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We study the properties of an isolated, self-interacting wormlike polymer chain on the basis of a
nonperturbative H-expansion, wherd denotes the dimension of embedding space. In the absence
of an external force, we characterize the dimendiof the chain in embedding space i

~L", wherelL is the internal size(A) Long-range, repulsive segmental interactions decaying as
1/r* may control chain conformations that are either rodlikes 1(1<a<2), “wrinkled,” 1/2
<pv<1(2<a<4), or random-walk-likep=1/2(a>4). (B) For short-range, screened, repulsive
interactions, the crossover between rodlike and random-walk-like behavior is controlled by the
persistence length whose interaction part we compute focusing on a Debgleelthteraction of
strengthVy, with inverse screening lengtk,. The induced persistence length varies\/@s«g’,

with, as expected,&,v)=(1,2) when the chain is intrinsically stiff, and, surprisingly, with either
(B,y)=(1/6,7/6) or B,y)=(1,7) when the chain is intrinsically very flexible. The chances of
experimentally observing the novel regimes may be limited. For a chain subject to an external
stretching forcd, we determine the force-extension relation {(f ) = {,+ 6Z(f ), wherel denotes

the chain extension{, is the spontaneous extensiofd) If the interaction potential is either
screened, or if the decay of a long-range interaction potential is fast, i.e.>#, the chain
spontaneously generates an “effective tension” and responds linearly to weak forces with elastic
constants “renormalized” by interactions. By contrast, “tension-free” chains, with eithed,
wheres,~ 12, or with v=2/a, wheres;~ f'3, respond to the weakest force nonlinea(B) Near

full extension the chain always responds nonlinearly. When the potential is screened>ct,ifve

find the 1A/f corrections typical of wormlike chains. @001 American Institute of Physics.

[DOI: 10.1063/1.1355261

I. INTRODUCTION When segmental interactions of mesoscopic or long
range are involved, numerous things may happen. For in-

When we ignore possible intrinsic stretchability, we may siance, if the interaction potential corresponds to the un-
characterize wormlike or semiflexible polymer chains asgcreened  Coulomb potential the  polymer or

macromolecules Fhat display re§|stance to be_ndmg deform olyelectrolyte> may, as was argued by Katchalfkgnd
tions and to torsional deformations. The resistance to suc

def i f which hall onlv be int ted in th e Genne®t al,’ lose most of its conformational flexibility
etormations, ot which we shall only be Interested in the, adopt rodlike conformations. If the interaction potential
bending deformations, is parametrized by elastic constants

. . . .IS screened, the polymer must eventually be expected to re-
which summarize numerous short-range, microscopic

monomer—monomer interactions. Due to its bending rigidity g'ain. i.ts conformatic.)n'al flexibility., yet the chain does b?come
keT/p, Wherekg denotes Boltzmann's constant, afidis significantly more rigid, as was first pointed out by Odijk and

the absolute temperature, a wormlike chain is expected to b%kOIr"Ck and F|>'<marﬁOSF),8’9 who made it c!ea.r that, a't low
roughly straight or rodlike on scales below its persistencéalt concentratlphs, screer]ed .electrostatlc |pteract|ons ac-
length,/, . On length scales much larger thaf, the chain count for a significant contribution to the persistence length
is expected to be governed by conformational entropy whichhat far exceeds the screened interaction rdfigbNA,
favors random-walk conformations. Macromolecules thadain, seems to illustrate the situation well: When DNA is
under favorable circumstances can be modeled as semifleflissolved in salty water, the rigidity depends strongly on the
ible polymers include DNA which has an intrinsic or “bare” amount of added salt and may, for small salt concentrations,
persistence length of about 500'A* where the “bare” part  easily contribute as much as half of the total rigidity and
is the part found before segmental interactions are taken intpersistence length® Finally, in rare cases it is possible that
account. attractive electrostatic interactions can be generated between
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like-charged segments, as was conjectured a long time aguoay be limited: The OSF regime is indeed very robust.
by Oosawa! Recently, various mechanisms involving cor- Recent experimental advances have allowed us to obtain
related fluctuations &f or positions of® condensed counte- rather detailed information about self-interacting wormlike
rions have been proposed to explain the occurrence of suathains. In particular, via controlled stretching experiments
forces. Attractive interactions will, for instance, significantly performed on individual DNA moleculés? it has become
lower the persistence length and may play an important rol@ossible to extract elastic constants for DNA molecules.
in bringing about a sudden aggregation of single DNA mol-Clearly, these stretching experiments allow us to test directly
ecules, as is sometimes observéd. various model predictions for the interplay between segmen-
In this paper we develop a general statistical mechanicdgl interactions and macroscopic chain properties.
formalism which allows us to assess the interplay between In most cases of experimental interest such model pre-
conformational properties of an intrinsically inextensible,dictions may be calculated in a straightforward manner on
wormlike chain and its monomer—monomer interactions. Wehe basis of the #i-expansion technique, once an estimate
shall only consider cases where the interactions are repubas been made of how segmental interactions modify the
sive. The case involving attractive interactions has been corelastic parameters characterizing the polymer. More gener-
sidered elsewher®. The formalism we develop here in- ally, the predictions follow from an analysis of the force-
volves a nonperturbative expansion which treats chain extension relatiod=¢{(f ), where{ denotes the chain exten-
conformational properties in a way that is exact when thesion andf denotes the applied force. This relation may be
dimension of embedding space, becomes large. Correc- calculated for a wide class of interaction potentials. In the
tions to this leading behavior will be of orderdl/Using this ~ present paper we wish to illustrate how to obtain it when
so-called 1d-expansiort® we are allowed to estimate gen- long-range segmental interactions dominate, and how it may
eral chain conformational properties and how segmental inb€ analyzed for polyelectrolytes that interact via a screened
teractions modify elastic properties of the chainaith rel-  interaction potential.
evant limits, not the least in the complicated and poorly ~ Our main results are as follows: If the interaction poten-
understood limit where the range of the interaction is largeial is either screened or if the decay of the long-range inter-
compared with the “bare” persistence length. action potential is fast, i.e., &#>4, the chain spontaneously
Let us note that the formalism we develop here has algenerates an “effective tension” and responds linearly to
ready proven to be useful as a means of estimating the CO'\{\[eak forces with elastic constants “renormalized” by inter-

formational and thermal properties of other intrinsically flex- ctions. In this case, it is a simple matter to test how changes
ible materials such as fluid membrahesand tethered Of the parameters that characterize the interaction potential,

manifolds witH®and withouf® long-range monomer inter- Modifies the force-extension curve. By contrast, if the inter-

actions. A theoretical analysis somewhat similar to the onéction potential is of long enough range, i.e.aif 4, the
presented here has been proposed for the case of semiflexifi@lymer does not generate an “effective tension” and sur-
polymers with noninteracting monomers by Ha andPrsing nontrivial behavior is predicted: The polynmaways
Thirumalai?2=23 In the present paper we shall, in contrast,"€SPonds nonlinearly to an applied force, however weak. In
focus on problems involving semiflexible polymers whosedeneral, the extension may be decomposed {as{o
properties are influenced by long-range or screened segmefi-9(f), whereg, is a spontaneous extension. We find that
tal interactions. for v=1, 6.~ 12, and forv=2/a(2<a<4), 6~ 13 The

We may summarize the main results of our analysis fmnonli.nea_r response is due to the long range of the potential
chains that are not subject to external forces as follows: If th&nd is different from the response one finds near full exten-
monomer—monomer interaction potential is of long rangeSion when the interaction is screerfed if a>4): There4one
decaying as 1, we find that chain extension is alwags Inds the 1{/f corrections typical of wormlike chairfs’
~L”, whereL is the internal size. The chain conformations 1€ Organization of the paper is as follows: In Sec. Il we
may be either rodlikep=1(1<a<2), “wrinkled,” 1/2 outline the 1d-expansion for the self-interacting, semiflex-
<p<1(2<a<4), or random-walk-likep=1/2(a>4). All ible polymer. We apply the formalism in the cases of long-
of these results agree with earlier results obtained by L&&19€ and short-range interactions in Secs. Ill and IV, re-
Doussal and Palmeri and Guitiér® If the monomer— SPectively. In Sec. V we generalize the formalism to the case

monomer interaction potential is a screened Debyieekils ~ Where the polymer is subject to a stretching force applied
type potential with strengthly, and inverse screening length terminally. We derive the equations determining the confor-

kg, the chain will adopt random-walk conformations with matlongl propgrues of the chain as well as the .force—
v=1/2 for largeL, yet will behave as a rod for small The extension relation. In Secs_. VI gnd VII we go on to discuss
crossover from rodlike to random-walk-like behavior is con-the cases of strgtched c.hams with Ion.g—range. and sh.ort-range
trolled by the persistence length whose interaction part Wéegmental self-!nteractlor)s, respectively. Finally, in Sec.
calculate. The induced persistence length varievézsg’. VIII we summarize and discuss our results and offer some
We find, as expected, the OSF re&t (B, ) =(1,2) when concluding remarks.

the chain is intrinsically stiff. Surprising new nonperturba-
tive regimes emerge when the chain is intrinsically very flex-
ible. We identify a regime whered, y) = (1/6,7/6) as well as
regime where B,y)=(1,7). Unfortunately a qualitative In this section we will describe the nature of the
analysis shows that chances of observing the new regimedd-expansion and, in particular, apply it in the special case

II. /d-EXPANSION FOR A SELF-INTERACTING
POLYMER
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of a linear polymer with self-interacting chain segments.where /foo) denotes the “intrinsic” or “bare” persistence
Generalization to other situations, involving a single poly-length, which is directly related to the “intrinsic” or “bare”
mer, is rather straightforwargsee, e.g., Sec. V below bending rigidity, kg T/{”. The functionV(|r(s)—r(s")|) is

a pair-interaction potential describing the monomer—
monomer interactions. Various forms of this potential will be

For a long linear polymer it is most useful to focus on studied below.

chain conformations which may be described by the  The probability distribution for chain conformations of
d-dimensional position of its monomergs), each of which  semiflexible polymers deviates from the form given for a

are labeled by thdcontinuous internal coordinates. We  FJC by a Boltzmann factor, expBH[r(s)]),
will assume thats has dimensions of length, and assumes

values in the intervdlO;L], with L—oco. Our description of

A. General considerations

the polymer relies entirely on this parametrization. P[f(S)]ZH 3(agr(s)- agr(s)—1)exp(— BH[r(S)]),
Now, often a physically acceptable model of a chain will s
involve the constraint that, on the relevant energy scales, the )

individual bonds between monomers have roughly fixed

lengths and may, therefore, be considered unstretch@ae. wheres=1/kgT, and consequently the partition function is
DNA, this is is only a reasonable approximation at large salt

concentrationd?®® In the continuum language employed

here, this means that the tangent vedterdr/ds= i (s) Z=J DIr(s)1I] 8°(der(s)- aer(s)—1)exp( — BH),
must be a vector of fixed length, which we shall take to s

be unity. The constraint of “inextensibility” is then

dsr (8)- dgr(s)=1, and only chain fluctuations which satisfy

this constraint should be taken into account. Obviously, if thd-€-+ @ path-integral over chain conformations weighted by
chain is flexible, the chain will fluctuate freely, subject to the (€ Boltzmann factor. As in the FJC model, the functional

constraint of “inextensibility” and the probability distribu- &function guarantees that the integral involves only such
tion for chain conformations is configurations that satisfy the condition of inextensibility.
Evaluation of the partition function is complicated by
two factors. The first is imposed by the functiod&function
and the constraint of inextensibility which requires us to in-
) . . ) - o clude in the sum over polymer conformatiomsonly those
!nvo!vmg a funcnonal&funcuon_. The partition fl_Jnctlon IS, for which the tangent vectors, lie on a unit sphere. The
in this case, the following path-integral over chain conforma-ggcong problem which complicates the evaluation of the par-
tions: tition function, is the fact that a typical intermonomer inter-
action potential is a complicated nonlocal function, rather
Z:f Dr(s) 1] 8%(asr(s)-agr(s)— 1), (2)  than a simple quadratic form which yields simple Gaussian
s integrals. The first problem may be circumvented for a chain
and the free energy is, as usuak: —kgT In(2Z). This model,  with noninteracting monomers, if one uses an elegant anal-
known under the name of the “freely jointed chaifFJO ogy between the statistics of semiflexible chains and the
model, is the simplest successful model one can suggest fopuantum mechanics of angular momentiiowever, such
polymers2®:2 a technique cannot straightforwardly be applied in the case
In numerous cases of physical interest, monomers intewhere monomers interact via a complicated interaction po-
act via short- or long-range forces. In such cases the confotential.
mational flexibility is hindered further. The chain is then A systematiavay of addressingpoth problems takes ad-
called wormlike or semiflexible. Most commonly, the action vantage of a Lagrange multiplier technique. Thus, for in-
of various forces, which decay on length scales of the ordestance, one can enforce the constraint of inextensibility, if
of molecular dimensions, are accounted for via the intrinsicone introduces an auxiliary field or Lagrange multiplier,
or “bare” elastic constants that directly control conforma- A(°)(s), and adds to the Hamiltonian the term,
tional fluctuations. Forces of mesoscopic or long range, such
as electrostatic interactions, are taken into account explicitly. 1
The program of estimating the effect of all these forces is 5H1=§f dshQ(s)((d4r(s))%—1). (6)
standard: One calculates th@nesoscopic Hamiltonian,
H[r(s)] which summarizes the energetic penalty associated
with a particular chain conformation(s). The relevant con- Similarly, in order to avoid the complicating non-local
tributions to the Hamiltonian involve the resistance to bendform of the pair-potential, one can introduce the independent

ing, and the direct mesoscopic interactions between mondield B=B(s,s"), and make the replacemen¥((r(s)
mers, —r(s"))?)—V(B). In order to be able to make this replace-

o) b ment in a systematic way, one must somehow enforce the
ke T/ 2r\2 1 ) constraint ((s)—r(s’))2=B(s,s’). One can do that via yet
H=— f S(P *t3 ffdsdqur(s)—r(s D another auxiliary fieldLagrange multiplier®!° and one is

(3 thus led to introduce another term in the Hamiltonian,

®

P[r(s)]=1} 8%(der(S)- dr (8)— 1), (1)
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5H2=% f dsdsg(s,s')((r(s)—r(s'))?>—B(s,s")). Flro]=Fo+ ( Ho[ro, W]+kgT g Trin(kg T/ 3
(7
Given these modifications, the evaluation of the partition —A(0)<9§+29c(5,5’))) , (12
function now involves a much easier, unconstrained summa- SP
tion over polymer conformations, The price one has to pay \yhere F, is an unimportant constant. SP implies that the
for this simplification is that, in addition to summing over  eypression is evaluated at the saddle point and the Trln part

one must now sum ovex®), B, andg as well, can be evaluated with the help of E(L1). For finite d,
corrections to the saddle point estimate will be of orol@t)
ZZJ D[r(s)ID[A?(s)]D[g(s,s")ID[B(s,s")] and may be calculated viasystematicl/d-expansiort® We
shall not do so, being content with the calculation by the
Xexp —B(H+ oH1+ 6Hy)). (8)  saddle point method. It is possible to show that this approxi-

mation is equivalent to relaxing the local constraints,
dgr(s)-dsr(s)=1 and ¢(s)—r(s'))?=B(s,s’), and replac-
ing them by the global constrain{gr(s) - dsr(s))=1, and
((1(8) = 1(s))=B(s,8).**

In the expression for the partition function, E@), it is
understood that the summation owéf) andg are over con-
tours that begin at-ic and end attio.

It is easy to see that the introduction of Lagrange multi-
pliers provides us with an expression for the partition func-
tion which is quadratic in and thereforeexactlysolvable as
for the integration over polymer conformations. If one fixesB. 1/d-expansion near the rod limit
¥={\(®B,g! and expands about a particular reference
configurationr=r, (the average configuratiprwhich has
the property of minimizing H,=H+ 6H,+ 6H,, i.e.,
SH,[r]/8r|o=0, then one finds, after integration, an effec
tive Hamiltonian

One can now carry out a more specific discussion of the
properties of semiflexible polymers with pairwise monomer
interactions. Within the formalism described above, such a
“discussion can, unfortunately, only be performed for simple

choices of reference configurationrg,. Here we shall con-
d fine ourselves to the choice,={se, wheree is a one-
Hel o, W]=Halro, W]+kgT 5 TrIn(5(s—s") dimensional unit vector, andis a “stretching factor"?®
It turns out that very useful information is contained in
X(kgT/ P dg— A Vdg) +2g.(s,s')), (9  the saddle point equations and we shall analyze them in
some detail. By functionally minimizing w.r.\, B(s—s’),

where andg(s—s'), one finds after some manipulations,

058 =055~ 3 as=5) [ agsS)HanS ), dro o dq ¢
(10) s Js ZWkBT/E)O)q4+)\(°)q2+290(q)’(

and d is the number of components of the vectoror,
equivalently, the dimension of the embedding space. If one )
ignores end effectéby considering a closed polymer, or by gc(Q):f ds(1-cogqs))V'(B(s)), (14)
enforcing periodic boundary conditions, $apne can as-
sume that\(?) is a constant, and thd&(s,s')=B(s—s'), , L dq
9(s,s")=g(s—s'). It is then possible to perform the diago- B(S~S")=(ro(S)~ro(s")) +2dkBTf o
nalization in terms of Fourier modes, so that for o,
1-cogq(s—s'))

d X ,
Trln(~--)HJ’ dsJ Z—:In(---), ke T/ q*+ N g2+ 2g:(q)

13

(15

, , where V'(z)=49,V. These equations are special cases of
kBT/EDO)‘;‘sl_A(O)&gﬁkBT/E)O)q“H‘(O)qZ’ (11 more general equ;lgtions obtained by Le Dou$sahd by
, _ Palmeri and Guitter in their analysis of elastic manifolds
9e(s:8)—0(q)~9(a=0), with long-range monomer—mono)r/ner interactions. Of these
whereg(q) is the Fourier transformed @f(s—s’). The cal-  equations, the first, Eq13), guarantees that the constraint
culation of H[rq, V] is then straightforward. dsr(S)-dsr(s)=1 is satisfied globally, and the third equa-
What remains in the calculation of the partition function tion, Eq. (15), takes care of the constraint(€)—r(s’))?
and the free energy are the more difficult integrations over=B(s,s’). Finally, the second equation, E¢l4), deter-
A B andg. In general, these integrations cannot be permines an effective “self-energy” of the polymer. This “self-
formed exactly. If, howeverd—oo, the integrals are com- energy” may, under favorable conditions, be expanded in
pletely dominated by the contributions from the saddle pointpowers ofg. For a wide class of interaction potentials, in-
obtained by minimizing w.r.t\(¥), B, andg. In this limit, the  cluding short-range interactions, the expansion coefficients
exactexpression for the free energy of the reference configudetermine contributions to the renormalized elastic constants.
ration, rg, is, therefore Roughly speaking, the expansion coefficients then describe
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how the nonlocal interactions modify the parameters in- =—|go|q%:, where¢,=(v(2+ «)—1) and|g,| is some con-
volved in alocal description of the polymer. In particular, stant determined by the potential. One can now distinguish
V'(B(s)) will, in part, determine a contribution to the total, the following cases:

renormalized bending rigidity. When the interaction potential (i) If the potential does not decay very fdat not much

is of long range the situation is more complicatsge be- larger than ], one can look for a stable solution of the saddle
low). point equations involving rodlike conformations witB,

If, in addition to minimizing w.r.t. ¥, one minimizes ={? and v=1. For rodlike conformations to be stable, the
W.r.t. , so as to determine the best choice of configuration iri‘effective tension” (R must vanisHcf. Eq. (16)]. For that
the class of configurations defined by the equatign {se, to be possible, one must hawe>1(¢,>2). However, ifa
one finds, in agreement with Ref. 18, 19, becomes too large, the integral in Ed3) will be disturbed
by divergencessignaling the loss of stability of rodlike con-

(R_ 2~—1 _ _

NF=05G"1(q)|q=0=0 and/or {=0, (16 formations. In order to avoid such divergences, one de-
where \(® is a “renormalized” Lagrangian multiplier or mands thaix<<2(¢;<3).
“effective tension.” G~(q) is the inverse “propagator” (i) The loss of stability of rodlike conformations fer

ke T/ Vq*+\©g2+2g,(q). If {#0, the first equation in  >2 leads naturally to speculations about the stability of
Eq. (16) expresses that if a semiflexible polymer is, on aver-“‘crumpled” or “wrinkled” conformations, with v<<1. It is

age, straight, it is in a stress-free configuratidrthe poly-  interesting to look for a “crumpled” chain conformations
mer were subjected to external stress, the applied stress addscribed by an ordinary random-walk model where
AR would have to balancésee Sec. Y. If, on the other =1/2. In order to avoid divergences in E({.3) one must

hand,Z=0, typical conformations of the polymer will devi- introduce an “effective tension”\(®>0, which, in turn,

ate significantly from the straight configuration, and it will implies that one must have>4 (so that¢,>2).

fluctuate in ways that are expected to be controlled by an (iii) The question is now, what happens foKa<4?

“effective tension” \(R. Finally, in rather special cases, itis Clearly, rodlike conformations will be unstable, and typical

possible to havg =0 and\(R'=0, at the same time. In that conformations cannot be described by an ordinary random-

case, one expects interactions to produce terms in the “selfvalk model. Instead the polymer is predicted to adopt

energy” of the formg¢q¢, where 2< <3, so that elastic “wrinkled” conformations characterized by=2/«, as may

stability is maintainedsee further beloy be inferred from the saddle point equatidighese confor-
Given a particular form of the monomer—monomer in-mations will become random-walk-like whea—4, and

teractions, the statistical properties of a chain are completelsigid-rod-like when «—2. Observe that the “phase” de-

determined by Eqs13)—(16). We consider here both long- scribed here has the unusual property, of describing a state

and short-range interactions. In the case of long-range intewhere{ and\® vanish simultaneously. The stability of the

actions the potential decays slowly, as a power law, i.e.;phase” is guaranteed by the fact that there is a positive

V(r)=V,o/r% where we assume that=1. The short-range term in the “self-energy,” which varies ag?1=q**** with

interactions we shall be interested in, are screened intera@< ¢,<3. (Note that such a term can only appear in the case

tions, of the generic fornv(r) =V, exp(—«qr)/r*, where the  where the potential is of long range.

screening length\g=1/xq is assumed to be a mesoscopic

length scale. It turns out that the chain properties are quite

sensitive to the range of the potential and we must treat th&/- SHORT-RANGE INTERACTIONS

two cases separately. As mentioned above, when studying short-range seg-

mental interactions, we will focus on a special class of po-
tentials, namely, screened potentials of the fokn(r)
=V exp(—«kqr)/r¢. We shall, again, assume that the interac-
For polymers, whose monomers interact via a repulsivetion is repulsive ¥y>0) and we pay special attention to the
long-range segmental interaction potentM(r)=V,/r*, highly relevant case of a screened Coulomb interaction, with
with V>0, the results of a tltexpansion are in fact con- a=1, Vo=KkgTlg/A?, wherelg=e?/ekgT is the Bjerrum
tained in Refs. 18 and 19, which are concerned with thdength, andA is the (effective charge separation.
properties of elastic manifolds of internal dimensibnThe In view of the fact that an unscreened Coulomb interac-
special case of polymers correspond®te 1. Rather similar  tion is strong enough to limit the conformational flexibility in
results are also obtained on the basis of the variational analuch a way that rodlike conformations are favored, one
sis carried out by Bauchauet al. in Ref. 31. As a conse- might ask if the screened Coulomb interaction can favor rod-
guence, we shall merely summarize the main results. like conformations in a similar fashion. We are not surprised
One assumes that the leading behaviorBg) is B to find that the answer is no: After all, monomers separated
=B,s?’, wherev is the exponent that determines the scalingby distances much larger than the screening length do not
of the radius of gyrationR, with the linear internal dimen- interact, and the conformational characteristics must, on suf-
sion, L, via R~L". In the special cases of a straight rod ficiently large scales, resemble those of polymers with no
=1, and for an ordinary random walk one has 1/2 (we  specific segmental interactions, i.e., polymers which adopt
neglect here self-avoidan@ On the basis of this scaling random-walk conformations.
ansatz, it is simple to show that when the potential is of long A more technical way of seeing this is the following: If
range, the “self-energy’g.(q) can be expressed a&s(q) one assumes that rodlike conformations, wit#0 domi-

Ill. LONG-RANGE INTERACTIONS
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nate, one finds that the integral in Ed.3) is disturbed by to the Lagrange multiplier from nonlocal interactions, and
divergencies which can only be removed in the special cases® =)+ s\. It is now easy to solve Eq$13) and(15).
T=0 or/{)=co. This result will, as in the previous section, The result is

be seen as indicating that the rodlike configuration is un- dksT\2 1
stable and is always destroyed by thermal fluctuations. 7\<R>=( > ) PRYZGE (19
If the screened Coulomb interaction cannot stabilize a ke T/

rigid phase, it can, at least be expected to locally stiffen the d

chain. This is indeed the case and the effect is important as B(S)= m(§25+ e ¥-1)), (20
was realized long ago by Odfjkand Skolnick and Fixmah P

(OSBP. The parameter WhICh indicates the degree of stiffenwhereé= \/kBT/(le)\(R) is a crossover length which, in the
ing is the “effective” or “renormalized” persistence length case analyzed here reduceit@Z/ﬁ,R)/d The results Egs.
/ﬁ,R) which may be Calculated as follows. One expands Eq(19)—(20) are typical of a wormlike chain, for which the
(14) and checks that the expansmn involves only even poweorrelation functiorB(s—s’)=((r(s)—r(s’))?) behaves as
ers ing. The coefficient in the*-term is the nonlocal, inter- ((r(s)—r(s'))?)x|s—s'|? for small values ob—s’ (rodlike

action contribution to the perS|stence length, behavioy and ((r(s)—r(s’ ))2>oc/§)R)|s s'|, for large s
—s’ (random-walk behavigr
KgT 6/ p=— f dS V (B). (17 An equation for/E,R) is obtained if one inserts Eq&l9)

and(20) into Eq.(17),

Knowing 6/ ,, one can calculate the “renormalized” per- 1 1
R 0 ~ ~ - o~ o _
sistence !?ngth as(®= {( +58/,. /E)R>:/=)0>+Vl(/§)m)2f d7z% Bl =4 =
This “renormalized persustence length may be calcu- 0 éB B2/’
lated under various circumstances corresponding to different (21

values of the parameters characterizing the potential and theh ere /(R)—(Zld)/(R)(=§) and V,=14/(12/2dA2)
intrinsic rigidity. The purpose of the next two subsections is—__"~ L g 18 '
to give an overview of the results of such calculations. ~ B(2)=2—1+e *is a dimensionless version of the correla-

tion functionB. Finally, £=1/(v2ko/ ) is a dimensionless
screening parameter. Observe that this screening parameter
depends on the intrinsic screening length= 1/, and the

o _ S o o " renormalized persistence length;/ (Y.

It is instructive to consider first the limiting casé&® The analysis of Eq(21) is complicated by various fac-

— or, equivalently, the casé—0. WhenT—0, one may  {qrs, including the crossover between the rigid-rod regime
assume/=1 and for the screened Coulomb potential one_ 4 w o random-walk regime iB, and we have not at-

finds tempted to obtain from Eq21) an analytical solution for
g *0'B 7. The results of a qualitative analysis of Eg1) can be
J’ ds
12
B=s2

A. Intrinsically stiff chain

/= B summarized as foII_ows:

(i) When¢é<1, B(z)=7%/2, and the integral in E¢21),

B f‘” e 05 koS24 §) = 1lg 1 18 I(E), receives all its significant contriputions from thg range
0 4 A2 2 where the polymer behaves as a straight rod. If one simplifies

the analysis by replacmg the exponential by unity on
This is the celebrated result obtained a Iong time ago by‘scales smaller thang but ignores the integrand on

Odijk,? Skolnick and Fixmari,and, more recently, by Barrat .
and Joanny’ The 1H-expansion thus reproduces well- scales” larger thang, one finds thats” //(0)~(V /(O))

known and accepted results in the limit of large intrinsz(/(R)//(o)) &~ (I //(0))/(’<0A2)v i.e., apart from unim-

rigidity. portant constants, one recovers the OSF result,

87, lg 1

R Rt (22)
B. Intrinsically flexible chain 7Y A% Ko

When the intrinsic persistence length is finite, as indeedrhe apove result can also be obtained vig-a0 steepest-
it is in all physically relevant cases, the situation becomegjescent calculation.

significantly more complicated. We must now take 0,
while enforcing the constraint of inextensibility by requiring

(R)
thatA™ assumes a nonzero value. We shall assume that | 'Bomes from regions where random-walk correlations are im-
analyzingg.(q), it is sufficient to retain terms up to and

including the fourth order term in a Taylor expansion in portant. The correlation functioB now behaves approxi-
powers ofg. This is expected to be a valid assumption asmately asB=7-1. If one again replaces the exponential in
long as\ () and/{") are not both small. In the analysis given Ed. (21) by unity on “scales” smaller thaig, one finds that
below, we shall f|nd this assumptlon to be satisfied. We thetthe leading term of the mtegra(g) behaves a$(§) §A
write g.=(\) g+ kBTé/pq wheredh is the contribution where A=7 [with a rather large and important pre-

(ii) In the opposite limit,£>1, one can argue that the
most significant contribution to the integral in E@QR1)
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factor of order ©(10°) (see below]. As a consequence, €lectrostatic interactions have been eliminated on scales

8751 70 o (V7O (7R 1 70267 e (V170 (1 77 (V)
x(7 179y 7E.

One can now distinguish two cases: First, it is possibl

for £ to be large but, at the same time, {6£°/7(" to be
O(1). Then to a good approximatiod/ /7 "~ (V,7 ()
X(ko/ )77, or in extenso,

(23

On the other hand, i&>1 and 67,/7>1 then &7,
=7, and one then findss/ /7"~ (V,7M)Ve-b
X (ko/ )~ AAD= (V7 D) Ve(ko/ (V) =7, or in extenso,

1/6
1

Kg/G

~ /
87y Vi°

—_ o ——

~ 7/6
/(po) Ko

g

2 (24)

Both of these asymptotic results may also be obtained via 5

E—mo steepest-descent calculation.
C. Observability of non-OSF behavior

e

much shorter than the “bare” persistence length. One then
expects OSF behavior. If, on the other harg<k,,¢ is
dominated by the electrostatic part, 24¢/ () and may be
small because now the segmental interactions are unscreened
on all length scales of interest, and the polymer will look
rodlike on all length scales of interest. Again, one finds OSF-
behavior. One checks easily that if the interaction part of the
persistence length is described by E(®&3) and (24), it is
possible to increase or decreasg (for fixed values ofV/,)
such that, eventually¢<1. This rests in part on the fact that
7170 decays faster than 7” k).

Unfortunately this interesting scenario can not be ex-
pected to unfold under very many realistic conditions. The
main difficulty is that the above arguments fail to take into
account the importance of some numerical constants. A nu-
merical analysis of Eq.21) reveals the problem: If one fixes
7% and eithetV;7 " or ko/Y, one may numerically ob-
tain 57 %/7() as a function of eithery” ) or V,7 ().
igure 1 shows representative results obtained for various
fixed values ofx;/{”. As shown in Fig. 1, it is indeed
possible to find the new “scaling” regimes for the interac-
tion part of the persistence length, the regimes described by
Egs. (23) and (24). Note, however, that these regimes are

It is clear that in the limité>1 one cannot obtain the
“renormalization” of the persistence length by “kinematic” ~(0) ; ] , < ~(0) ; ]
arguments, i.e., by analyzing the lowest order energy penaltijo’ p~ 1S typically of orderO(10™%) andV,/;" is typically
of bending the polymer slightly about an essentially straigh©f orderO(10~2) [Eq. (23)], or wherexo/ (” is typically of
configuration. In this limit, it is segments very far apart alongorder O(10°) and T/JS)) is typically of order©(10 8
the polymer contour that contribute the most to the “renor-[Eqg. (24)]. Even in the most favorable case, this corresponds
malization” leading to non-OSF behavior. It is natural to askto conditions where the screening length is orders of magni-
under which, if any, realistic conditions random-walk corre-tude larger than the “bare” persistence length, and, even
lations may be important, and the electrostatic part of thevorse, where the effective charge separation is many more
persistence length to differ from the OSF prediction. It isorders of magnitude larger than the “bare” persistence
intuitively clear that the intersegment interaction potentiallength. The lesson we learn is that it requires effectively
has to be weak to allow the polymer to sample these conformacroscopic charge separations, in between which the chain

observable only in limited regions of parameter space where

mations.

can sample a very large subset of conformations, for it to be

To assess just how weak these interactions must be, wgossible that random-walk chain fluctuations give rise to de-

analyze the functional dependence betweeand Ko, and
find that£(«p) has a maximum for a particulat,= «,, and

viations from OSF behavior. It follows, obviously, that the
OSF predictions for the interaction part of the persistence

the maximum value ingoc(7f)°)V1)‘2’7oc(7§,°)lB/AZ)‘ZH, length are rather robust.

with a rather small factor of proportionality. We see, thus,

that the parameter which controls whetkeis large or not, Vti/giﬁ);zgxgﬁ\'\ggg@ BEEETCHED'

and hence whether one is in the regime where random-walR ==

correlations are important or not, isGy=/"V, The 1H-expansion introduced in the previous section
°<|B7E)0)/A2- Others have also concluded tf@} is the pa- Can, rather easily, be generalized to other problémslv-
rameter determining whether random-walk correlations aré"d @ single chaip where various external forces act on the
relevant or nof? Roughly speakingG, is small(gm large polymer. In this section we will treat the case where a poly-

when the separation between chargess much larger than M€ is subject to an external stretching force. We shall allow
he “bare” . | (0 for pairwise monomer interactions as well.
the “bare” persistence length;,” .

= i o o The Hamiltonian we wish to consider is the following:
Becauset(xp) has a maximum, it is, in principle, pos-

sible that by varying the screening length, one can start in a B kBT/‘EJO) d 9%r\?
regime where rigid-rod correlations dominate, then pass to a 2 f S 9s?
regime where random-walk conformations dominate, and
then, finally, end in a regime where, again, rigid-rod corre-
lations dominate. Thus, iky>«,,¢ is dominated by the
“bare” part 1/(xo/ ") and may be small, reflecting that the

1 Jd
+5ffdstV<lr<s>—r<s'>|>—fez'fds(a—;)'
(25
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FIG. 1. The dependence of the relative change in persistence length

87,17 on the dimensionless strength of the screened Coulombi
monomer—monomer interaction potentldl,” (/kgT, for various values of

the dimensionless screening length”(”). The results were obtained by
numerical evaluation of Eq21). The top curves correspond to the smallest
values and the bottom one to the largest values@f(’ . The “screening
parameter” €= 1/ko/® is large so deviations from OSF behavior is ex-
pected: As shown in Fig. (&), for xo/{” in the interval 10°-10"* (the
curves were calculated for,” (=104, 10°°, and 10°°) it is possible to
adjustV,7/kgT such that one is in the “scaling” regime described by
Egs. (24), ie., 8/,/7~Vfk,” with (B,7)=(1/6,7/6). Notice that
Ko/ (i very small, typically of orde©(10®) andV,/ (" is even smaller,
typically of order O(10 ). As shown in(b), for o/ in the interval
10"*-10"2 (the curves were calculated fap/’=10"*, 10°2, and 10°%)
it is possible to observe the “scaling” regime described by E28), i.e.,

(B.7)=(1,7), however only wheno/ () is small, typically of the order
0(1072) and whenV, /(" is very small, typically of the orde(10 %9).

where we assume that the force, of strenftlis applied
terminally, along thez-direction.

As in the previous sections, we wish, approximately, to

P. L. Hansen and R. Podgornik

the potential. We thus add to the Hamiltonian E25) the
terms

o= [ 4O (ar(s)?-1), (26)

and

5H2=%f dsdsg(s,s')((r(s)—r(s'))*=B(s,s')),
(27

where N will contribute to the “effective tension,”g will
play the role of a “self-energy,” and will ultimately be
shown to coincide with the correlation functiof(r(s)
—r(s))?). The total Hamiltonian is thust,[r,¥,f]="H
+ 6Hq,+ 6H,.

When a stretching force is applied, it is natural to expect
a solutionr(s) =ry+ r, with ry={se, where( is the usual
“stretching factor.” As in the previous section, we shall as-
sume that, and hence are adjusted so that the linear term
in the expansion of the Hamiltonian in powers rgf, van-
ishes. The effective Hamiltonian, after integration over poly-
mer conformations, is then

d
Helro, W, f]=Holro, W, f]+keT 5 Trin(S(s—s")

X(KgT/ ) dg= dN Vd5) +29¢(s,8")),
(28)

where, the same definition as in Sec. Il was used for
gc(s,s’). Note that the force constahtonly appears in the
“bare” part H,[rqo,¥,f].

It is useful here to imagine that the polymer is of finite
Qinear length L. The conformational fluctuations of the poly-
mer (subject to periodic boundary conditions, s#yen have
Fourier components foq=(27/L)n, with n=x1,=2,....
The mode corresponding tp=0 must be excluded since it
can be identified with the average configuratign When
the system is translationally invariant, we can assume that
A© is a constant, and assume tH&(s,s')=B(s—s'),
g(s,s’")=g(s—s'). Then we have

1
Tr|n(---)HJ dstqgo In: ),

ke T/ 0 de— N Q32— kg T/ Vq*+ 1 0g2, (29)

gc(s,s")—9g(q)—9(q=0),

whereg(q) is the discrete Fourier transform gfs—s’).
The calculation ofH[ry,¥,f] is then, again, straightfor-
ward.

The final steps in the calculation of the partition function

enforce a constraint of “inextensibility.” The practical way and the free energy are virtually identical to the steps in-
of doing this is via a Lagrange multiplier technique as de-volved for a stress-free polymer. In particular, assuming that
scribed abovgSec. I). In the present discussion we also the number of components ofis much larger than the num-
want to introduce a Lagrange multiplier technique in order tober of auxiliary fields, we may obtain an approximate esti-
be able to deal with the complicated, nonlocal character omate of the free energy,
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d (©) 4 and we anticipate that the calculation of the force-extension
Flrol=Fo+| Halro, ¥, f]+keT 5 Trin(kgT/ 5705 relation will prove difficult. We shall discuss the two cases
separately.
—A<°>a§+290<s,s'))) : (30)
SP VI. STRETCHING AND LONG-RANGE

whereV is adjusted so as to minimize the free enefthe SELF-INTERACTIONS

saddle poin{(SP condition. When a wormlike chain, whose monomers interact via a
Upon minimizing the free energy w.r.t. t8, we find the  repulsive interaction potential, are subjected to an external
following saddle point equations for a semiflexible polymerstretching force, the discussion turns out to be simple only
subject to a stretching force, for a>4 where the interacting chain may be replaced by a
9 noninteracting chain with “renormalized” elastic constants.
0 (02 , (31)  The steps involved in the calculation are similar to the ones
kBT/p Q"+ A7g%+2g.(q) involved in the calculation shown belowsec. VIl for a
chain whose monomers interact via a screened potential.
gc(q)zf ds(1—cogqs))V'(B(s)), (32 When 1<a<4 we must take into account the fact that
the chain spontaneously adogtsoken-symmetry confor-

1
1=?+dkgT— >,
L 470

) ) 1 mations with either{(f=0)=¢{y#0 (1<a<2) or {,=0
B(s—s")={"(s—s")"+2dkeT - ;0 (2<a<4), yet always with\(R(f=0)=0. By combining
d Eq. (31) and Eq.(34) we obtain

1-cogq(s—s'))

2
X , (33 (g AT
keT/a*+ 2% +2gc(q) 1= bt w0
where, againy’(z)=4d,V. As before, the first equation, Eq. 1 2
(31), guarantees that the constraint(s)-dsr(s)=1 is sat- +dkgT = >, — , (39
isfied globally, and the third equation, E&3), takes care of Ld%o keT/Ya*+\ g2 +2g.(q)

the constraint, i((s) —r(s))?=B(s,s'). Finally, the second whereAf=f—A(®(f). We observe that the “self-energy”
equation, Eq(32), determines an effective “self-energy” of ¢ (q) may be decomposed asyZq)=o\g?+259.(q),

the polymer. This “self-energy” only depends on the natureith 2 5g.(q) =|g,|q?:, and¢;=v(2+a)—1=a+1 when
and strength of segmental interactions, and is unaffected by—1(1<a<2), whereas ¢,=v(2+ @)~ 1=2/a(2+ )

the presence of the stretching force. It will, in part, determine— 1 = 4/4+ 1 whenv=2/a (2<a<4).

nonlocal contributions to the elastic constants which help  our purpose is to obtain the modified force-extension

balance the external force. relation{ — {o,= 8= 8¢(Af), for small values of the force.
Finally, if we minimize w.r.t.{, so as to determine the \ye shall assume that on all length scales of interest, the
optimal stretched configuration, we find correlation functionB(s) has the functional form obtained
f before the force was turned on: For small enough values of
l= NGTE (34)  the force the correction t@ of the form (5¢)?s®> may be

considered subdominant. Sine€(f=0)=0, \(P(f) must
where)\(R):agefl(qﬂq:O is the “renormalized Langrange be expected to be small whéns small, and we make no
multiplier” or “effective tension,” obtained by expansion of serious mistake if we Taylor expand the “integrand”
the inverse “propagator’ G~ '=\g2+kgT/ V" il(X(R)yQ)=q2/(_7\(R)_q2+ ke T/ Vg% +259.(q)) about \(F
+29.(q). Equation(34) expresses that, in mechanical equi- =0 to obtain i;(0,q)—~\Pq*(ksT/3q"+259:(q))?
librium, the external forcé has to be balanced by the inter- =i1(0.a) =\®/h(q). Inserting in Eq.(35) and replacing
nal forces, involving the “effective tension,X(®), times the ~ Summation by integration yields

“strain,” ¢. Equation(34) may, equivalently, be considered 2 dgq 1
as the force-extension refation, or equation of state, for the  1=| o+ 1gy| +11+Ad kBTf 5= Tra)
pOlymeI’. q>7w/LET (CI)
The saddle point equations, E481)—(34), completely 2 .
determine the properties of the polymer when it is subjected ~ =|{ {o+ J7ry| +(Ia+ ARSI (L)). (36)

to an external stretching force. If we ignore segmental inter- ) _ _
actions, these equations coincide with the equations derivedsing the fact that £¢5+1,, we finally derive \(®
and analyzed recently by Ha and Thiruma@ivhen short- = (Af)¥2(¢o/81,)"% and hence

range forces act between monomers, the analysis presented (Af )12
in the previous sectiofsee Sec. IV, lead us to consider the SL(Af ) e )120c(Af )2 (37
0 1

possibility of describing an interacting chain subjected to a

stretching force in terms of a stretched, noninteracting chaimvhen 1<«<2. We note that for £ «<2,6l, is convergent
with elastic constants “renormalized” by the interactions. when 1< «<3/2 and grows with. roughly asL?~1) when
When the monomers interact via a long-range potential, thi8/2< a<2. On the other hand,(Poc(Af)?3(s1,) Y3 and
“trick” is not expected to work, unlesg>4 (see Sec. Il hence
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SL(AT )oc(AfSI ) Y3 (AF )Y (39) 4 g g g g

when 2<a<4. We note that for 2 «<4,4l is convergent
when 8/3< <4 and grows with_ roughly asL®~3 when
2<a<8/3. 3t —_— e

VIl. STRETCHING AND SHORT-RANGE SELF-

INTERACTIONS
2 |—eo

When monomers of a semiflexible polymer interact via a S
short-range interaction potenti@r a long-range interaction
potential witha>4) we can, as noted above, imagine replac-
ing the chain with its “bare” elastic constan{s casy the 1r
bending rigidity and interacting segments by a chain with
noninteracting segments and ‘“renormalized” elastic con-
stants. For such a chain, the study of the saddle point Eqs

(31)—(34) have, as mentioned, been carried out by Ha and 1 ‘ 3 ‘ 5 ‘ 7 9
Thirumalai?? Here we shall only briefly summarize their a
findings:

(i) When Z(R)fﬂo, the chain is in the weak Stretching FIG.. 2. lllustration of the yarious types of elastic response for a polymer
P chain whose monomers interact via a long-range potential of the form

regime, where the force mOStly a(_:ts _tO puII out r":_mdom'w_alk\/(r):VO/r“. The extension away from the spontaneous equilibriignis
conformations and the response is linear. One finds e&sily s;=¢— ¢ (Af )Y, where Af=f—A\®(f). For small values ofe, 1

= f/kBTZE)R) which is the result one obtains for flexible poly- <@<4 the elastic response is nonlinaf. Eqs.(37)~(38)]. For a>4 the

~ . . . chain responds linearly to weakly applied forces.
mers of step Iengtbrff‘) .26 The first nonlinear correction to ' P mearly fo weaily app
this result is obtained by expanding® to second order ifi

One 'Fhen fmdgj: f/kBT/éR)(l_?(?f/dkBT/éR))z)' and stretching moduli mediated by the segment—segment in-

(ii) When{g e, the chain is strongly stretched and teraction potential. This program is difficult enough that we
must behave in a way that differs from a random walk. In-pave left it for a separate publicatigh.
deed, wheny—1, the correctior;—1 vanishes as ¥f: ¢ For chains with long-range segmental self interactions,
=1-d/4\dkT/27{Pf. The 1A/ contribution is typical of  the results obtained concerning the conformations of an iso-
an intrinsically unstretchable wormlike chain near the rodlated chain are in agreement with those obtained by Le
limit. 224 Doussal® and Guitter and Palmet?. We find that when

We observe that all expressions quoted above for thehain segments interact via a potential that decays & 1/
force-extension relations are parameterized by the “renorwith 1<a<2, the chain adopts rod-like conformations, with
malized” persistence length"” which, in turn, depend on R~L" and v=1, rather than the typical random-walk con-
the parameters that determine the range and strength of thermations with »=1/2 (we have ignored self-avoidance
interaction potential. In Secs. IV and V we gave a detailedFor the case of Coulombic interactiona<1) our results
account of how the persistence length depends on the Debygree with results obtained via Flory-type argumératsd
screening lengthy,, and hence the salt concentration, andRenormalization GrougRG) analysis® for flexible chains
the strength of the potentidl,. One can therefore without (4<d<6). For 2<a<4, we find that chain conformations
complication use the dlfexpansion to assess how a con-are characterized by=2/a. This results can also be ob-
trolled change in salt concentration modifies the forcetained via a des Cloizeaux-type variational analysisor
extension relation for intrinsically unstretchable polymers. «>4 the chain adopts random-walk conformations.

For stretched chains whose monomers interact via a
long-range potential, we predict interesting new phenomena,
especially that when £ a<4 the chain always responds

In this paper we have carried out adidgxpansion for nonlinearly to the stretching force: Forda<<2 the defor-
wormlike chains with segmental self-interactions of meso-mation away from the spontaneous equilibrium extension is
scopic or long range, in order to determine the conformas¢=¢— {yx(Af)Y2~f12 where Af=f—\(®. For 2<a
tional “phase” behavior of isolated chains, and in order to <4, 5{(Af )3~ {13 see Fig. 2. In either cas¥ vanishes
determine the force-extension relation for chains subject tasf—0, i.e., the system indeed returns to the corfepbn-
an external stretching force. Emphasis has been put on thaneoug equilibrium state when the force vanishes. These
fact that the theory is only valid for intrinsically inextensible results are consequences of the fact that the force pulls out
chains for which all the conformations have to lie on the unit“tension-free” (broken symmetryconformations which can
sphere defined by the tangent vector. There might be caseasot respond to the force at linear order. To our knowledge,
starting already with DNA, where this assumption is not “anomalous” elasticity of this kind has not been considered
entirely reasonable, especially at low salt concentrations. Aibefore. One does find “anomalous” elasticity in other soft-
improved theory in which one relaxes the inextensibility condensed matter systems, such as smectic A liquid
constraint must focus on the coupling between the bendingrystals®* however of another kind: In liquid crystals,

VIlIl. SUMMARY AND DISCUSSION

Downloaded 03 May 2001 to 193.2.6.183. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



J. Chem. Phys., Vol. 114, No. 19, 15 May 2001 Wormlike chains in the large-d limit 8647

“anomalous” elasticity comes about because of nonlinearlistic small salt concentrations, to reach below the magic
gradient interactions. By contrast, for the polymers studiedimit KO?/'E)R)z(Q(O_l) where non-OSF behavior may be ob-
here, a non-linear elastic response is due to the long range g&rved. Hyaluronic acigdHA), another popular polyelectro-
its segmental interactions. lyte, which is quite flexible and has an intrinsic persistence
Unfortunately we are not aware of situations wherejength which is more than two orders of magnitude smaller
F:ham segments Interact via long-range, repuldiipolan DNA's, reaches the same Iim&b?ﬁf)z(Q(O.l) for\g
interaction potential witha>1. Clearly monopolar charge ~10-20A. This may be achieved in the laboratory. How-

distributions cannot give this type of interaction pOtem'al'ever, in order to obtaiﬁ/17§)°)<10‘18 (see Fig. 1.one must

One would obviously have to take into account more com-ver carefully requlateH to the point where the polvion is
plicated multipolar charge distribution that have a faster de- y y reguiate P poly
Imost neutralized. Only then will one have a chance of ob-

cay than the ordinary monopolar Coulomb interactions. Thid'MmO OSF behavi
region of polyelectrolyte theory has not been explored at allS€rving non- ehavior.

Our results nevertheless show that some interesting physics For a chain with screen.ed segmental interactions sub-
might exist in this type of polyelectrolyte system where 2Jected to an external stretching force, we have been able to

<a<4 such that the chain conformations would bemake progress by assuming that one can replace the chain
“anomalous” with »=2/a. Conceivably, a multipolar whose monomers interact by a chain with noninteracting mo-

charge distribution can dominate the segmental interaction°Mes with “renormalized” elastic constant& casuthe
if the polyelectrolyte comes with a polyvalent counterion P€nding rigidity, and we have thus, in effect, been able to

which is unable to “condense” the polymer but has a ten-take over the results by Ha and Thirumalil) (Ref. 22 for
dency to adsorb on the polyelectrolyte, as is sometimes the1ains with noninteracting monomers. As pointed out by HT
case for DNA and polyvalent counteriohsn that case one the results obtained may be used quite successfully to fit the
: i i | 40

requires that the counterions almost neutralize the polyiordata obtained for long DNA segments by Smithal.™ (see

so that monopolar interaction potential does not dominatetheir Fig. 1. _ _
and one then hopes to find a repulsive, multipolar interaction ~We have also been able to illustrate how one can, in
with 2< @< 4. We speculate that DNA, together with a suit- Principle, study the modification of the force-extension rela-
able counterion, might behave in this way. For DNA, onetion after a controlled changed of the strength and/or range

may have to worry about the constraint of inextensibility, of the potential(via a change of salt concentration, say
however. Controlled changes of the parameters characterizing the
For chains with screened electrostatic monomer-Screened interaction potential were performed experimen-
monomer interactions, we believe that we have been able t@lly by Baumanret al® who studied long DNA fragments.
contribute to the discussion of the interplay between chaifonly by allowing for intrinsic stretchability, were they able
conformational fluctuations and segmental interactions, espdo obtain reasonable fits to the data. Recently we have been
cially for intrinsically flexible chains with large charge sepa- led to the same conclusidiand it seems that the theory of
ration. To our knowledge, we are the first to propose that dhe force-extension relation sketched here may in some situ-
Debye—Huwekel interaction of strength,, and with inverse ations be somewhat too simplistic.
screening length,, can give rise to an interaction induced Though, on the one hand, our work points to the various
persistence length varying asgxgy, with either (B,7) intricacies regarding the statistical properties of self-
=(1/6,7/6) [large values 0f57~§f>/7§)0)] or (B,y)=(1,7) interacting semiflexible chains it also points to an overall
[small values Ofb‘?/gR)/Z’éo)]. In fact, these nonperturbative Simplification that we can exploit in understanding of these
predictions differ from the results of all previous investiga- "ather complicated systems. If the intersegment interactions
tions which conclude that strongly fluctuating chains eitherdre of short range, especially if they are screened, we dem-
have (8,7)=(1,1),1%%3%0r (8,7)=(1,2) 323"t is note- onstrated that the OSF result for the renormalized bending
worthy, but probably not surprising, that the paper by Netzigidity and the corresponding HT limit of the force exten-
and Orland® which employs the variational approach of dession relation, though not entirely without peculiarities, are

Cloizeaux° leads to predictions that differ from the results Nevertheless extremely robust and can be used safely in the
of our 1H-expansion. whole range of parameters describing the ionic screening as

The more important finding for isolated chains may, Well as the effective charge on the chain segments. We have
however, be that the chances of observing these new scalilown conclusively that the cases where anomalies are
regimes seem to be seriously limited: In order to observe theound to show up belong to the fringes of the parameter
new scaling relations one will have to operate at conditionsspace and can be safely ignored in the majority of situations
where the screening length is orders of magnitude larger tha@ncountered in real semiflexible polyelectrolytes. The long
the “bare” persistence length, and where the effectiverange interactions on the other hand, especially if they are a
charge separation is many more orders of magnitude larg@onsequence of multipolar charge distributions that lead to a
than the “bare” persistence length. As pointed out earlier, itspatial dependence with<2a<<4, appear to be much more
follows that we must consider the OSF predictiof, {) tricky and lead to “anomalous” elasticity where even for
=(1,2) as quite robust. In order to illustrate the robustness a$mall stretching forces the Hookean regime of a linear rela-
the OSF prediction, we note that since the “renormalized”tion between force and extension does not emerge at all. At
persistence Iengtb(/f)R) of DNA can be about 1000 A, we present we are unable to judge whether this finding may have
must choose\, to be about 10000 A, i.e., operate at unre-serious repercussions for our understanding of the stretching
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of self-interacting chains. Nevertheless, it may turn out to be 1/N-expansion is discussed by S. K. Ma, Rev. Mod. PH$#589(1973;
important when stretching experiments will move from DNA  S. K. Ma,Modern Theory of Critical Phenomeriaddison—Wesley, New
to other polyelectrolytes with more complicated charge dis- York, 1978; A. M. Polyakov, Gauge Fields and StringgHarwood Aca-

tributions along the segments. These distributions might con-

demic, Churs, 1987 The 14 is discussed by F. David, iStatistical
Mechanics of Membranes and Interfaceslited by D. Nelson, T. Piran,

ceivably correspond to regimes described by “anomalous” ,,4's. weinbergworld Scientific, Singapore, 1989

polyelectrolyte elasticity.
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