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We present a personal view on the current state of statistical mechanics of Coulomb fluids with
special emphasis on the interactions between macromolecular surfaces, concentrating on the weak
and the strong coupling limits. Both are introduced for a (primitive) counterion-only system in the
presence of macroscopic, uniformly charged boundaries, where they can be derived systematically.
Later we show how this formalism can be generalized to the cases with additional characteristic
length scales that introduce new coupling parameters into the problem. These cases most notably
include asymmetric ionic mixtures with mono- and multivalent ions that couple differently to charged
surfaces, ions with internal charge (multipolar) structure and finite static polarizability, where weak
and strong coupling limits can be constructed by analogy with the counterion-only case and lead to
important new insights into their properties that cannot be derived by any other means. © 2013 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4824681]

I. INTRODUCTION

A Coulomb fluid refers specifically to any mobile (ther-
malized) collection of charges, which interact via Coulomb
interactions. These charges may be small ions (such as Na+

and Ca2 + with sizes around 0.1 nm), ions with internal struc-
ture (such as the rod-like spermine and spermidine ions with
sizes around a nanometer) as well as charged nano-particles
and macromolecules (such as proteins, colloids, polymers,
and membranes), which are typically immersed in an aque-
ous solvent, as is the case in soft- and bio-matter context.1–8

Macromolecular surfaces get charged mainly due to the dis-
sociation of their surface chemical groups in the solvent; this
process releases small ions (referred to as co- and counterions
depending on the sign of their charge with respect to that of
the surface) into the solution. The type, magnitude, and the
particular distribution of surface charges and those of the re-
sulting mobile ions depend also on the specific chemistry of
the surface as well as a number of other key factors including,
among other things, the pH, temperature, dielectric properties
or, in general, the specific molecular properties of the solvent.
Once dissolved, these mobile charges mediate the interactions
between macromolecular surfaces.

The presence of Coulomb fluids can significantly al-
ter electrostatic interactions of charged (bounding) sur-
faces and modify the behavior of charged macromolecular
dispersions.1–6 The role of Coulomb fluids can be so drastic
that, as evidenced by numerous experimental and theoretical
investigations over the last several years,9–123 it can challenge
our understanding of electrostatic effects as demonstrated
by non-conventional phenomena such as electrostatic attrac-
tion between like-charged surfaces, especially when multi-

valent ions (or counterions) are present in the system. Like-
charge attraction is manifested in many experimental ex-
amples; a few notable cases include formation of large ag-
gregates of like-charged polymers such as microtubules115

and F-actin18, 21 as well as formation of large condensates
of DNA in the bulk12, 116–118 and in the DNA packaging
inside viral shells that are observed in the presence of
multivalent cations.119–123 Similarly, numerous numerical
simulations have already demonstrated the emergence of like-
charge attraction and investigated its underlying mechanism
in many examples including charged membranes, colloids,
and polymers.23–61

All major theoretical proposals that aim to explain the
phenomenon of like-charge attraction go beyond the standard
mean-field or Poisson-Boltzmann (PB) theories, which have
been studied since the early years of the last century,1–3 by
including the effects of electrostatic fluctuations and cor-
relations that are neglected in the description of Coulomb
fluids on the mean-field level. These proposals include
integral-equation methods (see, e.g., Refs. 29, 62, and 63),
perturbative improvement of the mean-field theory including
loop expansions and other Gaussian-fluctuations approxima-
tions (see, e.g., Refs. 64–78), variational methods (see, e.g.,
Refs. 79–82), and local density functional theory (see, e.g.,
Refs. 83 and 84). These approaches turn out to be applica-
ble mostly at large separations between charged surfaces or,
generally, for relatively small coupling (and/or electrostatic
correlation) strengths. This regime is known as the weak-
coupling (WC) or “high-temperature” regime. A complemen-
tary strong-coupling (SC) or “low-temperature” approach was
pioneered by Rouzina and Bloomfield86 based on the obser-
vation that counterions tend to form two-dimensional strongly
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FIG. 1. Schematic representation of some of possible generalizations of the
primitive “counterion-only” model as considered in this paper. It shows a
system of large (mobile) multivalent ions (shown by red spheres), which may
possess an internal structure (e.g., a rod-like shape or a static polarizability)
and may be dispersed in a bathing solution of monovalent anions and cations
in the background (shown by blue and orange spheres, respectively).

correlated layers at oppositely charged bounding surfaces
when the coupling parameter is large. Such structural corre-
lations can lead to dominant attractive forces of mainly en-
ergetic origin between like-charged surfaces that have been
studied by means of several different theoretical approaches
in recent years (see, e.g., Refs. 45–52, 58–60, and 88–100).

For a Coulomb fluid consisting of only a single charge
species next to oppositely charged boundaries (the so-called
“counterion-only” model), the WC and SC coupling theories
were shown to follow systematically as two limiting laws
of a single unified formalism,94 a view that was completely
corroborated by extensive numerical simulations (see, e.g.,
Refs. 42–59) or available exact solutions.124, 125

In what follows, we provide a guided personalized tour of
recent advances in the theory of Coulomb fluids by reviewing
various aspects of the WC-SC paradigm within the primitive
counterion-only model. We then discuss how this framework
can be generalized to derive powerful limiting laws for more
complicated, but also more realistic models of Coulomb flu-
ids with additional characteristic length scales (coupling pa-
rameters) than envisioned in the original framework of the
WC-SC dichotomy; most notably, asymmetric ionic mixtures
with mono- and multivalent ions, ions with internal multipo-
lar structure, and finite static polarizability next to charged
bounding surfaces (see Fig. 1).

II. COULOMB FLUIDS: GENERAL CONSIDERATIONS

A. The primitive model

The stated features of Coulomb fluids make a full un-
derstanding of the equilibrium properties of charged macro-
molecular systems quite difficult and many aspects of real
systems have been either neglected (depending on the par-
ticular case or the application under investigation) or heavily
approximated, often though with reasonable justification. Per-
haps the most simple and yet efficient idealization is the so-
called primitive model where solvent is treated as a feature-
less continuum of a fixed dielectric constant ε stemming from
the degrees of freedom associated with the solvent molecules;
small mobile ions are taken to be featureless and character-
ized only by their charge, without any internal structure and/or

polarizability. Furthermore, macromolecules or other macro-
scopic surfaces are often treated as objects with a fixed uni-
form charge distribution (see Fig. 1).

A great deal of theoretical effort has been devoted
recently to improve upon these simplifying assumptions,
in particular regarding the solvent structure (see, e.g.,
Refs. 1, 6, 126–130, and references therein) and the po-
larizability and internal structure of mobile ions as con-
ceived by Debye131 (see, e.g., Refs. 132–137 and references
therein), etc. Unfortunately, many of these interesting devel-
opments such as ionic liquids,138–140 surface ion-adsorption
effects,141, 142 the discreteness, and/or heterogeneity of the
surface charge distribution (see, e.g., Refs. 143–156 and refer-
ence therein), pH-controlled charge regulation,157–161 many-
body interactions,162, 163 or Bjerrum pair formation164–166

must remain outside the domain of this review. Even on the
level of the above simplified model assumptions, the under-
lying physics of the Coulomb fluids exhibits conceptual chal-
lenges and intriguing results, which have only recently been
corroborated by computer simulations and, less often, experi-
mental evidence.

B. Physical scales and parameters

Of the plethora of possible length scales (associated with
electric charges, van der Waals (vdW) or chemical bonding
energies, ion sizes, solvent molecular size, or spacing between
discrete surface charges, etc., see Ref. 7), one can argue that
within the primitive model discussed above only a few will be
important.

The thermal energy kBT = β−1 can be compared
with inter-ionic Coulomb interactions (e.g., for two ele-
mentary charges e0), giving rise to the Bjerrum length
�B = e2

0/(4πεε0kBT ), with gas-like behavior for small and
liquid- or solid-like behavior for large �B. For an ionic fluid
consisting of ions (counterions) of charge valency q at a
charged interface of uniform surface charge density −σe0,
the Gouy-Chapman length μ = 1/(2πq�B|σ |) determines the
strength of the thermal energy with respect to the electro-
static interaction (attraction) with the surface (we assume that
q > 0 and −σ < 0 with no loss of generality). The neutraliz-
ing counterions next to a charged surface are thus expected to
form a diffuse gas-like phase when the electrostatic coupling
parameter, defined as the ratio

� = q2�B/μ = 2πq3�2
B|σ |, (1)

is small, i.e., � � 1. In the opposite situation with large � �
1, one observes a very different behavior,44–46, 50–52, 90–95, 99, 100

see Fig. 2, where the ionic cloud is reduced from a three-
dimensional (3D) layer to a quasi-two-dimensional (2D)
sheet. For � � 1, the mean separation between counteri-
ons, which follows from the local electroneutrality condi-
tion as a⊥ ∼ √

q/|σ | ∼ μ
√

�, is much bigger than the thick-
ness of the surface (counterion) layer given by μ. Conjointly
with the surface-counterion interaction, the inter-counterion
repulsions, q2�B/a⊥ ∼ √

�, also dominate the thermal en-
ergy. Therefore, increasing � engenders a strongly correlated
liquid, or even a crystalline phase of counterions, in the limit
� → ∞.
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FIG. 2. An extended 3D counterion layer in the WC regime, � � 1, reduces to a quasi-2D layer in the SC regime, � � 1, upon increasing the coupling
parameter (from left to right). In the limit of � → ∞, a single-particle description becomes relevant because of large correlation holes, a⊥ → ∞, forming
around individual counterions.

This picture follows from extensive Monte-Carlo (MC)
simulations,44–47, 50, 51 which show that the crossover from the
WC regime (� � 1) to the SC regime (� � 1) is associated
with a hump in the heat capacity of the system and develop-
ment of short-range correlations between counterions in the
range 10 < � < 100. The transition to a Wigner crystalline
phase (characterized by a diverging heat capacity) then occurs
at a very large value of the coupling parameter around � 	 3
× 104.8, 44–46

The WC-SC paradigm was derived from a functional-
integral (field-theoretic) representation of the partition func-
tion directly and systematically only in the case of the prim-
itive counterion-only model.94 The presence of additional
mobile charge components, surface charge heterogeneity or
mobile ion multipolar structure, and/or polarizability intro-
duces new length scales and thus new coupling parameters
into the problem. Nevertheless, one can always identify a
principal coupling parameter, in analogy to the counterion-
only case, that implies a SC-like fixed point. The thusly de-
fined SC fixed point then displays a fine structure and can
bifurcate into other strongly coupled states governed by these
additional length scales and the ensuing coupling parameters.
In what follows, we will discuss a few illuminating examples
(see Fig. 1) displaying the salient features of this approach
and its main results.

III. FIELD THEORY AND THE WC-SC PARADIGM
IN THE COUNTERION-ONLY MODEL

The preceding observations suggest that the WC and
the SC regimes should follow as complementary descriptions
from a single, unified formalism. This clearly transpires from
the field-theoretic approach to Coulomb fluids,66, 67, 78, 94, 167

wherein the WC and the SC limits can indeed be derived
as asymptotic theories from a single ansatz for � → 0 and
� → ∞, respectively.94

In general, the Hubbard-Stratonovich transformation al-
lows the partition function of the primitive model to be
mapped exactly to a functional integral over a fluctuating
(electrostatic) potential, φ(r),66, 67, 78, 94, 167 as

Z =
∫
Dφ e−βS[φ], (2)

where the effective “field-action” can be written (up to a
“self-energy” prefactor, which we ignore here, see, e.g.,

Refs. 53–55, 66, 67, 78, and 94) as

S[φ] = 1

2

∫∫
drdr′φ(r)u−1(r, r′)φ(r′) + i

∫
dr ρ0(r)φ(r)

−
∫

drU(φ(r)) = S0[φ(r)] −
∫

drU(φ(r)), (3)

where the Coulomb interaction is u(r, r′) = 1/(4πεε0

|r − r′|) and its kernel (operator inverse) u−1(r, r′) = −ε0∇ ·
ε(r)∇δ(r − r′). The fixed external (macromolecular) charge
distribution is described by ρ0(r) and is assumed, for fur-
ther specification, to be distributed on planar surfaces with
either one plate (placed at z = 0) or two plane-parallel sur-
faces (placed at z = −a and z = +a, i.e., at separation dis-
tance D = 2a along the z axis) with a uniform surface charge
density of −σe0. In addition, the system can exhibit a non-
trivial spatial dielectric constant profile ε(r). The model of
the Coulomb fluid is embodied in the generally non-linear
“field self-interaction” term U(φ(r)). The presence of these
nonlinear field self-interactions renders an exact evaluation of
the partition function difficult, except in a few special cases
(for such exact solutions, see, e.g., Refs. 124 and 125 and ref-
erences therein). Nonetheless, remarkable analytical progress
has been made in analyzing the behavior of such systems, es-
pecially in the cases that go beyond the usual WC-SC frame-
work (see, e.g., Refs. 53–55, 94, 133, and 134).

In the counterion-only model, one assumes that only
counterions of charge valency q are present in the system
and exactly neutralize the fixed charges. Although this model
may be inapplicable in most real situations, it has neverthe-
less served as a useful paradigm, elucidating fundamental
aspects of the WC-SC dichotomy. In this context, the field
self-interaction is obtained in the grand-canonical ensemble
as66, 67, 94

U(φ(r)) = λ�(r)e−iβqe0φ ≡ λ Ũ(φ(r)). (4)

Here, λ is the fugacity of counterions and the “blip” func-
tion �(r) defines the region of space allowed to the mobile
counterions (i.e., it is equal to one in the region where coun-
terions are allowed to be present and zero elsewhere). The
functional integral can be cast in a dimensionless form that
depends on only one parameter, i.e., �.94 The WC-SC limits
then follow directly from appropriate evaluations of the parti-
tion function.94
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A. WC theory: Mean-field theory and weak
fluctuations

The WC limit, � → 0, for this model is obtained by solv-
ing the saddle-point equation of the field-action,66, 67, 94

δS[φ]

δφ

∣∣∣∣
iφ=ψPB

= 0, (5)

which governs the mean (real-valued) electrostatic potential
ψPB(r) = i〈φ(r)〉 and leads to the standard PB equation

− ε0∇ · [ε(r)∇ψPB(r)] = ρ0(r) + qe0λ �(r) e−βqe0ψPB(r),

(6)
with Neumann boundary conditions at the charged interfaces.
For one or two planar surfaces, the dielectric discontinuity
at the bounding surfaces plays no role and the above equa-
tion leads to the standard Gouy-Chapman theory of electrical
double layers1–6 with ψPB(r) = ψPB(z). The corresponding
expressions for the counterion density profile nPB(z) and the
disjoining pressure PPB imparted by the counterions on the
bounding surfaces are well known,4, 5 with the latter obtained
from the contact-value theorem168–170 through the counterion
density at the mid-plane z = 0. This leads to the following
asymptotic form for large D = 2a:

PPB(D) = kBT nPB(z; D)

∣∣∣∣∣
z=0

	 kBT

q2�BD2

∣∣∣∣∣
D→∞

, (7)

which clearly shows that the PB pressure at large separations
is independent of σ , has an entropic origin, and is thus re-
pulsive. Quite generally, it can be proven that the disjoining
pressure within the PB theory is always repulsive, regardless
of the shape of the charged surfaces as long as the boundary
conditions are symmetric.171–173

The PB equation is exact in the strict limit of � → 0
and has been applied successfully to study weakly charged
systems.1–5 When � is finite but small, one expects subdomi-
nant Gaussian fluctuations to occur around the PB solution,
φ = −iψPB + ϕ. These fluctuations are described by the
field-action

S[φ] 	 S[−iψPB]

+1

2

∫
dr dr′ ϕ(r)ϕ(r′)

δ2S[φ]

δφ(r)δφ(r′)

∣∣∣∣∣
φ=−iψPB

+ O(ϕ3),

(8)

and lead to small deviations from the PB pressure. The total
WC pressure can then be written as

PWC(D) = PPB(D) + � P1(D) + O(�2), (9)

where P1 is the Gaussian (one-loop) correction around
the mean-field solution, analogous to vdW-type
interactions66, 67, 78, 94, 174 and is thus attractive, P1 < 0.
For two like-charged surfaces,

� P1(D) ∼ −kBT
lnD

D3

∣∣∣∣∣
D→∞

. (10)

which has a similar algebraic dependence on D as in the case
of the classical vdW force between neutral dielectrics, gen-
erated by the thermal fluctuations of the zero-frequency Mat-

subara modes of the electromagnetic field;174 in the present
case, however, the attractive correction is caused by the Gaus-
sian fluctuations around a non-uniform background defined by
the PB solution that produces also a logarithmic D-dependent
correction. It should be noted that in the WC regime the
fluctuation-induced attraction cannot overcome the repulsive
leading-order PB pressure, the total pressure thus remaining
repulsive.

In certain models that assume surface condensation or
adsorption of counterions on (fixed) charged boundaries,70–77

the repulsive mean-field effects are strongly suppressed and
the total pressure can eventually turn out to be attractive.
Such condensation behavior cannot occur within the primi-
tive model with purely Coulombic interactions and may occur
only if one takes into account non-electrostatic surface effects
going beyond the models considered here.

B. SC theory

As shown by Netz,94 a systematic description for the
SC limit follows from the same field-theoretic formalism that
yields the PB equation in the limit � → 0, provided that one
takes the limit of � → ∞. In this case, one can perform a
fugacity (virial) expansion combined with a 1/� expansion,
the leading order of which was shown to be finite and given
by single-particle contributions only. Physically, since in this
limit the counterions are strongly attracted to the surface and
are isolated in large correlation holes (of size ∼ a⊥) surround-
ing them, the partition function of the system is expected to be
dominated by single-particle contributions from the interac-
tion between counterions and charged surfaces. To the lowest
order, one finds

ZSC = Z (0)
SC + λZ (1)

SC + O(λ2), (11)

where the first term involves only S0[φ(r)] of (3) due to exter-
nal charges, while

Z (1)
SC

/
Z (0)

SC =
∫

dr �(r) e−βe0q
∫

dr′ u(r,r′)ρ0(r′), (12)

is the single-ion partition function in the field of external
charges (note the grand-canonical formalism, which can be
transformed back to a canonical description involving N parti-
cles by a Legendre transform;94 the number of particles in this
case is fixed by the electroneutrality condition). As discussed
in Sec. II B, counterion-counterion interactions are also very
strong in the limit � → ∞, but appear as subleading if com-
pared with counterion-surface contributions.

In the SC limit and for two like-charged bounding sur-
faces, the disjoining pressure can be expressed to the leading-
order as94

PSC(D) = − σ 2

2εε0
+

(
2|σ |
q

)
kBT

D
. (13)

It is easy to see that the first term follows from the electro-
static energy of individual counterions sandwiched between
two equally charged surfaces, leading to an attractive pres-
sure, while the repulsive second term is clearly nothing but
the ideal-gas entropy of the counterions confined to the slit
between the surfaces. In fact, as noted above in the SC limit,
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the counterions are isolated in correlation holes of size a⊥
so that |σ |a2

⊥ ∼ q, and hence the energetic repulsion be-
tween the two like-charged surfaces is overcompensated by
the attraction between them and the individual counterion
in between in such a way that it changes the sign of the
pressure!50, 51, 94

The above result holds for small separations D < a⊥
or equivalently, D/μ <

√
�. Within the regime of valid-

ity of the SC limit, one recovers both the repulsive regime
for D < D∗ and the attractive regime for D > D∗, where
D∗ = 2μ is the separation at which the total force acting on
the surfaces vanishes, as confirmed by MC simulations44–46

(this argument needs to be amended in the case where di-
electric inhomogeneities are present in the system, see, e.g.,
Refs. 44–46, 54, and 55 and references therein).

C. Crossover from WC to SC limit

For separation distances larger than the correlation hole
size or at smaller coupling parameters, one needs to account
for the higher order terms in the SC expansion. Even though
the single-particle SC limit appears to work very well for cou-
pling parameters down to � ∼ 100 (corresponding, e.g., to
DNA with trivalent counterions), the perturbative expansion
turns out to be very inefficient and can hardly be extended into
the so-called crossover regime, i.e., 10 < � < 100.50, 51 This
regime remains accessible fully only through simulations. De-
spite the challenging nature of correlations in this regime,
Santangelo,97 Weeks et al.,58, 59 and others60, 98 have shown
that approximations based on the decomposition method used
within the liquid-state theories can be applied with reasonable
success. Also a test-charge theory developed by Burak et al.96

seems to capture the onset of correlations and provide very
useful insights into the crossover behavior of the counterion-
only system.

Another approach to study counterion-only systems in
the limit of large couplings has been proposed by consider-
ing the ground-state structure of the system in the limit T
→ 0.86, 91 It should be noted that this latter limit does not
in general coincide with the SC limit, which is based on a
combined virial and 1/� expansion. The virial approach leads
to finite entropic (temperature) corrections at the leading or-
der (e.g., the second term in Eq. (13)) and deviations have
been reported for the subleading corrections calculated from
ground-state considerations and those obtained from the virial
approach.99, 100

We should also note that modified PB equations are
sometimes invoked as ad hoc generalizations of the standard
PB theory that include the ion excluded-volume term and the
so-called fluctuation potential.175, 176 While these kinds of the-
ories certainly describe some features of steric and correlation
interactions inaccessible to the standard PB theory, they can-
not be viewed as a limiting law in the sense that it follows
systematically from a single unified formalism valid in both
the weak and the strong coupling limit.

IV. GENERALIZATIONS OF THE WC-SC PARADIGM

In the original form,46, 50, 51, 94 the WC and SC dichotomy
applies only to a counterion-only system confined by uni-

formly charged surfaces, a situation of profound theoretical
significance but seldom encountered in the real world. While
the WC limit, through its correspondence with the saddle-
point equation, can be defined for any field-action, the ex-
istence of additional length scales, besides the Bjerrum and
the Gouy-Chapman ones, precludes a direct introduction of
a unique electrostatic coupling parameter and consequently a
systematic derivation of the SC limit with its virial expansion.

In this case, however, one can generalize not the SC the-
ory itself, but the single-particle aspect of the SC limit, which
can be then applied to any system that contains highly charged
species, irrespective of the number of governing length scales
(see, e.g., Refs. 42, 43, 48, 49, 53, 54, 103, 133, 134, and
149). The approach is reasonable because the highly charged
ions are usually present only in small concentrations and
thus a virial expansion, of which the single-particle limit is
the lowest order, makes sense. In addition, the single-particle
SC limit has been tested against detailed simulations and its
regime of applicability is determined for any particular case.

In quite general context, for any field-action, one could
thus derive a saddle-point theory as a substitute for the
WC limit and a single-particle theory as a substitute for
the SC limit. This is a powerful consequence of the field-
theoretic approach and can be applied even to the cases where
other approaches (such as those based on the ground-state
methods99, 100) are not necessarily applicable (e.g., asymmet-
ric ionic mixtures containing large amounts of monovalent
salt). This is what we will illustrate for a few interesting cases
detailed below.

A. Asymmetric ionic mixtures: Dressed
multivalent-ion approach

A particularly relevant case is that of a mixture of
multivalent ions in a bathing solution of monovalent ions
(Figs. 3(a) and 4). This is a typical situation in the for-
mation of liquid crystalline mesophases of semiflexible
biopolymers,21, 177, 178 multivalent-ion driven condensation of
DNA in the bulk,12, 116–120 or in viruses, where multivalent
ions are believed to play a key role in the stability of the viral
capsid and/or packaging of its genome.121–123

For an ionic mixture consisting of a single species of mul-
tivalent counterions (c) in a neutralizing background of mono-
valent anions (−) and cations (+), we have

U(φ(r)) = �(r)(λce−iβqe0φ + λ+e−iβe0φ + λ−eiβe0φ), (14)

which follows directly from the Hubbard-Stratonovich trans-
formation of the microscopic (Coulomb) Hamiltonian of the
system.53, 66, 67, 94 Here, λc and λ± are the respective ionic fu-
gacities, and the “blip” function �(r) is assumed to be the
same for all mobile species.

Obviously, in an asymmetric mixture, multivalent coun-
terions and monovalent ions are coupled to macromolecular
charges quite differently: multivalents strongly, while mono-
valents only weakly, as evident from their respective elec-
trostatic coupling parameters. This presents a challenging
problem as no single limit, neither WC nor SC will apply
to all of the components of the system.53 The saving grace
in this situation is the fact that usually multivalent ions are
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FIG. 3. (a) A mixture of multivalent counterions (red spheres) in a bathing solution of monovalent salt ions (blue and orange spheres); the former are strongly
and the latter are weakly coupled to external (surface) charges. The monovalent ions can be integrated out from the explicit microscopic model (left) in the
case of a highly asymmetric mixture (with highly charged multivalent ions), giving rise to the effective dressed multivalent-ion model (right). (b) The rescaled
interaction pressure, p̃ = βPSC/2π�Bσ 2, as predicted by the dressed multivalent-ion theory, Eq. (18), is shown as a function of the rescaled half-distance
between the surfaces, ã = a/μ. It bridges between the pure osmotic regime of multivalent counterions (large κ) where the electrostatic interactions are screened
out and the SC theory for a counterion-only system (small κ), which exhibits attractive interaction between the like-charged surfaces for a wide range of
parameters (here shown for η = 1, i.e., when the total charge due to multivalent counterions exactly compensates the surface charges). (c) In the canonical
dressed multivalent-ion ensemble, there appears a non-monotonic behavior for the interaction pressure showing vdW-like loops, suggesting a coexistence
regime between two different phases. The phase coexistence region actually ends with a critical point (pc, ac). Adapted from Ref. 53.

present at very small concentrations, e.g., around just a few
mM (see, e.g., Refs. 116, 119, 120, 177, and 178), and thus
their behavior is expected to fit naturally within the virial
scheme based on an expansion in terms of their fugacity (bulk
concentration).

Additionally, in highly asymmetric solutions with q � 1
(e.g., with tri- and tetravalent counterions), the problem can
be furthermore greatly simplified by employing the following
approximation:53

U(φ(r)) 	 λc e−iβqe0φ − nb(βe0φ)2/2 + O(φ3) (15)

FIG. 4. Snapshot of an explicit MC simulation of a single (negatively)
charged surface with (positive) tetravalent counterions (red spheres) and
monovalent salt anions and cations (green and orange spheres); while the
former are strongly attracted toward the surface, the latter form an extended
DH-like atmosphere. (In this case, there is also a dielectric discontinuity at the
charged surface corresponding to that of the hydrocarbon/water interface.)

(in the region where the ions are present �(r) = 1), where
nb = 2n0 + qc0, assuming that the multivalent counterions
result from a q:1 salt of bulk concentration c0, which is mixed
with a 1:1 salt of bulk concentration n0; hence, λc = c0, λ+
= n0, and λ− = n0 + qc0 (note that the multivalent salt con-
tributes an additional amount of monovalent ions with con-
centration qc0).

From this form, it is clear that the degrees of freedom
due to monovalent ions can be integrated out, resulting in
an effective formalism including only screened interactions
between the remaining “dressed” multivalent ions and fixed
macromolecular charges.53–55 This follows from the first term
of the field-action S0[φ(r)], Eq. (3), and the quadratic term in
the above expansion. In other words, the effective field-action
of the system is given by

S[φ] 	 SDH[φ] + λc

∫
dr �(r) e−iβqe0φ, (16)

where SDH[φ] has the same form as S0[φ] except that
u−1(r, r′) is replaced by the screened Debye-Hückel (DH) ker-
nel u−1

DH(r, r′) = −ε0[∇ · ε(r)∇ − ε(r)κ2]δ(r − r′), and the
inverse Debye length is introduced as κ2 = 4π�Bnb. Obvi-
ously, the multivalent ion concentration c0 introduces a new
parameter and new physics that goes beyond the simple DH
screening picture. The multivalent ion effects can be codified
by a new length scale defined as χ2 = 8πq2�Bc0,53–55 which
is analogous to the Debye length in the case of monovalent
salt.

We refer to the theory based on the field-action (16) as
the dressed multivalent-ion theory. The key point here is thus
that the above approach can be applied only to highly asym-
metric ionic mixture with q � 1.53 The regime of validity of
this approach can be checked against explicit-ion MC simula-
tions, where all ions, including the monovalent ones, are ex-
plicitly simulated (see Fig. 4), which show that this approach
can indeed give quantitatively accurate results in a wide range
of realistic parameter values.54, 55 This may not seem obvious
at first since the above approach treats the monovalent ions
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on the implicit DH level and one might thus expect strong
deviations to occur when multivalent ions are present in the
solution due, e.g., to nonlinear charge renormalization and/or
Bjerrum pairing effects;164–166 these effects, however, turn out
to be absent or negligible in the regime of parameters that is
of concern to our discussion.53–55

On the saddle-point level of the dressed multivalent-ion
field-action, the PB equation, Eq. (5), reads

−ε0[∇ · ε(r)∇ − ε(r)κ2]ψPB = ρ0 + qe0c0 �(r) e−βqe0ψPB .

(17)
The corresponding disjoining pressure is again consistently
repulsive for symmetric boundary conditions. The underlying
assumption here is that electrostatic correlations are zero and
thus all ions remain weakly coupled to each other and the
external fixed charges.

When c0 < n0/q2, one can furthermore develop a sim-
ple theory based on a virial expansion, which can cap-
ture the behavior of such asymmetric solutions in the limit
corresponding to a generalized SC limit, where multiva-
lent counterions are coupled strongly (to each other and the
external charges), while monovalent ions still remain weakly
coupled to other charge species. By inspection of the field-
action (16), the single-particle limit has exactly the same form
as Eq. (11), except that the screened DH potential replaces
the Coulomb interaction, i.e., u(r, r′) → uDH(r, r′). For a sin-
gle charged surface, the dressed multivalent-ion approach can
successfully predict the density profile of ions next to the sur-
face as well as the charge inversion induced by multivalent
counterions.54

For two apposed like-charged planar surfaces,53 the in-
teraction pressure behaves very differently if the dressed mul-
tivalent counterions are treated on the canonical (they are
not in chemical equilibrium with a bulk reservoir) or grand-
canonical level (in chemical equilibrium with the bulk).53 The
corresponding interaction pressure (within the canonical en-
semble for dressed multivalent counterions and assuming, for
the sake of simplicity, that the system is dielectrically homo-
geneous and that the monovalent salt ions are present both
inside and outside the slit) is then transformed from Eq. (13)
to

PSC(D) = (e0σ )2

2εε0
[e−κD + 2μη I ′(D)/I (D)], (18)

where η = (Nq)/2|σ |S is the amount of multivalent counteri-
ons in the slit between the surfaces relative to the total surface
charge and I (D = 2a) = ∫ a

−a
exp((2/κμ) e−κa cosh κz) dz.

The case η = 0 represents a system with salt only and the
DH theory is recovered, whereas η = 1 is the case when the
total charge due to counterions exactly compensates the sur-
face charges; the counterion-only SC theory discussed above
can be recovered within this latter case by letting κ → 0, see
Fig. 3(b). This again illustrates that the dressed multivalent-
ion theory can bridge between the standard WC and SC lim-
its. For multivalent dressed counterions within the canonical
description, the interaction pressure can even become non-
monotonic, displaying repulsive branches at small and large
inter-surface separations,54 see Figs. 3(b) and 3(c). In fact,

for certain values of the parameters, the interaction pressure
shows vdW-like loops, which could suggest a coexistence
regime between two different phases, see Fig. 3(c). The bin-
odal or the coexistence curve actually ends with a critical
point corresponding to the largest amount of salt in the system
that still leads to a non-monotonic dependence of the pressure
on the inter-surface separation.

The dressed multivalent-ion approach can also give an in-
sight into attractive image-induced depletion forces between
two neutral dielectric walls.55 These forces arise as a result of
expulsion of multivalent ions from the vicinity of the walls in
the slit region in the situation where the two dielectric walls
have a dielectric constants smaller than that of water in the
slit, as is typically the case. In this case, the dielectric im-
age charges of individual ions have the same sign as the ions
themselves and so are repelled from one another, pushing the
mobile ions from the slit region back to the bulk solution.
Subsequently, this effect leads to a lower osmotic pressure
acting on the walls from the ionic solution in the slit, and
hence eventually a net inter-surface attraction between the
walls due to the bulk osmotic pressure that pushes the surfaces
together. Such depletion-induced forces become important at
small inter-surface separations, where they can even be com-
parable to or stronger than the usual vdW forces as confirmed
also by explicit-ion simulations.55 Similar attractive interac-
tions can appear in the absence of dielectric discontinuities,
albeit they are smaller; namely, in the close proximity of the
walls, the multivalent ions are stripped off their “counterion
clouds,” leading to an increase of the excess chemical poten-
tial, and thus a decrease of the ideal part (i.e., the density of
multivalent ions).

The polarization depletion mechanism,179, 180 such as
the one described above, shows a generic similarity with
the depletion-induced effects in polymer solutions.181 In the
present case, however, one should note that the depletion is
a consequence of strong correlations between individual ions
and their image charges, which turn out to be the dominant
leading-order effect in the case of neutral surfaces with mul-
tivalent ions, and thus, as such, can be described analytically
within the dressed multivalent-ion approach (see Ref. 55 for
more details).

B. Ions with internal charge structure

Multivalent mobile ions are not always describable by
simple point-like monopolar charge structure.133 Some struc-
tured counterions can be described with a dipolar182, 183 or
quadrupolar184, 185 charge distribution, which introduce ad-
ditional features in electrostatic interactions that are quite
distinct from the standard PB framework. The rigid inter-
nal structure of a single counterion can be described by a
charge distribution ρ̂(r; R,ω), where R gives the location of
the counterion and ω are the orientational variables specify-
ing the angular dependence of the counterion charge distri-
bution. Here, we shall focus on the case of uniaxial coun-
terions corresponding, e.g., to mobile charged particles of
rod-like structure such as spermine or spermidine. In this
case, the charge distribution ρ̂(r; R,ω) can be expanded in a
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FIG. 5. Counterions can have an internal structure, such as a rod-like
quadrupolar charge distribution (top). For rod-like counterions with non-zero
monopolar and quadrupolar moments, the orientational order parameter in
the WC limit (bottom, right) indicates preferred orientation perpendicular to
the bounding surfaces, whereas in the SC limit (bottom, left) the counterions
are preferably aligned parallel to the bounding surfaces.

standard multipolar series

ρ̂(r; R,ω) = e0qδ(r − R) − p0(n · ∇)δ(r − R)

+ t0(n · ∇)2δ(r − R) + · · · , (19)

where e0q is the monopolar moment of each counterion, p
= p0 n is its dipolar moment, and Q = t0 n ⊗ n its uniaxial
quadrupolar moment with director unit vector n. One possible
example where only the monopolar and quadrupolar moments
are non-zero is a uniformly charged rod with total charge e0q
and length l for which t0 = e0ql2/24. Another possible case
is a rod-like configuration with a negative charge (−e2) in the
center and two positive charges (+e1) located at both ends of
the rod, giving e0q = 2e1 − e2 and t0 = e1l2, respectively (see
Fig. 5, top).

Assuming for simplicity that the system is again com-
posed of counterions only and that these mobile counterions
have a complicated internal charge distribution ρ̂(r; R,ω), the
field self-interaction in the partition function (see Eq. (3)) can
be derived as133

U(φ(r)) = λ

∫
dω �(r) exp

(
iβ

∫
dr′ρ̂(r′; r,ω)φ(r′)

)
,

(20)

where λ is the fugacity of counterions. The WC limit is ob-
tained from the saddle point approximation and the SC limit
by the lowest order virial expansion corresponding to a single-
particle limit. Though in this case the field-action contains
more length scales than one, corresponding to the internal

structure of the counterions with in general q, p0, and t0 all
having distinct values, one can identify a principal coupling
parameter, in analogy to the primitive counterion-only model,
that implies a SC-like fixed point with a fine structure as a
consequence of these additional length scales.

The WC limit for a system of rod-like counterions
bounded by two like-charged plane-parallel surfaces is then
given by a generalization of the PB equation that can be writ-
ten in dimensionless form as133

ψ ′′ = −1

2

∫ +1

−1
dx �(x, z)(u(z) − pxu′(z) + tx2u′′(z)),

(21)

where ψ is the dimensionless potential (i.e., actual potential
multiplied by βe0q), u(z) = C exp (−ψ − pxψ ′ − tx2ψ ′′)
and dimensionless multipolar moments p = p0/e0qμ and
t = t0/e0qμ2. Here, u(z) is proportional to the local orienta-
tionally dependent number density of the counterions. Since
we are not interested in steric effects, we can set the blip func-
tion to �(x, z) = 1 everywhere inside the slit between the two
surfaces. Furthermore, x = cos θ is an orientational variable,
where θ corresponds to the angle between the z-axis and the
director n. The integral over this variable gives the orienta-
tional average. The constant C is set by the boundary condi-
tions on the two bounding surfaces.

Numerical solutions of Eq. (21) show that increase of
the quadrupolar moment leads to a higher concentration of
counterions at the surfaces.133 This can be explained by in-
voking the potential energy of every quadrupolar particle in
electrostatic potential, proportional to the second derivative
of the mean-field potential, which in the symmetric case is
a concave function of the coordinate z. Thus the quadrupolar
force acts away from the center toward both surfaces. Further-
more, the orientational order parameter, S2 = 1

2 (3〈x2〉 − 1),
increases with increasing quadrupolar strength and is larger
at both surfaces than at the center, indicating that counterion
axes are preferentially aligned parallel to the z-axis and thus
perpendicular to the bounding surfaces in the WC limit (see
Fig. 5, bottom, right).

The SC limit is obtained by a virial expansion up to the
term linear in λ, corresponding to a single-particle partition
function.133 One can show that Z (0)

SC is again given by the first
term in Eq. (11) involving only electrostatic interactions be-
tween both charged surfaces, so that the multipolar nature of
the mobile ions is not important for this lowest order term.
It becomes, however, important at the next order, linear in λ,
which equals to

Z (1)
SC

/
Z (0)

SC =
∫∫

dR dω �(r)

× exp

[
− β

∫∫
drdr′ρ̂(r; R,ω)u(r, r′)ρ0(r′)

− 1
2β

∫∫
drdr′ρ̂(r; R,ω)u(r, r′)ρ̂(r′; R,ω)

]
.

(22)
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The interaction potential in this part of the partition func-
tion is in general composed of the direct and image elec-
trostatic interactions, i.e., u(r, r′) = u0(r, r′) + uim(r, r′),
if the bounding surfaces have a different dielectric permit-
tivity from the solvent. The second term in the exponent of
Eq. (22) gives the image self-interactions among monopolar,
dipolar, and quadrupolar moments (9 terms), whose explicit
forms have been calculated in Ref. 133. Note that, in general,
the self-energy contributions cannot be simply renormalized
away into the rescaled fugacity.78, 186

In the case of two charged plane-parallel surfaces with
uniform surface charge density, the electrostatic potential
does not depend on the z coordinate, is thus spatially homoge-
neous and given by σe0a/(εε0). Since all the terms in the den-
sity operator (19), except the first one, depend on spatial gra-
dients (derivatives), the counterion energy in a homogenous
external electrostatic potential depends only on the monopo-
lar (first) term. The corresponding energy of a counterion in
this electrostatic potential, i.e., the first term in the exponent
of (22) is then given by βqσe2

0a/(εε0). As for the self-energy
term (second term in the exponent of (22)), it only picks up
contributions from the z-dependent parts of the image self-
interaction, uim. Note that if there is no dielectric disconti-
nuity, so that uim(r, r′) = 0, this term is identically equal to
zero!

It then turns out that multipolar contributions (beyond
monopoles) in the SC free energy, βFSC = −lnZSC, enter
only via self-image interactions (see Ref. 133). Therefore, if
there is no dielectric discontinuity, the multipolar effects in
this limit vanish! Note that we have again assumed that the
blip function � does not depend on the coordinate z, thus
disregarding the possible entropic effects due to the finite
size and anisotropy in the shape of counterions,184, 185 which
would be relevant only for small inter-surface separation on
the order of the counterion size, where other competing inter-
actions, besides electrostatic, come into play as well.128, 187

As for the inter-surface interaction pressure in the SC
limit, the quadrupolar contribution can become negative (at-
tractive) due to dielectric image contributions. On increase of
the quadrupolar moment, the interaction becomes smaller and
is eventually overwhelmed by repulsive contributions. The

orientational order parameter in the SC limit indicates that the
counterions are preferably aligned perpendicular to the z-axis,
parallel with the surfaces (see Fig. 5, bottom, left), which is
contrary to the WC case. This is caused by strong quadrupole-
quadrupole image repulsion when there is a dielectric discon-
tinuity at the surfaces; otherwise, quadrupolar effects are nil
as discussed above. Therefore, in the plane-parallel geometry,
higher order multipoles in the internal structure of mobile ions
can play an important role, but only for a dielectrically inho-
mogeneous system, i.e., when the bounding surfaces and the
slit region possess different dielectric constants. Although, we
should also emphasize that multipolar effects can be present
if the charged surfaces are curved (and thus generate spatially
varying external potentials) even without dielectric disconti-
nuities, but these effects remain largely unexplored.

C. Polarizable ions—A two-parameter model

Apart from possible multipolar moments in addition to
the monopolar charge, we have been up to now dealing
with a one-parameter model of mobile (counter-)ions, as by
assumption they differ only in the amount of charge they
bear. Equally charged ions, such as Na+ and Li+, or Ca2+

and Mn2+, are thus indistinguishable and have no chemi-
cal identity. One possible generalization of this model is to
additionally characterize the ion with its excess static ionic
polarizability127, 128, 188–190 (see Fig. 6(a)), proportional to the
volume of the cavity created by the ion in the solvent. Static
excess ionic polarizability is then a second parameter that
differentiates between different, but equally charged ionic
species, and thus obviously introduces ionic specificity into
the theory. Excess ionic polarizability studies go all the way
back to the classical work by Debye on polar molecules.131

For a system composed of polarizable monopolar coun-
terions, the field self-interaction can be derived134 in the form
of Eq. (3), but with

U(φ(r)) = λ�(r) exp
[
−β

α

2
(∇φ(r))2 − iβqe0φ(r)

]
, (23)

where α is the excess polarizability of the counterions,
while other details of the model are the same as for a
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FIG. 6. (a) Counterion polarizability, α, introduces effective interactions between the counterions and the bounding surfaces. For negative excess polarizability,
these additional interactions seem to be strongly repulsive and long ranged. (b) The WC counterions density profile (in units of 2π�Bσ 2) as a function of the
rescaled position, z̃ = z/μ, in the slit is shown next to the left surface for rescaled inter-surface half-distance ã = a/μ = 2.5 and different polarizability values
α as indicated on the graph; here, the contribution from fluctuations around the mean-field solution is taken into account as well. (c) Same as (b), but here we
show the SC density profile for different α. A clear effective repulsion is seen. Adapted from Ref. 134.
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standard counterion-only system. The excess polarizability
is defined precisely as the difference between the aqueous
solvent polarizability and the proper ionic polarizability, and
may thus be negative.128, 131

One should note here that the partition function depends
on two parameters: the coupling constant � as well as the
polarizability α, i.e., it is a two-parameter function. These
two parameters can be introduced in the following way: we
first rewrite the electrostatic coupling constant (Eq. (1)) in the
form � = q2�B/μ = 2πq3�2

B|σ | ≡ q3�0, where we specif-
ically decomposed the coupling parameter into its q and σ

dependence. Then we introduce a rescaled polarizability that
represents an additional independent parameter of the theory
and is defined as α̃ = α(β/(βqe0μ)2). Also, instead of using
the excess polarizability, we can use the dielectric decrement
β̃ in units of inverse mole per liter (denoted by M−1),127 i.e.,
α = ε0β̃. The dielectric decrement for various salts is typi-
cally negative and of the order of 10 M−1 in magnitude.

Again, we introduce the corresponding WC-SC proxies
as the saddle-point and the single-particle theory, based on
the lowest order virial expansion. Contrary to the cases de-
scribed before, there exist at present no pertinent simulations
that could help in assessing the accuracy of these approxima-
tions (however, see Ref. 191).

The saddle-point level, corresponding to the WC limit,
can be derived in the form of a generalized PB equa-
tion governing the mean (real-valued) potential ψMF = iφ
as128, 188

−ε0∇ · [(ε + αnMF(r))∇ψMF(r)] = ρ0(r) + nMF(r),

(24)

where the mean-field counterion density is given by

nMF(r) = λ exp
[
β

α

2
(∇ψMF(r))2 − βqe0ψMF(r)

]
. (25)

Comparing this equation with Eq. (6), it is clear that the di-
electric response function has a term proportional to the con-
centration of the ions, stemming from their dielectric decre-
ment. This was in fact first noted by Bikerman in 1942.101, 132

The solutions of this equation have been investigated in great
detail in Refs. 128 and 188 and in general depend on the mag-
nitude and sign of the excess polarizability.

From numerical solutions of the above PB equation, it
appears that the counterion polarizability introduces effective
interactions between the ions and the bounding surfaces. For
negative excess polarizability, these additional interactions
seem to be strongly repulsive and long ranged. They again
lead to a depletion of the ions in the vicinity of the surface,179

see Fig. 6(b). In the opposite case, the interactions are also
repulsive, but weak, and the perturbations introduced by po-
larization are negligible. This yields a good measure for ion
specificity, as the ions can be differentiated according to the
sign of their polarizability.

On the single-particle level, corresponding to the SC
limit, Z (0)

SC is again given by the first term in Eq. (11), in-
volving only electrostatic interactions between fixed surface
charges. The polarizability of the mobile ions appears in the
first-virial-order partition function, which is again formally of

a single-particle type and can be cast into the form134

Z (1)
SC =

∫
dr0 z

(1)
SC(r0), (26)

where we have introduced

z
(1)
SC(r0)

/
Z (0)

SC = det(1 + α∇i∇′
ju(r0, r0))−1/2

× exp

(
1

2
∇iC

′(r0)T
(

1

α
+∇i∇′

ju(r0, r0)

)−1

×∇iC
′(r0) − C ′(r0)

2

)
, (27)

with C ′(r0) = u(r0, r0) −∫
ρ0(r)u(r0, r) dr. Here, u(r, r′) is

again just the Coulomb interaction potential and ∇ as well as
∇′ denote the gradients with respect to the first and the second
variables.

Though the above form of the single-particle partition
function appears to be quite complicated, it can be seen
straightforwardly that the first term in Eq. (27) describes the
thermal Casimir or zero-frequency vdW interaction between
a single polarizable particle and the dielectric interfaces in the
system. It can be written as

1
2 Tr ln(1 + α∇i∇′

ju(r0, r0)) 	 1
2α Tr[∇i∇′

ju(r0, r0)]. (28)

For large |r0|, we obtain the scaling form |r0|−3 correspond-
ing to the zero-frequency vdW interaction between the polar-
izable particle and a single dielectric discontinuity.174, 192

The corresponding single-particle-level counterion den-
sity profile, Fig. 6(c), exhibits strong image-repulsive interac-
tions that deplete the vicinal space next to the bounding sur-
faces to an extent much larger than in the case of the saddle-
point limit in Fig. 6(b).179 Furthermore, on the single-particle
level, the effective permittivity around the ion may turn over-
all negative, leading to a field instability that shows up in the
partition function. Other nonlinear solvation-related effects187

that have not been taken into account would then take over and
stabilize the system.

In summary, for polarizable ions, the validity of the SC
vs. WC description no longer depends on a single coupling
parameter, but actually on two parameters. The parameter
space is thus quite complicated and the validity of the WC-
SC dichotomy is difficult to assess in general. The general
conclusion would be that the contribution of polarizable coun-
terions to the total partition function is highly non-additive
at the weak coupling level, whereas it can sometimes be re-
duced to an additive contribution in the free energy at the
strong coupling level, but only if the polarizability is large
enough. Simply adding a vdW ion-polarizability-dependent
contribution to the electrostatic potential of mean force is
questionable.192, 193

V. CONCLUSIONS

We have provided a guided personalized tour of recent
advances in Coulomb fluids based on the functional integral
representation of the partition function via a field-action, as
pioneered in the fundamental work of Edwards and Lenard.167

This representation was taken later as a point of departure
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for the introduction of the WC-SC dichotomy in the descrip-
tion of a (primitive) counterion-only system bounded by two
charged surfaces. The WC limit was shown to stem from the
saddle-point description of the field-action, while the SC de-
scription was based on the lowest order virial expansion. In
the case of the primitive counterion-only model, the two limits
can be derived directly and systematically. For more compli-
cated, but also more realistic cases that imply a multiplicity of
different length scales, one can identify the principal coupling
parameter and introduce the pertaining saddle-point and the
single-particle virial description as the proxies for the proper
WC and SC limits. The saddle-point and the single-particle
virial form of the partition function can then be invoked for
any system, irrespective of the number of parameters or cou-
pling constants describing it, and thus present a convenient
point of departure to derive powerful limiting laws even for
much more complicated systems than envisioned in the origi-
nal framework of the WC-SC dichotomy. We tried to make a
clear case that this philosophy can provide a solid foundation
and a fairly accurate guide for an approximate and sometimes
even analytical treatment of Coulomb systems that formally
do not easily yield themselves to a simple single-coupling-
parameter description.
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56Y. S. Jho, M. Kanduč, A. Naji, R. Podgornik, M. W. Kim, and P. A. Pincus,
Phys. Rev. Lett. 101, 188101 (2008).
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