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We study the effect of intersegment interactions on the effective bending and stretching moduli of
a semiflexible polymer chain with a finite stretching modulus. For an interaction potential of a
screened Debye-igkel type, renormalization of the stretching modulus is derived on the same
level of approximation as the celebrated Odijk—Skolnick—Fixman result for the bending modulus.
The presence of mesoscopic intersegment interaction potentials couples the bending and stretching
moduli in a manner different from that predicted by the macroscopic elasticity theory. We thus
advocate a fundamental change in the perspective regarding the dependence of elastic moduli of a
flexible polyelectrolyte on the ionic conditions: stretchability. The theory presented here and its
consequences compare favorably with recent experiments on DNA bending and stretching at not too
low salt conditions. [S0021-960600)50244-X]

I. INTRODUCTION bending and stretching moduli should be proportional. On
the contrary, experiments suggest that while the presence of
Mechanical properties as characterized by bendingg|ectrostatic repulsion between DNA segments tends to make
stretching and tvv_isting and their _respective elasti<_:_ moduli¢he chain less prone to bending it also makes it much more
more than anyt-hmg else determmg the supercdﬂmgd stretchable. This combination of properties therefore sug-
packing properties of DNA.In physical terms DNA is a gests that DNA might not be describable by standard macro-

miflexible char lymer. The eff f lin - . - .
semiie> ble charged polyme 'he e egt of coupling be scopic elasticity theory at &flin what follows we will try to
tween intersegment electrostatic repulsions and the chain

bending elasticity has been studied for quite a whstee Ref. reconcile. these intriguing expgrimental findihgs with classi-
3 and references thergifThe major result of these studies is C@ €lasticity theory by consistently analyzing the conse-
the celebrated Odijk—Skolnick—Fixmd®SPH formuld that  duences of the long range electrostatic intersegment interac-
connects the value of the bending elastic modulus with théions on its elastic properties. We will show that the results
parameters of the interaction potentiassumed to be of the of DNA stretching experiments at high enough salt condi-
Debye—Hiekel forn?) between the segments along the poly-tions are completely consistent with macroscopic elasticity
mer chain. One usually refers to the effect described by thigrovided that the long range intersegment interactions are
formula as the interaction renormalization of the bendingproperly included into its framework.

modulus. The hypothesis of a very short range of action of  The main conclusions of our study can be cast in a
moleculgr_interactions is built into the fo_undations of C|ass_i'straightforward physical picture and can be summarized in
cal elasticity and consequences of any finite, not necessarily, i itive terms: long range intersegment interactions of a

long range, molecular interactions should be carefully eX'Debye—H'unkeI type renormalize both, i.e., bending as well

plored. The OSF res_ult uneqw\_/o_cally shows that these COs stretching elastic moduli in different ways. The physical
sequences can be highly nontrivial.

In the case of a stretchable chain there exists no theorba5|s of bending modulus renormalization has been known

that would connect the intersegment interactions and th&" auite some tlm‘é_and appears to be well understood: see
stretching elastic modulus. That this theory is very muchFig. 1. The change in bending modulus is due to the fact that
needed is shown by recent experiments on single molecul@ effective spacing between distant segments gets smaller
DNA stretching”® They point to the conclusion that the (L'<L) after the polymer is locally bent. Because the inter-
measured renormalization of the stretching modulus in théegment interactions are assumed to be repulsive the interac-
presence of solutions with different ionic strengths can notions thus oppose bending and give rise to a higher bending
be rationalized on the basis of simple elasticity theorymodulus. The physics of the effect of the long range inter-
arguments according to which the renormalization of the segment interactions on the stretching modulus has a differ-
ent origin. The stretching modulus is proportional to the sec-
AAlso at: Department of Physics, Faculty of Mathematics and Physics, Uniond — derivative of the interaction energy w.r.t. the
versity of Ljubljana, SI-1000 Ljubljana, Slovenia and Department of The-intersegment coordinate at its minimum. If the chain is
oretical Physics, J. Stefan Institute, SI-1000 Ljubljana, Slovenia. harged the Debye—'}dkel repulsion will Iocally stretch the

YAuthor to whom correspondence should be addressed. Electronic maif g "
rudi@helix.nih.gov segment length. As this length becomes bigggr{a) (see
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FIG. 2. A highly stretched polymer chain. The average direction of the
chain is along axis, which corresponds also to the stretching axis and is set
by the direction of external forcé acting at both ends, and the bending
deformation is perpendicular to it.

mented globally through an appropriate Lagrange multiplier.
It is straightforward to realize that in the presence of long

range intersegment interactions this Lagrange multiplier
would be renormalized by the interactions. Our calculation
builds on and adds to this change in the Lagrange multiplier
by explicitly introducing a stretching part to the elastic en-

ergy.

' Formally, our approach is nothing but a straightforward

: generalization of the OSF arguments to include the effect of
I the intersegment interactions on the stretching modulus of
|

I

i
|
[
: the chain as well. We thus derive concurrently both the bend-
|

| I I ing modulus or equivalently the persistence length renormal-
CL4{dd{d e e e Ceeie- ization as well as the stretching modulus renormalization on
the same level of approximation based on the recent imple-
mentation of the I expansion technique into the self-
interacting semiflexible polymer theot{.

We are convinced that our calculation dispels any
| doubtd® as to whether DNA does conform to macroscopic
I elasticity theory or not. The short version of the answer is: it
I
I

‘ o ; ; does, as long as one takes the long range part of the inter-
: ‘ ‘ ‘- segment interaction potential of the polymer chain consis-
tently into account. Comparison with recent experiments
a’

seems to bear out our line of thinking quite strongly and
convincingly.
. . . o The outline of the paper is as follows: First we introduce
FIG. 1. The physics of elastic moduli renormalization in the presence of . del of th If-i . | hai
finite range intersegment interactions. Repulsive intersegment interactior@_mesosc.()pIC model o t e se —mFeractmg polymer C ain
make the chain more difficult to bend because of diminished effective sepaWith bending and stretching elasticity included. We briefly
ration between neighboring segments £L). However, they also make describe the X expansion method that we use to evaluate
stretching easier because they increase the average length of the segmefHa partition function of the model. We then explicitly obtain
and thus diminish the curvature of the interaction energy between the segé—1 field soluti fth del d th ibuti fth
ments (symbolically depicted as begdshat effectively determines the mean_ ield solution o t e model and the contri Ut'on_o the
stretching modulus. fluctuations to the equation of state of the polymer chain that
connects the elongation of the chain with the stretching force
acting on it. We finally derive the renormalized elastic
moduli of the chain and compare the results with available
Fig. 1) the interaction energy at the minimum becomes les&xperiments.
steep, and its second derivative thus becomes smaller. There-
fore the stronger the electrostatic repulsions, the more the

segments will be further apart, the smaller will be the second!- MODEL
derivative of the interaction energy at its minimum, leading We start by formulating an elastic mesoscopic Hamil-
to a smaller stretching modulus. In what follows we Will 5o for a self-interacting chain described in the highly
simply formalize and quantify this intuitive and appealing giretched, small deformation limit in the Monge-like param-
physical picture. eterization(see Fig. 2 asr(s)=(z,p(z)), wheres is the

Part of the effect of the long range interactions on elastiGarclength along the chain. For a one-dimensional <oéd,
moduli renormalization has already been treated in the worladequate representation of a flexible polymer chain on small
of Ha and Thirumalai. Though they deal with a nominally length scales, the deformation tensor has only one nonzero
unstretchable chain, the unstretchability constraint is impleeomponent
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u(z) 1[dp(z2)\? 1 duy(z)\?
U, (2)= (9; )+§( ’;(Z)) , 0 H=§Af( éi )) ds(2)
. . - . 1 *p(2)|?
where u,(z) is the internal phononlike field describing the +—ch ( > ) ds(z)—f(u,(L)—u,0))
stretching of the chain. The bending fighdz) is in the di- 2 gz
rection perpendicular to the local tangent of the chain, thus 1
perpendicular to thez axis. This result can be derived +§f de(Z)dS(Z’)V(B(Z,Z’))

straightforwardly from the form of the line element along the

chain: ds(z)?=(dz+du,(2))?+ (dp(2))?,° leading to the 1 , , ,
lowest order in the deformation fields to +§f f ds(2)ds(z')9(z,2')(B(z,2")
(=2 +U(2)—u(2))*+(p(2) - p(2))?), 4
au,(2)\ 1{ap(2)\? . . .
ds(z)=dz | 1+ ol T (20 where we indicated explicitly the dependence of the interac-

tion potential on the auxiliary field(z,z') asV(B(z,z"))

=V(VB(z,2')). This dependence is introduced via the
The total mesoscopic energy of a semiflexible self-Lagrange multiplier in the last line of Eq4) through the

interacting chain under external tension contains four termsSonstraintB(z,z")=(r(z) - r(z'))>.

the stretching elastic energy term, the bending elastic energy ~The rationale for this change of variables is that the di-

term, the stretching force term and the interaction term. Ifnensions of the fieldp(z) andu,(2), that can be integrated
can be written straightforwardly in the form over explicitly and exactly, are assumed to be much larger

than the dimensions of the auxiliary field3(z,z') and
9(z,z"). This allows the contribution of the auxiliary fields
1 u(z) 1/ap(z)\?\? to the partition function to be evaluated on the saddle-point
2 f( 9z +§< 9z ) ) ds(z) level. This approach can be shown to be asymptotically exact

L 2(2)) 2 if the dimension of the embedding space for the polymer
p(z chain, i.e., the dimension of thi€s) vector, tends to infinity

+-K —f(uy,(L)— S : '

CJ( 9z° ) ds(2) = F(uz(L) = u,(0)) If this is not the case, as indeed it is not for our three-

2

1 dimensional case, what we get is a result validx@l/d).
+§f J'V(|r(z)—r(z’)|)ds(z)ds(z’), (3y  Eveninthis case thed/me_thod gives reasonable results that

compare very favorably with other metho@ee Ref. 10 and
the references cited thergin
The free energy is now obtained by the standard trace

over the fluctuating fields as well as the auxiliary fields and
their Lagrangian multipliers

whereV(|r(z)—r(z')|) is the interaction potential between
two segments of unit length separated lyz)—r(z')|?
=(z—2'+u,(2)—u,z"))*+(p(z)— p(z'))?. fis the exter-
nal force stretching the chain in directian\ is the stretch- ) ' BH
ing (Lam® modulus andK . is the bending modulus related 7= —kTInJ f Du,(2)Dp(2)Dg(2,2')DB(z,2")e" 7.
to the persistence lengthh asK-=kTIp. This mesoscopic (5)

energy presents a generalization of the existing models of Bnce we have an explicit form for the free energy we can get
stretched elastic chain, Refs. 9, 11 and 12. . - . ; -
an equation of state for the self-interacting chain, connecting

the external stretching force acting on the chain with its elon-

gation, from
I1l. THE /D EXPANSION METHOD OF
. . . — —=((uy(L)=u,0)))=(L"—L), 6
The nonlocal nature of the intersegment interaction, de- of (L) =u(0)))=( ) ©)

pendent on botlz andz’, precludes an explicit evaluation of
the partition function of the model with a mesoscopic Hamil-
tonian Eq.(3). We thus have to resort to an approximation
scheme that will make the evaluation of equilibrium proper-
ties of this model tractable.

At this point we introduce the d@/expansion method to Before integrating over all the fluctuating fields we in-
obtain an approximate but nevertheless explicit form of thevestigate the mean-field solutions of the mesoscopic Hamil-
partition function. The basis of this method is the introduc-tonian Eq.(4). We first imagine that there is no external
tion of two auxiliary fields:B(z,z')=(r(z)—r(z’))? and its  tension applied to the chain, i.6.=0. The presence of the
Lagrange multiplieg(z,z’) (for details see Ref. J@hat will intersegment interactions, however, acts as an effective
help transform nonlocal intersegment interactions along thstretching force by itself. How does this happen? The mean-
chain into local energy terms. With these variables, and limfield solution for this case is obtained by minimizing the
iting ourselves to terms of lowest order in all the variables,Hamiltonian Eq.(4) and assuming that all the fields are con-
the chain mesoscopic Hamiltonian can be cast into the fornstant:

whereL’ is the length of the chain after arld before the
onset of the external stretching force.

IV. THE MEAN FIELD SOLUTION
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U;;=¢, andp(z)=0. (7)

Thus

Hozgkfds(m”%f fds(z)ds(z')V(B(z,z'»

1
+§Hds<z)ds<z )9(2,2)(B(2,2))

—(z—2")3(1+)?), (8)

whereds(z) is the appropriate form of the line element of
the chain consistent with E¢7). By minimizing with respect
to ¢ we obtain the equation of state in the form

_ O\ g

Y ©
where we introduced

5)\=f ds(z')g(z,2')(z—2')>. (10

The mean-field minimization with respect to the auxiliary

fields gives
B(z,2')=(z—-2')*(1+ )%
9(z,z")=—-9gV(B(z,2")). (11

In all the integrals over the length of the chain the line ele-
mentds(z) should be taken to the order ihthat is consis-
tent with linear elasticity. We note at this point that the

above mean-field equations are highly and essentially non-

linear. First of all g(z,z') is a nonlinear functional of
B(z,2'), Eqg. (11), and &\ is determined from a solution to
Eq. (10).

Thus on this level we see that the intersegment interac-
tions stretch the chain in a way similar to an external force,

leading to what one could call a Hooke's law of the form Eg.
(9). If we now add a real external tensiof) (to the chain the
mean-field ansatz would assume the form

U= ¢+ 84(f),

The corresponding Hamiltonian in this case is

and p(z)=0. (12

1
HOIE xf ds(z)({+ 5§)2—ff ds(z) 8¢

+%fjds(z)ds(z’)V(B(Z,Z'))
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f

=55 (149

and minimization with respect to the other variables gives
B(z.2')=(z—2)%(1+{+60)%

9(z,2")=—-0gV(B(z,2")). (15

Putting the two results together, the mean-field theory thus
gives for the total deformation

f+ N
N—06N°

{+6L= (16)
Again it is quite obvious that the intersegment interactions
act in a way similar to an additional stretching force. Since
the intersegment interactions make an additive contribution
tof[see Eq(16)], they obviously just displace the mean field
minimum around which the system fluctuates.

V. FLUCTUATIONS

Now that we have the mean-field solution for the case
with external stretching force as well as intersegment inter-
actions, we can expand the mesoscopic Hamiltonian around
the mean field and evaluate also the effect of thermal fluc-
tuations. To second order this expansion yields

p(2)

0z

1
oKe

l 2
H=Ho+ 5N+ 5§)J ds(Z)( )

EYpRLT

1
I ! ! _ )2
zf de(Z)dS(Z )9(2,2")((U(2) —U,(Z"))

UL(2)
0z

7*p(2)
pra

)2

+(p(2)—p(2'))?), (17

where H, is given by Eq.(13). In order to evaluate the
functional integral corresponding to this effective Hamil-
tonian we first of all developi,(z) andp(z) in the last term

of the above equation into a Taylor series with an argument
z—2Zz'. This means that all the properties of the chain are
homogeneous and depend only onz’.° We are thus try-

ing to account for the longest length scale effects of the
interaction terms on the properties of the semiflexible chain
(an equivalent procedure would be to look at the lowest

wave vector dependence of the Hamiltonian in the Fourier

1
+§ f J ds(z)ds(z')g(z,z")(B(z,2")
—(z=2")2(1+ ¢+ 60)%). (13

Again the form of the line elemernts(z) should be consis-
tent with Eq.(12) as well as with linear elasticity. Obviously

we have coupled the stretching force only to the deformation

(6¢) after the intrinsic deformation) set by the interseg-
ment interactions has been already established.
Minimizing with respect tod{ we now get

2

space. Both devices are consistent with a macroscopic char-
acter of the approach advocated here. The result of this ex-
pansion is as follows:

1
f f ds(2)ds(z')9(z,2')(u,(z) —u,(2'))?

-

IUy(2)
Jz

1
=§5)\J' ds(z)( (19

and
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1 have been already turned on. Minimization of E24) with
EJ f ds(z)ds(z')g(z,2')(p(2) — p(z))? respect tos¢ on the mean-field level thus invariably leads
back to the equation of state Ed{.4).
1 ap(z) The free energy Ed5) can now be evaluated exactly for
:_5)‘f ds(z )( ) the harmonic variables,(z) andp(z) assuming that we can

ignore the end effects. The evaluation of the functional inte-
(19) gral over nonharmonic degrees of freedom, i.e., for the two
auxiliary fieldsB(z—z') andg(z—2'), is dealt with on the
saddle point level which constitutes thed Idpproximation
(for details see Ref. J0and leads to Eqg15).
The free energy of the chain can therefore be obtained to
the quadratic order i, 5 in the form

——5ch ds(z)( (Z))

where the dots stand for higher derivative terms and we in-
troduced

1
5|<C:E f ds(z')g(z,z')(z—z")* (20

F= —kTInJ J Du,(2)Dp(z)Dy(z,2' Y DB(z,2')e "
The complete Hamiltonian, including the mean field part as

well as the contribution of fluctuations around the mean field 1 1
fdz(§+5§) +fJ dzél+ f fdz dz

now becomes =5N
1 (z) 1 2
_ R z kT d
H—Ho+§>\( )f ds(z )( ) Eff ds(2) X (1+ ¢+ 80)V(B(z,2'))+ 7Inde()\(R)?)
r?p(Z)) p( )\2 4 2
x( (R)fds( 2) , 21) k@ )
0z +KTIndet K¢ A T2 (25
where we introduced the following renormalized elastic con-The fluctuation determinants can be evaluated in the Fourier
stants space by standard methodsSince we have derived an ex-
NG plicit form for the free energy we can thus obtain the equa-
' 22) tion of state from Eq(6) in the form
K® =K+ 6K, L KT ¢
and taken into account the following identity =T L 2‘/ ( R )\(R) (26)
N+ 60— N1+ {+o0)=T. (23)  Obviously the second term on the r.h.s. of the above equation

comes from the transverseg(g)) fluctuations and is thus
entropic in origin while the last term is the mean field
stretching term. We could also call them “entropic” and

Using the relation Eq(14) one can now cast E@21) into a
more physically transparent form

A (R) u,(2) “enthalpic” stretching terms.
HP=H()+ — | ds(2)| 8¢+ —~ We see immediately that in the case of no intersegment
interactions or if the range of these interactions goes to zero
1/dp(z)\2\? 1 ® 6’2p(Z) (both of these cases leading &a =0, see belowthe above
§( 97 ) ) +§KC fds( )( ) equation of state reduces exactly to the one obtained by

Odijk'!* and Ha and ThirumaldiA similar equation of state

_ has also been obtained by Marko and Sidbier the case of
f| ds(z)d¢, (24 S : .

a chain with intersegment interactions except that the stretch-
ing part was added in by hand and that the bending and
stretching moduli renormalization was not evaluated on the

same level as in Eq26).

where the superscrigR) symbolically denotes the fact that
the intersegment interactions in the above elastic Hamil
tonian have been taken into account on the level of renor=
malized elastic moduli Eq(22). H({) stands for all the
terms not written down explicitly in Eq.24) that are irrel-
evant for the derivation of the equation of state Fig). VI. ELASTIC MODULI RENORMALIZATION
We see that in the approach advocated here the effect of
the intersegment interactions in the Hamiltonian E3). is
merely to renormalize the material elastic constants. Our pro
cedure thus obviously conforms to the general philosophy o
continuum mechanisy explicitly conserving the form of kT'B exp(—k|r(z)—r(z')|)
elastic energy and by including all the intersegment interac-  V(r(2),r(z'))= - : 27
tions on the level of new, renormalized material properties. r@-r(@)
We also wrote the Hamiltonian Ed@24) in the form that wherelg is the Bjerrum lengtha is the effective separation
brings out explicitly the dependence aoft, i.e., on the between the charges along the chain ands the inverse
mean-field deformation after the intersegment interaction®ebye length. With this intersegment potential and assuming

We now assume that in a univalent salt solution the in-
tersegment interaction potential is purely repulsive and of a
§creened Debye—ldkel form, i.e.,
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the mean-field form foB(z) Eq. (15) one gets for the inter- One can furthermore examine the relation between
action driven changes in the stretching and bending modulienormalized, in effect measured, bending and stretching
the following relations moduli in more detail. For theipare values we should have
KT from the standard macroscopic theory of elastftibe result
, B, _« .
5>\=—f ds(2)zv (B(2)=17,2(8 *—Ei(—«b)), Ke=1\R?, (32)
1 KT (28) whereRis the radius of the moleculéor DNA Ris between
_ , _ B 10 A and 4 A, corresponding to phosphate and major groove
5K ———f ds(z2)2*V'(B(2))= 35—, ’ ponding to phosp jor 9
¢ 12 4A%(ka)? radii). Obviously for the renormalized valugg® andx(®

this relation does not hold anymore. Instead we obtain the
following relation between renormalized stretching and
renormalized bending moduli

whereb is the microscopic cutoff on the order of the thick-
ness of the polyelectrolyte molecule, i.e., for DNA= 10 A,
Ei(x) is the standard integral exponent function ahdhe

local stretching parameter introduced as R 1 (Rn2 kTlg
2 Ke =0 "R 48%(xa)?
A2 B2Z) _(r@)=r(Z)))

(2-2)2  (z-2)? X (1+2(kR)*A(e™**—Ei(—«b))). (32

(29 range and/or the magnitude of interactions becomes very
small. Any polyelectrolyte in the range of conditions where

Eq. (27) is valid should thus behave as a classical macro-
scopic cylinder if we take the coupled bending—stretching

moduli renormalization due to the intersegment interactions
properly into account.

N f )2 The relation Eq(31) is thus valid only asymptotically as the
— 2_
=(1+¢+67) —( @ )

Obviously both elastic constant renormalizations E2B)
depend on the intersegment interactions Ey) globally,
via its integrals in the form of the second and the fourth
moment ofV'(B(z)). For the renormalized bending modu-
lus this integral is convergent, receiving its bulk part from
the long range behavior of the intersegment interactions?!l- COMPARISON WITH EXPERIMENT
Renormalization of the stretching modulus on the other hand  we can now fit the expressions E@8) to the recent
depends on the microscopic cutoff and is thus sensitive to thexperiments by Baumanet al® where they measure the si-
short range details of the interaction potential. We cannot Offnu|taneous dependence of the bending as well as Stretching
hand assume that the short range behavior of the interaCtiqﬂodu" of DNA on the ionic Strength in a uni-univalent elec-
potential is correctly given by E¢27). We will return to this  trolyte. The renormalized moduli for different values of the
point in the discussion. added univalent electrolyte are extracted from the fit of the
We also note that the renormalizations of the elasticexperimental entropic and stretched regimes to the equation
moduli depend on the magnitude of the intersegment interof state Eq.(26), just below the overstretching transition.
actions(described bya) as well as on their rangeet by the Fitting the dependence of the renormalized bending and
Debye lengthx~*). stretching moduli on the inverse Debye screening length to
If the chain is inextensibley—, thenA—1, the renor-  Eqs.(28), we can obtain both the bare bending and stretching
malization of the stretching modulus becomes irrelevant anghoduli as well as the inverse line charge denaitnbiased
the renormalization of the bending modu[second equation fitg give for the bare elastic modulus X10* pN A? (cor-
in Egs. (28)] becomes exactly the Odijk—Skolnick—Fixman responding td p=5004 A and the bare stretching modulus
result! as indeed it should. Also one realizes that\ =1261pN. The values of the two bare moduli are com-
experimentallff A>f and thus one always has pletely consistent with Eqi31) considering the fact that for
_ _ - DNA the radiusR lies somewhere between the outer phos-
A~M (A= oM)=1. (30 phate radius £ 10 A) and the inner radius of the grooves
Relation Eq.(28) can be thus viewed as a generalization of(~4 A). The microscopic cutofb obtained from the fit is
the OSF result for the bending as well as stretching moduli4.8 A which is also within the physically expected range.
Since in the presence of the intersegment interactions a From the fit to Eq(28) we also obtain a consistent esti-
function of S\ we have a highly nonlinear system of equa- mate(in the sense that it should fibththe stretching as well
tions to solve. The solution would give us simultaneously theas the bending modulus data, this being a quite severe re-
renormalization of the bending as well as the stretchingstriction on the possible values of this parametier a
moduli. ~1.8 A. This estimate is not particularly accurate because of
Without even solving this set of equations we alreadythe large scatter present in the déae Fig. 3 and because
know that the intersegment repulsions renormalize the bendf the number of the fitting parameters. The experimental
ing and stretching moduli in the opposite directions, see Egscatter is probably due to the fact that the regime between
(22). While the bending modulus increases, the stretchingntropic and enthalpic stretching is quite narrow and a reli-
modulus decreases. The intuitive physical reasons for thiable estimate for the stretching modulus which can only
were already outlined in the Introduction. This resolves com-come from this regime is thus difficult to obtain. Experi-
pletely the conundrum observed in experimental studies ofments are currently under way to gather a much more accu-
DNA stretching and bending elasticify. rate set of data for the two elastic modtfli.
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2000 [F T I I I T tension. If the stiffness or the tension are finite, we kHow
that the extended configuration of the chain lying at the bot-
tom of the Monge-like parameterization is unstable against
- thermal fluctuations. Nevertheless the OSF limit appears to
\ be stabl&’ even in the regime of vanishing stretching and we

®) expect(without any proof at this pointhat the renormaliza-
tions Eqs(28) will remain likewise. It would nevertheless be
appropriate to derive a more sophisticated thédrgome-
what along the lines of Ref. 9 but without the unstretchability
. constraint, that would be able to describe the equation of
state for a stretchable self interacting semiflexible polymer
chain for the whole range of stretching forces.

When calculating the fluctuation contribution to the free
AR energy we assumed thB{(z,z') andg(z,z') are still given
by their mean field expressions, Eq$5). There is indeed a
fluctuation contribution to the auxiliary fields but it is in
general small and would not fundamentally change the re-
ol sults derived above. It would however make the numerics
more cumbersome.

The numbers extracted for the effective charge density
along DNA bear no resemblance to the Manning theory
where the value appropriate for the effective spacing be-
tween the charges s~7 A. However, one should take into
account the fact that elastic moduli renormalizations depend
on the global properties of the interaction potential and in
FIG. 3. Experimental points taken from Table | of Baumanral. (Ref. 8 ~ order to extract more realistic values of the interaction pa-
and fits using the functional form of the ionic strength dependence from . _

Eq. (28), wherel ® =1+ 8Kc /KT andA®=)— 1. O are the measure- rameters one should realize the limits of tmesatzEq. (27),
ments of persistence lengteft scalé, O are the measurements of the once the ionic strength is low enough and/or the separation

stretch modulugright scalg for ionic strengths between 1.86 and 586/. between the interacting segments small enough. For low
The functional form of the persistence length fits the experimental data in

the whole regime of experimentally accessible salt concentrations. The funcs-alts' appr-oa.ching gounterion-only conditions, the nature of
tional form of the stretching modulus renormalization ceases to captur&lectrostatic interactions between segments of a polyelectro-
main features of the experiment below aboutrBB! salt. The dotted curve lyte chain is quite different from the one described by Eq
represents the standard OSF regBkf. 4 for the persistence length depen- . . '
dence on the ionic strength. (27). Correlation effects can even reverse the sign of the
electrostatic interactions, making them attractive, and thus
have a completely different effect on the elastic mo@uli
While it is obvious(see Fig. 3 that our fit closely de- from those studied in the framework of our theory. It seems
scribes experimental data for the bending modulus in theuite plausible that for low salts, where the discrepancy be-
whole range of experimentally accessible ionic strengths, itween our calculations and experiments begins to show up,
fails to describe the stretch modulus data even qualitativelyhese type of correlation effects will start to play an impor-
at ionic strengths below 0.05 M. We connect this deficiencyant role in determining the renormalization of the stretching

of our theory to the fact that the stretching modulus renorqq,ys that is more dependent on the short distance behav-
malization is very sensitive to the short range behavior of the . ¢ i« interaction potential then the bending modulus.
intersegment interaction potential which at these low salts

) . . The experimental numbefsee Fig. 3 for the change in
cannot be expected to be accurately given via the asymptotic . ) o
form Eq. (27). stretching modulus as a function of the ionic strength of the

bathing solution indicate that the limit of linear elasticity is
almost reached if not surpassed for low enough salts and thus
VIII. DISCUSSION our theoretical results should be viewed upon strictly as a

. . limiting law, valid exactly only for large added salt concen-
The theory presented above giving the stretching ang{f i 9 h h y ”y gl' i f both elasti
bending moduli renormalization in the presence of long rations where one has smaill renormalizations of both elastic

range intersegment interactions seems to work reasonabWOd“"' This_caveat applies just as well to the interpretation
well when compared to experiments performed at not to®f the experimental data themselves. There too one should
low ionic strengthgabove 50 mM univalent saltThere are  keep in mind the possibility that nonlinear elastic effects
nevertheless several caveats that one should keep in mindcould modify the equation of state and could specifically
First of all the result Eq(28) is formally valid only in ~ make the straightforward interpretation in terms of the linear
the limit of either a very stiff chain or very large external stretching modulus less straightforward than it seems.
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