of the force-extens
relation will prove difficult. We shall discuss the two cas
separately.

VI. STRETCHING AND LONG-RANGE
SELF-INTERACTIONS

When a wormlike chain, whose monomers interact vi
repulsive interaction potential, are subjected to an exte
stretching force, the discussion turns out to be simple o
for a.4 where the interacting chain may be replaced b
noninteracting chain with ‘‘renormalized’’ elastic constan
The steps involved in the calculation are similar to the on
involved in the calculation shown below~Sec. VII! for a
chain whose monomers interact via a screened potential

When 1,a,4 we must take into account the fact th
the chain spontaneously adopts~broken-symmetry! confor-
mations with eitherz( f 50)5z0Þ0 (1,a,2) or z050
(2,a,4), yet always withl (R)( f 50)50. By combining
Eq. ~31! and Eq.~34! we obtain

15S z01
D f

l~R!D 2

1dkBT
1

L (
qÞ0

q2

kBTl p
~0!q41l~0!q212gc~q!

, ~35!

whereD f 5 f 2l (R)( f ). We observe that the ‘‘self-energy’
gc(q) may be decomposed as 2gc(q)5dlq212dgc(q),
with 2dgc(q)5ug1uqf1, andf15n(21a)215a11 when
n51(1,a,2), whereas f15n(21a)2152/a(21a)
2154/a11 whenn52/a (2,a,4).

Our purpose is to obtain the modified force-extens
relationz2z05dz5dz(D f ), for small values of the force
We shall assume that on all length scales of interest,
correlation functionB(s) has the functional form obtaine
before the force was turned on: For small enough value
the force the correction toB of the form (dz)2s2 may be
considered subdominant. Sincel (R)( f 50)50, l (R)( f ) must
be expected to be small whenf is small, and we make no
serious mistake if we Taylor expand the ‘‘integrand
i 1(l (R),q)5q2/(l (R)q21kBTl p

(0)q412dgc(q)) about l (R)

50 to obtain i 1(0,q)2l (R)q4/(kBTl p
0q412dgc(q))2

5 i 1(0,q)2l (R)/h(q). Inserting in Eq.~35! and replacing
summation by integration yields

15S z01
D f

l~R!D 2

1I 11l~R!dkBTE
q.p/L

dq

2p

1

h~q!

5S z01
D f

l~R!D 2

1~ I 11l~R!dI 1~L !!. ~36!

Using the fact that 15z0
21I 1 , we finally derive l (R)

}(D f )1/2(z0 /dI 1)1/2, and hence

dz~D f !}
~D f !1/2

~z0 /dI 1!1/2}~D f !1/2, ~37!

when 1,a,2. We note that for 1,a,2,dI 1 is convergent
when 1,a,3/2 and grows withL roughly asL2(a21) when
3/2,a,2. On the other hand,l (R)}(D f )2/3(dI 1)21/3, and
hence
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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dz~D f !}~D f dI 1!1/3}~D f !1/3, ~38!

when 2,a,4. We note that for 2,a,4,dI 1 is convergent
when 8/3,a,4 and grows withL roughly asL8/a23 when
2,a,8/3.

VII. STRETCHING AND SHORT-RANGE SELF-
INTERACTIONS

When monomers of a semiflexible polymer interact via
short-range interaction potential~or a long-range interaction
potential witha.4! we can, as noted above, imagine repla
ing the chain with its ‘‘bare’’ elastic constants~in casu, the
bending rigidity! and interacting segments by a chain w
noninteracting segments and ‘‘renormalized’’ elastic co
stants. For such a chain, the study of the saddle point E
~31!–~34! have, as mentioned, been carried out by Ha a
Thirumalai.22 Here we shall only briefly summarize the
findings:

~i! When l̃ p
(R) f→0, the chain is in the weak stretchin

regime, where the force mostly acts to pull out random-w
conformations and the response is linear. One finds easz

5 f /kBTl̃ p
(R) which is the result one obtains for flexible poly

mers of step lengthl̃ p
(R) .26 The first nonlinear correction to

this result is obtained by expandingl (R) to second order inf.
One then findsz5 f /kBTl̃ p

(R)(122(2 f /dkBTl̃ p
(R))2).

~ii ! When l̃ p
(R) f→`, the chain is strongly stretched an

must behave in a way that differs from a random walk.
deed, whenz→1, the correctionz21 vanishes as 1/Af : z

512d/4AdkBT/2l̃ p
(R) f . The 1/Af contribution is typical of

an intrinsically unstretchable wormlike chain near the r
limit.2,24

We observe that all expressions quoted above for
force-extension relations are parameterized by the ‘‘ren
malized’’ persistence lengthl̃ p

(R) which, in turn, depend on
the parameters that determine the range and strength o
interaction potential. In Secs. IV and V we gave a detai
account of how the persistence length depends on the D
screening lengthl0 , and hence the salt concentration, a
the strength of the potentialV0 . One can therefore withou
complication use the 1/d-expansion to assess how a co
trolled change in salt concentration modifies the for
extension relation for intrinsically unstretchable polymers

VIII. SUMMARY AND DISCUSSION

In this paper we have carried out a 1/d-expansion for
wormlike chains with segmental self-interactions of me
scopic or long range, in order to determine the conform
tional ‘‘phase’’ behavior of isolated chains, and in order
determine the force-extension relation for chains subjec
an external stretching force. Emphasis has been put on
fact that the theory is only valid for intrinsically inextensib
chains for which all the conformations have to lie on the u
sphere defined by the tangent vector. There might be ca
starting already with DNA,3 where this assumption is no
entirely reasonable, especially at low salt concentrations.
improved theory in which one relaxes the inextensibil
constraint must focus on the coupling between the bend
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and stretching moduli mediated by the segment–segmen
teraction potential. This program is difficult enough that w
have left it for a separate publication.25

For chains with long-range segmental self interactio
the results obtained concerning the conformations of an
lated chain are in agreement with those obtained by
Doussal18 and Guitter and Palmeri.19 We find that when
chain segments interact via a potential that decays asr a

with 1,a,2, the chain adopts rod-like conformations, wi
R;Ln and n51, rather than the typical random-walk con
formations with n51/2 ~we have ignored self-avoidance!.
For the case of Coulombic interactions (a51) our results
agree with results obtained via Flory-type arguments7 and
Renormalization Group~RG! analysis33 for flexible chains
(4,d,6). For 2,a,4, we find that chain conformation
are characterized byn52/a. This results can also be ob
tained via a des Cloizeaux-type variational analysis.31 For
a.4 the chain adopts random-walk conformations.

For stretched chains whose monomers interact vi
long-range potential, we predict interesting new phenome
especially that when 1,a,4 the chain always respond
nonlinearly to the stretching force: For 1,a,2 the defor-
mation away from the spontaneous equilibrium extension
dz5z2z0}(D f )1/2; f 1/2, where D f 5 f 2l (R). For 2,a
,4, dz}(D f )1/3; f 1/3, see Fig. 2. In either casedz vanishes
as f→0, i.e., the system indeed returns to the correct~spon-
taneous! equilibrium state when the force vanishes. The
results are consequences of the fact that the force pulls
‘‘tension-free’’ ~broken symmetry! conformations which can
not respond to the force at linear order. To our knowled
‘‘anomalous’’ elasticity of this kind has not been consider
before. One does find ‘‘anomalous’’ elasticity in other so
condensed matter systems, such as smectic A liq
crystals,34 however of another kind: In liquid crystals

FIG. 2. Illustration of the various types of elastic response for a polym
chain whose monomers interact via a long-range potential of the f
V(r )5V0 /r a. The extension away from the spontaneous equilibriumz0 is
dz5z2z0}(D f )1/n, where D f 5 f 2l (R)( f ). For small values ofa, 1
,a,4 the elastic response is nonlinear@cf. Eqs.~37!–~38!#. For a.4 the
chain responds linearly to weakly applied forces.
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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‘‘anomalous’’ elasticity comes about because of nonlin
gradient interactions. By contrast, for the polymers stud
here, a non-linear elastic response is due to the long rang
its segmental interactions.

Unfortunately we are not aware of situations whe
chain segments interact via long-range, repulsive~dipolar!
interaction potential witha.1. Clearly monopolar charge
distributions cannot give this type of interaction potenti
One would obviously have to take into account more co
plicated multipolar charge distribution that have a faster
cay than the ordinary monopolar Coulomb interactions. T
region of polyelectrolyte theory has not been explored at
Our results nevertheless show that some interesting phy
might exist in this type of polyelectrolyte system where
,a,4 such that the chain conformations would
‘‘anomalous’’ with n52/a. Conceivably, a multipolar
charge distribution can dominate the segmental interact
if the polyelectrolyte comes with a polyvalent counteri
which is unable to ‘‘condense’’ the polymer but has a te
dency to adsorb on the polyelectrolyte, as is sometimes
case for DNA and polyvalent counterions.4 In that case one
requires that the counterions almost neutralize the poly
so that monopolar interaction potential does not domin
and one then hopes to find a repulsive, multipolar interac
with 2,a,4. We speculate that DNA, together with a su
able counterion, might behave in this way. For DNA, o
may have to worry about the constraint of inextensibili
however.

For chains with screened electrostatic monome
monomer interactions, we believe that we have been ab
contribute to the discussion of the interplay between ch
conformational fluctuations and segmental interactions, e
cially for intrinsically flexible chains with large charge sep
ration. To our knowledge, we are the first to propose tha
Debye–Hu¨ckel interaction of strengthV0 , and with inverse
screening lengthk0 , can give rise to an interaction induce
persistence length varying asV0

bk0
2g , with either (b,g)

5(1/6,7/6) @large values ofd l̃ p
(R)/ l̃ p

(0)# or (b,g)5(1,7)
@small values ofd l̃ p

(R)/ l̃ p
(0)#. In fact, these nonperturbativ

predictions differ from the results of all previous investig
tions which conclude that strongly fluctuating chains eith
have (b,g)5(1,1),10,35,36or (b,g)5(1,2).32,37,38It is note-
worthy, but probably not surprising, that the paper by N
and Orland39 which employs the variational approach of d
Cloizeaux,30 leads to predictions that differ from the resu
of our 1/d-expansion.

The more important finding for isolated chains ma
however, be that the chances of observing these new sc
regimes seem to be seriously limited: In order to observe
new scaling relations one will have to operate at conditio
where the screening length is orders of magnitude larger
the ‘‘bare’’ persistence length, and where the effect
charge separation is many more orders of magnitude la
than the ‘‘bare’’ persistence length. As pointed out earlier
follows that we must consider the OSF prediction (b,g)
5(1,2) as quite robust. In order to illustrate the robustnes
the OSF prediction, we note that since the ‘‘renormalize
persistence lengthl p

(R) of DNA can be about 1000 Å, we
must choosel0 to be about 10 000 Å, i.e., operate at unr
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alistic small salt concentrations, to reach below the ma

limit k0l̃ p
(R)5O(0.1) where non-OSF behavior may be o

served. Hyaluronic acid~HA!, another popular polyelectro
lyte, which is quite flexible and has an intrinsic persisten
length which is more than two orders of magnitude sma

than DNA’s, reaches the same limitk0l̃ p
(R)5O(0.1) for l0

.10– 20 Å. This may be achieved in the laboratory. Ho

ever, in order to obtainṼ1l̃ p
(0),10218 ~see Fig. 1! one must

very carefully regulatepH to the point where the polyion is
almost neutralized. Only then will one have a chance of
serving non-OSF behavior.

For a chain with screened segmental interactions s
jected to an external stretching force, we have been abl
make progress by assuming that one can replace the c
whose monomers interact by a chain with noninteracting m
nomes with ‘‘renormalized’’ elastic constants~in casu the
bending rigidity!, and we have thus, in effect, been able
take over the results by Ha and Thirumalai~HT! ~Ref. 22! for
chains with noninteracting monomers. As pointed out by H
the results obtained may be used quite successfully to fit
data obtained for long DNA segments by Smithet al.40 ~see
their Fig. 1!.

We have also been able to illustrate how one can,
principle, study the modification of the force-extension re
tion after a controlled changed of the strength and/or ra
of the potential~via a change of salt concentration, say!.
Controlled changes of the parameters characterizing
screened interaction potential were performed experim
tally by Baumannet al.3 who studied long DNA fragments
Only by allowing for intrinsic stretchability, were they abl
to obtain reasonable fits to the data. Recently we have b
led to the same conclusion,25 and it seems that the theory o
the force-extension relation sketched here may in some s
ations be somewhat too simplistic.

Though, on the one hand, our work points to the vario
intricacies regarding the statistical properties of se
interacting semiflexible chains it also points to an over
simplification that we can exploit in understanding of the
rather complicated systems. If the intersegment interacti
are of short range, especially if they are screened, we d
onstrated that the OSF result for the renormalized bend
rigidity and the corresponding HT limit of the force exte
sion relation, though not entirely without peculiarities, a
nevertheless extremely robust and can be used safely in
whole range of parameters describing the ionic screenin
well as the effective charge on the chain segments. We h
shown conclusively that the cases where anomalies
bound to show up belong to the fringes of the parame
space and can be safely ignored in the majority of situati
encountered in real semiflexible polyelectrolytes. The lo
range interactions on the other hand, especially if they a
consequence of multipolar charge distributions that lead
spatial dependence with 2,a,4, appear to be much mor
tricky and lead to ‘‘anomalous’’ elasticity where even fo
small stretching forces the Hookean regime of a linear re
tion between force and extension does not emerge at all
present we are unable to judge whether this finding may h
serious repercussions for our understanding of the stretc
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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of self-interacting chains. Nevertheless, it may turn out to
important when stretching experiments will move from DN
to other polyelectrolytes with more complicated charge d
tributions along the segments. These distributions might c
ceivably correspond to regimes described by ‘‘anomalou
polyelectrolyte elasticity.
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