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Elastic moduli renormalization in self-interacting stretchable
polyelectrolytes
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We study the effect of intersegment interactions on the effective bending and stretching moduli of
a semiflexible polymer chain with a finite stretching modulus. For an interaction potential of a
screened Debye–Hu¨ckel type, renormalization of the stretching modulus is derived on the same
level of approximation as the celebrated Odijk–Skolnick–Fixman result for the bending modulus.
The presence of mesoscopic intersegment interaction potentials couples the bending and stretching
moduli in a manner different from that predicted by the macroscopic elasticity theory. We thus
advocate a fundamental change in the perspective regarding the dependence of elastic moduli of a
flexible polyelectrolyte on the ionic conditions: stretchability. The theory presented here and its
consequences compare favorably with recent experiments on DNA bending and stretching at not too
low salt conditions. @S0021-9606~00!50244-X#
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I. INTRODUCTION

Mechanical properties as characterized by bend
stretching and twisting and their respective elastic mod
more than anything else determine the supercoiling1 and
packing properties of DNA.2 In physical terms DNA is a
semiflexible charged polymer. The effect of coupling b
tween intersegment electrostatic repulsions and the c
bending elasticity has been studied for quite a while~see Ref.
3 and references therein!. The major result of these studies
the celebrated Odijk–Skolnick–Fixman~OSF! formula4 that
connects the value of the bending elastic modulus with
parameters of the interaction potential~assumed to be of the
Debye–Hu¨ckel form5! between the segments along the po
mer chain. One usually refers to the effect described by
formula as the interaction renormalization of the bend
modulus. The hypothesis of a very short range of action
molecular interactions is built into the foundations of clas
cal elasticity6 and consequences of any finite, not necessa
long range, molecular interactions should be carefully
plored. The OSF result unequivocally shows that these c
sequences can be highly nontrivial.

In the case of a stretchable chain there exists no the
that would connect the intersegment interactions and
stretching elastic modulus. That this theory is very mu
needed is shown by recent experiments on single mole
DNA stretching.7,8 They point to the conclusion that th
measured renormalization of the stretching modulus in
presence of solutions with different ionic strengths can
be rationalized on the basis of simple elasticity theo
arguments6 according to which the renormalization of th
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bending and stretching moduli should be proportional.
the contrary, experiments suggest that while the presenc
electrostatic repulsion between DNA segments tends to m
the chain less prone to bending it also makes it much m
stretchable. This combination of properties therefore s
gests that DNA might not be describable by standard ma
scopic elasticity theory at all.8 In what follows we will try to
reconcile these intriguing experimental findings with clas
cal elasticity theory by consistently analyzing the con
quences of the long range electrostatic intersegment inte
tions on its elastic properties. We will show that the resu
of DNA stretching experiments at high enough salt con
tions are completely consistent with macroscopic elastic
provided that the long range intersegment interactions
properly included into its framework.

The main conclusions of our study can be cast in
straightforward physical picture and can be summarized
intuitive terms: long range intersegment interactions o
Debye–Hu¨ckel type renormalize both, i.e., bending as w
as stretching elastic moduli in different ways. The physi
basis of bending modulus renormalization has been kno
for quite some time4 and appears to be well understood: s
Fig. 1. The change in bending modulus is due to the fact
the effective spacing between distant segments gets sm
(L8,L) after the polymer is locally bent. Because the inte
segment interactions are assumed to be repulsive the inte
tions thus oppose bending and give rise to a higher bend
modulus. The physics of the effect of the long range int
segment interactions on the stretching modulus has a di
ent origin. The stretching modulus is proportional to the s
ond derivative of the interaction energy w.r.t. th
intersegment coordinate at its minimum. If the chain
charged the Debye–Hu¨ckel repulsion will locally stretch the
segment length. As this length becomes bigger (a8.a) ~see
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Fig. 1! the interaction energy at the minimum becomes l
steep, and its second derivative thus becomes smaller. Th
fore the stronger the electrostatic repulsions, the more
segments will be further apart, the smaller will be the seco
derivative of the interaction energy at its minimum, leadi
to a smaller stretching modulus. In what follows we w
simply formalize and quantify this intuitive and appealin
physical picture.

Part of the effect of the long range interactions on ela
moduli renormalization has already been treated in the w
of Ha and Thirumalai.9 Though they deal with a nominally
unstretchable chain, the unstretchability constraint is imp

FIG. 1. The physics of elastic moduli renormalization in the presence
finite range intersegment interactions. Repulsive intersegment interac
make the chain more difficult to bend because of diminished effective s
ration between neighboring segments (L8,L). However, they also make
stretching easier because they increase the average length of the seg
and thus diminish the curvature of the interaction energy between the
ments ~symbolically depicted as beads! that effectively determines the
stretching modulus.
s
re-
e
d

c
rk

-

mented globally through an appropriate Lagrange multipl
It is straightforward to realize that in the presence of lo
range intersegment interactions this Lagrange multip
would be renormalized by the interactions. Our calculat
builds on and adds to this change in the Lagrange multip
by explicitly introducing a stretching part to the elastic e
ergy.

Formally, our approach is nothing but a straightforwa
generalization of the OSF arguments to include the effec
the intersegment interactions on the stretching modulus
the chain as well. We thus derive concurrently both the be
ing modulus or equivalently the persistence length renorm
ization as well as the stretching modulus renormalization
the same level of approximation based on the recent im
mentation of the 1/d expansion technique into the sel
interacting semiflexible polymer theory.10

We are convinced that our calculation dispels a
doubts7,8 as to whether DNA does conform to macroscop
elasticity theory or not. The short version of the answer is
does, as long as one takes the long range part of the in
segment interaction potential of the polymer chain cons
tently into account. Comparison with recent experime
seems to bear out our line of thinking quite strongly a
convincingly.

The outline of the paper is as follows: First we introdu
a mesoscopic model of the self-interacting polymer ch
with bending and stretching elasticity included. We brie
describe the 1/d expansion method that we use to evalua
the partition function of the model. We then explicitly obta
a mean field solution of the model and the contribution of
fluctuations to the equation of state of the polymer chain t
connects the elongation of the chain with the stretching fo
acting on it. We finally derive the renormalized elas
moduli of the chain and compare the results with availa
experiments.

II. MODEL

We start by formulating an elastic mesoscopic Ham
tonian for a self-interacting chain described in the high
stretched, small deformation limit in the Monge-like param
eterization~see Fig. 2! as r (s)5(z,r(z)), where s is the
arclength along the chain. For a one-dimensional solid,6 an
adequate representation of a flexible polymer chain on sm
length scales, the deformation tensor has only one non
component

f
ns
a-

ents
g-

FIG. 2. A highly stretched polymer chain. The average direction of
chain is alongz axis, which corresponds also to the stretching axis and is
by the direction of external forcef acting at both ends, and the bendin
deformation is perpendicular to it.
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uzz~z!5
]uz~z!

]z
1

1

2S ]r~z!

]z D 2

, ~1!

whereuz(z) is the internal phononlike field describing th
stretching of the chain. The bending fieldr(z) is in the di-
rection perpendicular to the local tangent of the chain, t
perpendicular to thez axis. This result can be derive
straightforwardly from the form of the line element along t
chain: ds(z)25(dz1duz(z))21(dr(z))2,6 leading to the
lowest order in the deformation fields to

ds~z!5dzS S 11
]uz~z!

]z D1
1

2S ]r~z!

]z D 2

1¯ D . ~2!

The total mesoscopic energy of a semiflexible se
interacting chain under external tension contains four ter
the stretching elastic energy term, the bending elastic en
term, the stretching force term and the interaction term
can be written straightforwardly in the form

H5
1

2
lE S ]uz~z!

]z
1

1

2S ]r~z!

]z D 2D 2

ds~z!

1
1

2
KCE S ]2r~z!

]z2 D 2

ds~z!2 f ~uz~L !2uz~0!!

1
1

2E E V~ ur ~z!2r ~z8!u!ds~z!ds~z8!, ~3!

whereV(ur (z)2r (z8)u) is the interaction potential betwee
two segments of unit length separated byur (z)2r (z8)u2

5(z2z81uz(z)2uz(z8))21(r(z)2r(z8))2. f is the exter-
nal force stretching the chain in directionz, l is the stretch-
ing ~Lamé! modulus andKC is the bending modulus relate
to the persistence lengthl P asKC5kTlP . This mesoscopic
energy presents a generalization of the existing models
stretched elastic chain, Refs. 9, 11 and 12.

III. THE 1ÕD EXPANSION METHOD

The nonlocal nature of the intersegment interaction,
pendent on bothz andz8, precludes an explicit evaluation o
the partition function of the model with a mesoscopic Ham
tonian Eq.~3!. We thus have to resort to an approximati
scheme that will make the evaluation of equilibrium prop
ties of this model tractable.

At this point we introduce the 1/d expansion method to
obtain an approximate but nevertheless explicit form of
partition function. The basis of this method is the introdu
tion of two auxiliary fields:B(z,z8)5(r (z)2r (z8))2 and its
Lagrange multiplierg(z,z8) ~for details see Ref. 10! that will
help transform nonlocal intersegment interactions along
chain into local energy terms. With these variables, and l
iting ourselves to terms of lowest order in all the variabl
the chain mesoscopic Hamiltonian can be cast into the f
s
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H5
1

2
lE S ]uz~z!

]z D 2

ds~z!

1
1

2
KCE S ]2r~z!

]z2 D 2

ds~z!2 f ~uz~L !2uz~0!!

1
1

2E E ds~z!ds~z8!V~B~z,z8!!

1
1

2E E ds~z!ds~z8!g~z,z8!~B~z,z8!

2~z2z81uz~z!2uz~z8!!21~r~z!2r~z8!!2!, ~4!

where we indicated explicitly the dependence of the inter
tion potential on the auxiliary fieldB(z,z8) as V(B(z,z8))
5V(AB(z,z8)). This dependence is introduced via th
Lagrange multiplier in the last line of Eq.~4! through the
constraintB(z,z8)5(r (z)2r (z8))2.

The rationale for this change of variables is that the
mensions of the fieldsr(z) anduz(z), that can be integrated
over explicitly and exactly, are assumed to be much lar
than the dimensions of the auxiliary fieldsB(z,z8) and
g(z,z8). This allows the contribution of the auxiliary field
to the partition function to be evaluated on the saddle-po
level. This approach can be shown to be asymptotically ex
if the dimension of the embedding space for the polym
chain, i.e., the dimension of ther (s) vector, tends to infinity.
If this is not the case, as indeed it is not for our thre
dimensional case, what we get is a result valid toO(1/d).
Even in this case the 1/d method gives reasonable results th
compare very favorably with other methods~see Ref. 10 and
the references cited therein!.

The free energy is now obtained by the standard tr
over the fluctuating fields as well as the auxiliary fields a
their Lagrangian multipliers

F52kT lnE ¯E Duz~z!Dr~z!Dg~z,z8!DB~z,z8!e2bH.

~5!

Once we have an explicit form for the free energy we can
an equation of state for the self-interacting chain, connec
the external stretching force acting on the chain with its el
gation, from

2
]F
] f

5^~uz~L !2uz~0!!&5~L82L !, ~6!

whereL8 is the length of the chain after andL before the
onset of the external stretching force.

IV. THE MEAN FIELD SOLUTION

Before integrating over all the fluctuating fields we i
vestigate the mean-field solutions of the mesoscopic Ha
tonian Eq. ~4!. We first imagine that there is no extern
tension applied to the chain, i.e.,f 50. The presence of the
intersegment interactions, however, acts as an effec
stretching force by itself. How does this happen? The me
field solution for this case is obtained by minimizing th
Hamiltonian Eq.~4! and assuming that all the fields are co
stant:
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uzz5z, and r~z!50. ~7!

Thus

H05
1

2
lE ds~z!z21

1

2 E E ds~z!ds~z8!V~B~z,z8!!

1
1

2 E E ds~z!ds~z8!g~z,z8!~B~z,z8!

2~z2z8!2~11z!2!, ~8!

whereds(z) is the appropriate form of the line element
the chain consistent with Eq.~7!. By minimizing with respect
to z we obtain the equation of state in the form

z5
dl

l2dl
, ~9!

where we introduced

dl5E ds~z8!g~z,z8!~z2z8!2. ~10!

The mean-field minimization with respect to the auxilia
fields gives

B~z,z8!5~z2z8!2~11z!2,

g~z,z8!52]BV~B~z,z8!!. ~11!

In all the integrals over the length of the chain the line e
mentds(z) should be taken to the order inz that is consis-
tent with linear elasticity. We note at this point that th
above mean-field equations are highly and essentially n
linear. First of all g(z,z8) is a nonlinear functional of
B(z,z8), Eq. ~11!, anddl is determined from a solution to
Eq. ~10!.

Thus on this level we see that the intersegment inte
tions stretch the chain in a way similar to an external for
leading to what one could call a Hooke’s law of the form E
~9!. If we now add a real external tension (f ) to the chain the
mean-field ansatz would assume the form

uzz5z1dz~ f !, and r~z!50. ~12!

The corresponding Hamiltonian in this case is

H05
1

2
lE ds~z!~z1dz!22 f E ds~z!dz

1
1

2 E E ds~z!ds~z8!V~B~z,z8!!

1
1

2 E E ds~z!ds~z8!g~z,z8!~B~z,z8!

2~z2z8!2~11z1dz!2!. ~13!

Again the form of the line elementds(z) should be consis-
tent with Eq.~12! as well as with linear elasticity. Obviousl
we have coupled the stretching force only to the deforma
(dz) after the intrinsic deformation (z) set by the interseg
ment interactions has been already established.

Minimizing with respect todz we now get
-

n-

c-
,

.

n

dz5
f

l2dl
, ~14!

and minimization with respect to the other variables give

B~z,z8!5~z2z8!2~11z1dz!2,

g~z,z8!52]BV~B~z,z8!!. ~15!

Putting the two results together, the mean-field theory t
gives for the total deformation

z1dz5
f 1dl

l2dl
. ~16!

Again it is quite obvious that the intersegment interactio
act in a way similar to an additional stretching force. Sin
the intersegment interactions make an additive contribu
to f @see Eq.~16!#, they obviously just displace the mean fie
minimum around which the system fluctuates.

V. FLUCTUATIONS

Now that we have the mean-field solution for the ca
with external stretching force as well as intersegment in
actions, we can expand the mesoscopic Hamiltonian aro
the mean field and evaluate also the effect of thermal fl
tuations. To second order this expansion yields

H5H01
1

2
l~z1dz!E ds~z!S ]r~z!

]z D 2

1
1

2
lE ds~z!S ]uz~z!

]z D 2

1
1

2
KCE ds~z!S ]2r~z!

]z2 D 2

2
1

2E E ds~z!ds~z8!g~z,z8!~~uz~z!2uz~z8!!2

1~r~z!2r~z8!!2!, ~17!

where H0 is given by Eq.~13!. In order to evaluate the
functional integral corresponding to this effective Ham
tonian we first of all developuz(z) andr(z) in the last term
of the above equation into a Taylor series with an argum
z2z8. This means that all the properties of the chain a
homogeneous and depend only onz2z8.10 We are thus try-
ing to account for the longest length scale effects of
interaction terms on the properties of the semiflexible ch
~an equivalent procedure would be to look at the low
wave vector dependence of the Hamiltonian in the Fou
space!. Both devices are consistent with a macroscopic ch
acter of the approach advocated here. The result of this
pansion is as follows:

1

2E E ds~z!ds~z8!g~z,z8!~uz~z!2uz~z8!!2

5
1

2
dlE ds~z!S ]uz~z!

]z D 2

1¯, ~18!

and



in

a
el

n

t
i

o

ct

r
y o

ac
es

on

s

r

te-
wo

d to

rier
-
a-

tion

ld
d

ent
ero

by

tch-
and
the

in-
f a

ing

9347J. Chem. Phys., Vol. 113, No. 20, 22 November 2000 Elastic moduli in polyelectrolytes
1

2E E ds~z!ds~z8!g~z,z8!~r~z!2r~z8!!2

5
1

2
dlE ds~z!S ]r~z!

]z D 2

2
1

2
dKCE ds~z!S ]2r~z!

]z2 D 2

1¯, ~19!

where the dots stand for higher derivative terms and we
troduced

dKC5
1

12 E ds~z8!g~z,z8!~z2z8!4. ~20!

The complete Hamiltonian, including the mean field part
well as the contribution of fluctuations around the mean fi
now becomes

H5H01
1

2
l (R)E ds~z!S ]uz~z!

]z D 2

1
1

2
f E ds~z!

3S ]r~z!

]z D 2

1
1

2
KC

(R)E ds~z!S ]2r~z!

]z2 D 2

, ~21!

where we introduced the following renormalized elastic co
stants

l (R)5l2dl,
~22!

KC
(R)5KC1dKC ,

and taken into account the following identity

l~z1dz!2dl~11z1dz!5 f . ~23!

Using the relation Eq.~14! one can now cast Eq.~21! into a
more physically transparent form

H (R)5H~z!1
l (R)

2 E ds~z!S dz1
]uz~z!

]z

1
1

2S ]r~z!

]z D 2D 2

1
1

2
KC

(R)E ds~z!S ]2r~z!

]z2 D 2

2 f E ds~z!dz, ~24!

where the superscript~R! symbolically denotes the fact tha
the intersegment interactions in the above elastic Ham
tonian have been taken into account on the level of ren
malized elastic moduli Eq.~22!. H(z) stands for all the
terms not written down explicitly in Eq.~24! that are irrel-
evant for the derivation of the equation of state Eq.~14!.

We see that in the approach advocated here the effe
the intersegment interactions in the Hamiltonian Eq.~3! is
merely to renormalize the material elastic constants. Our p
cedure thus obviously conforms to the general philosoph
continuum mechanics6 by explicitly conserving the form of
elastic energy and by including all the intersegment inter
tions on the level of new, renormalized material properti
We also wrote the Hamiltonian Eq.~24! in the form that
brings out explicitly the dependence ondz, i.e., on the
mean-field deformation after the intersegment interacti
-

s
d

-

l-
r-

of

o-
f

-
.

s

have been already turned on. Minimization of Eq.~24! with
respect todz on the mean-field level thus invariably lead
back to the equation of state Eq.~14!.

The free energy Eq.~5! can now be evaluated exactly fo
the harmonic variablesuz(z) andr(z) assuming that we can
ignore the end effects. The evaluation of the functional in
gral over nonharmonic degrees of freedom, i.e., for the t
auxiliary fieldsB(z2z8) andg(z2z8), is dealt with on the
saddle point level which constitutes the 1/d approximation
~for details see Ref. 10! and leads to Eqs.~15!.

The free energy of the chain can therefore be obtaine
the quadratic order inz,dz in the form

F52kT lnE ¯E Duz~z!Dr~z!Dg~z,z8!DB~z,z8!e2bH

5
1

2
lE dz~z1dz!21 f E dzdz1

1

2E E dz dz8

3~11z1dz!2V~B~z,z8!!1
kT

2
ln detS l (R)

]2

]z2D
1kT ln detS KC

(R) ]4

]z4 2 f
]2

]z2D . ~25!

The fluctuation determinants can be evaluated in the Fou
space by standard methods.13 Since we have derived an ex
plicit form for the free energy we can thus obtain the equ
tion of state from Eq.~6! in the form

j5
L8

L
512

kT

2AKC
(R) f

1
f

l (R)
. ~26!

Obviously the second term on the r.h.s. of the above equa
comes from the transverse (r(z)) fluctuations and is thus
entropic in origin while the last term is the mean fie
stretching term. We could also call them ‘‘entropic’’ an
‘‘enthalpic’’ stretching terms.

We see immediately that in the case of no intersegm
interactions or if the range of these interactions goes to z
~both of these cases leading todl50, see below! the above
equation of state reduces exactly to the one obtained
Odijk11 and Ha and Thirumalai.9 A similar equation of state
has also been obtained by Marko and Siggia11 for the case of
a chain with intersegment interactions except that the stre
ing part was added in by hand and that the bending
stretching moduli renormalization was not evaluated on
same level as in Eq.~26!.

VI. ELASTIC MODULI RENORMALIZATION

We now assume that in a univalent salt solution the
tersegment interaction potential is purely repulsive and o
screened Debye–Hu¨ckel form, i.e.,

V~r ~z!,r ~z8!!5
kTlB
a2

exp~2kur ~z!2r ~z8!u!

ur ~z!2r ~z8!u
, ~27!

wherel B is the Bjerrum length,a is the effective separation
between the charges along the chain andk is the inverse
Debye length. With this intersegment potential and assum
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the mean-field form forB(z) Eq. ~15! one gets for the inter-
action driven changes in the stretching and bending mo
the following relations

dl52E ds~z!z2V8~B~z!!5
kTlB
D2a2 ~e2kb2Ei~2kb!!,

~28!

dKC52
1

12E ds~z!z4V8~B~z!!5
kTlB

4D3~ka!2 ,

whereb is the microscopic cutoff on the order of the thic
ness of the polyelectrolyte molecule, i.e., for DNAb.10 Å,
Ei(x) is the standard integral exponent function andD the
local stretching parameter introduced as

D25
B~z,z8!

~z2z8!2
5

^~r ~z!2r ~z8!!2&

~z2z8!2

5~11z1dz!25S l1 f

l (R) D 2

. ~29!

Obviously both elastic constant renormalizations Eq.~28!
depend on the intersegment interactions Eq.~27! globally,
via its integrals in the form of the second and the fou
moment ofV8(B(z)). For the renormalized bending modu
lus this integral is convergent, receiving its bulk part fro
the long range behavior of the intersegment interactio
Renormalization of the stretching modulus on the other h
depends on the microscopic cutoff and is thus sensitive to
short range details of the interaction potential. We cannot
hand assume that the short range behavior of the interac
potential is correctly given by Eq.~27!. We will return to this
point in the discussion.

We also note that the renormalizations of the elas
moduli depend on the magnitude of the intersegment in
actions~described bya) as well as on their range~set by the
Debye lengthk21).

If the chain is inextensible,l→`, thenD→1, the renor-
malization of the stretching modulus becomes irrelevant
the renormalization of the bending modulus@second equation
in Eqs. ~28!# becomes exactly the Odijk–Skolnick–Fixma
result,4 as indeed it should. Also one realizes th
experimentally8 l@ f and thus one always has

D;l/~l2dl!>1. ~30!

Relation Eq.~28! can be thus viewed as a generalization
the OSF result for the bending as well as stretching mod
Since in the presence of the intersegment interactionsD is a
function of dl we have a highly nonlinear system of equ
tions to solve. The solution would give us simultaneously
renormalization of the bending as well as the stretch
moduli.

Without even solving this set of equations we alrea
know that the intersegment repulsions renormalize the be
ing and stretching moduli in the opposite directions, see
~22!. While the bending modulus increases, the stretch
modulus decreases. The intuitive physical reasons for
were already outlined in the Introduction. This resolves co
pletely the conundrum observed in experimental studies
DNA stretching and bending elasticity.8
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One can furthermore examine the relation betwe
renormalized, in effect measured, bending and stretch
moduli in more detail. For theirbare values we should have
from the standard macroscopic theory of elasticity6 the result

KC5 1
4lR2, ~31!

whereR is the radius of the molecule~for DNA R is between
10 Å and 4 Å, corresponding to phosphate and major gro
radii!. Obviously for the renormalized valuesKC

(R) andl (R)

this relation does not hold anymore. Instead we obtain
following relation between renormalized stretching a
renormalized bending moduli

KC
(R)5

1

4
l (R)R21

kTlB
4D2~ka!2

3~112~kR!2D~e2kb2Ei~2kb!!!. ~32!

The relation Eq.~31! is thus valid only asymptotically as th
range and/or the magnitude of interactions becomes v
small. Any polyelectrolyte in the range of conditions whe
Eq. ~27! is valid should thus behave as a classical mac
scopic cylinder if we take the coupled bending–stretch
moduli renormalization due to the intersegment interactio
properly into account.

VII. COMPARISON WITH EXPERIMENT

We can now fit the expressions Eq.~28! to the recent
experiments by Baumannet al.8 where they measure the s
multaneous dependence of the bending as well as stretc
moduli of DNA on the ionic strength in a uni-univalent ele
trolyte. The renormalized moduli for different values of th
added univalent electrolyte are extracted from the fit of
experimental entropic and stretched regimes to the equa
of state Eq.~26!, just below the overstretching transition.

Fitting the dependence of the renormalized bending
stretching moduli on the inverse Debye screening length
Eqs.~28!, we can obtain both the bare bending and stretch
moduli as well as the inverse line charge densitya. Unbiased
fits give for the bare elastic modulus 2.13104 pN Å2 ~cor-
responding tol P55004 Å! and the bare stretching modulu
l51261pN. The values of the two bare moduli are com
pletely consistent with Eq.~31! considering the fact that fo
DNA the radiusR lies somewhere between the outer pho
phate radius (;10 Å! and the inner radius of the groove
(;4 Å!. The microscopic cutoffb obtained from the fit is
4.8 Å which is also within the physically expected range.

From the fit to Eq.~28! we also obtain a consistent est
mate~in the sense that it should fitboth the stretching as wel
as the bending modulus data, this being a quite severe
striction on the possible values of this parameter! for a
;1.8 Å. This estimate is not particularly accurate because
the large scatter present in the data~see Fig. 3! and because
of the number of the fitting parameters. The experimen
scatter is probably due to the fact that the regime betw
entropic and enthalpic stretching is quite narrow and a r
able estimate for the stretching modulus which can o
come from this regime is thus difficult to obtain. Exper
ments are currently under way to gather a much more ac
rate set of data for the two elastic moduli.14
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While it is obvious~see Fig. 3! that our fit closely de-
scribes experimental data for the bending modulus in
whole range of experimentally accessible ionic strengths
fails to describe the stretch modulus data even qualitativ
at ionic strengths below 0.05 M. We connect this deficien
of our theory to the fact that the stretching modulus ren
malization is very sensitive to the short range behavior of
intersegment interaction potential which at these low s
cannot be expected to be accurately given via the asymp
form Eq. ~27!.

VIII. DISCUSSION

The theory presented above giving the stretching
bending moduli renormalization in the presence of lo
range intersegment interactions seems to work reason
well when compared to experiments performed at not
low ionic strengths~above 50 mM univalent salt!. There are
nevertheless several caveats that one should keep in mi

First of all the result Eq.~28! is formally valid only in
the limit of either a very stiff chain or very large extern

FIG. 3. Experimental points taken from Table I of Baumannet al. ~Ref. 8!
and fits using the functional form of the ionic strength dependence f
Eq. ~28!, wherel P

(R)5 l P1dKC /kT andl (R)5l2dl. s are the measure-
ments of persistence length~left scale!, h are the measurements of th
stretch modulus~right scale! for ionic strengths between 1.86 and 586mM.
The functional form of the persistence length fits the experimental dat
the whole regime of experimentally accessible salt concentrations. The f
tional form of the stretching modulus renormalization ceases to cap
main features of the experiment below about 50mM salt. The dotted curve
represents the standard OSF result~Ref. 4! for the persistence length depen
dence on the ionic strength.
e
it
ly
y
-
e
ts
tic

d

ly
o

.

tension. If the stiffness or the tension are finite, we know10

that the extended configuration of the chain lying at the b
tom of the Monge-like parameterization is unstable aga
thermal fluctuations. Nevertheless the OSF limit appears
be stable15 even in the regime of vanishing stretching and w
expect~without any proof at this point! that the renormaliza-
tions Eqs.~28! will remain likewise. It would nevertheless b
appropriate to derive a more sophisticated theory,15 some-
what along the lines of Ref. 9 but without the unstretchabil
constraint, that would be able to describe the equation
state for a stretchable self interacting semiflexible polym
chain for the whole range of stretching forces.

When calculating the fluctuation contribution to the fr
energy we assumed thatB(z,z8) andg(z,z8) are still given
by their mean field expressions, Eqs.~15!. There is indeed a
fluctuation contribution to the auxiliary fields but it is i
general small and would not fundamentally change the
sults derived above. It would however make the numer
more cumbersome.

The numbers extracted for the effective charge den
along DNA bear no resemblance to the Manning the
where the value appropriate for the effective spacing
tween the charges isa;7 Å. However, one should take int
account the fact that elastic moduli renormalizations dep
on the global properties of the interaction potential and
order to extract more realistic values of the interaction
rameters one should realize the limits of theansatzEq. ~27!,
once the ionic strength is low enough and/or the separa
between the interacting segments small enough. For
salts, approaching counterion-only conditions, the nature
electrostatic interactions between segments of a polyelec
lyte chain is quite different from the one described by E
~27!. Correlation effects can even reverse the sign of
electrostatic interactions, making them attractive, and t
have a completely different effect on the elastic modu16

from those studied in the framework of our theory. It see
quite plausible that for low salts, where the discrepancy
tween our calculations and experiments begins to show
these type of correlation effects will start to play an impo
tant role in determining the renormalization of the stretch
modulus that is more dependent on the short distance be
ior of the interaction potential then the bending modulus.

The experimental numbers~see Fig. 3! for the change in
stretching modulus as a function of the ionic strength of
bathing solution indicate that the limit of linear elasticity
almost reached if not surpassed for low enough salts and
our theoretical results should be viewed upon strictly a
limiting law, valid exactly only for large added salt conce
trations where one has small renormalizations of both ela
moduli. This caveat applies just as well to the interpretat
of the experimental data themselves. There too one sh
keep in mind the possibility that nonlinear elastic effec
could modify the equation of state and could specifica
make the straightforward interpretation in terms of the line
stretching modulus less straightforward than it seem

in
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Apart from all these shortcomings and problems we n
ertheless advocate a fundamental change in the perspe
regarding the dependence of elastic moduli of DNA on
ionic conditions. Not only does the persistence length dep
on solution salt conditions but so does the stretching mo
lus. A mere glance at the experimental data in Fig. 3
enough to convince one that the stretching modulus re
malization due to electrostatic interactions is essential
understanding the behavior of flexible charged polymers
electrolyte solutions. These two interaction renormalizatio
of the elastic moduli couple them in a different way th
expected on the basis of a naive application of the class
elasticity theory, restoring in its turn the validity of the cla
sical theory of elasticity for DNA if it is consistently gene
alized to take into account the long ranged intersegmen
teractions along the polymer contour. We believe that fut
work on the elasticity of DNA and similar~bio!polymers will
have to take this fact into account.
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