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We investigate the effect of monopolar charge disorder on the classical fluctuation-induced
interactions between randomly charged net-neutral dielectric slabs and discuss various
generalizations of recent results �A. Naji et al., Phys. Rev. Lett. 104, 060601 �2010�� to highly
inhomogeneous dielectric systems with and without statistical disorder correlations. We shall focus
on the specific case of two generally dissimilar plane-parallel slabs, which interact across vacuum
or an arbitrary intervening dielectric medium. Monopolar charge disorder is considered to be present
on the bounding surfaces and/or in the bulk of the slabs, may be in general quenched or annealed
and may possess a finite lateral correlation length reflecting possible “patchiness” of the random
charge distribution. In the case of quenched disorder, the bulk disorder is shown to give rise to an
additive long-range contribution to the total force, which decays as the inverse distance between the
slabs and may be attractive or repulsive depending on the dielectric constants of the slabs. By
contrast, the force induced by annealed disorder in general combines with the underlying van der
Waals forces in a nonadditive fashion, and the net force decays as an inverse cube law at large
separations. We show, however, that in the case of two dissimilar slabs, the net effect due to the
interplay between the disorder-induced and the pure van der Waals interactions can lead to a variety
of unusual nonmonotonic interaction profiles between the dielectric slabs. In particular, when the
intervening medium has a larger dielectric constant than the two slabs, we find that the net
interaction can become repulsive and exhibit a potential barrier, while the underlying van der Waals
force is attractive. On the contrary, when the intervening medium has a dielectric constant between
that of the two slabs, the net interaction can become attractive and exhibit a free energy minimum,
while the pure van der Waals force is repulsive. Therefore, the charge disorder, if present, can
drastically alter the effective interaction between net-neutral objects. © 2010 American Institute of
Physics. �doi:10.1063/1.3497039�

I. INTRODUCTION

One of the most persistently made assumptions in the
standard theory of �bio�colloid stability is that of a uniform
charge distribution on macromolecular surfaces.1 There are
nevertheless many instances where charge patterns on mac-
romolecular surfaces are inhomogeneous, exhibiting even a
highly disordered spatial distribution. Among most notable
examples are surfactant-coated surfaces2 and random poly-
electrolytes and polyampholytes.3 The macromolecular
charge pattern in these systems is often frozen, or quenched,
meaning that the charge distribution does not evolve after the
assembly or fabrication of the material. This is the case if the
interaction between the surface charge carriers and the sur-
faces is of a chemical nature involving interactions that far
exceed the thermal energy scale kBT. Alternatively, charge
distributions can exhibit various degrees of annealing when

interacting with other macromolecules in aqueous solutions
as is, for example, the case for charge regulation of contact
surfaces bearing weak acidic groups in aqueous solutions.4

Recently, it has also been realized that ultrahigh sensi-
tivity experiments on Casimir �zero temperature and ideally
polarizable surfaces� and van der Waals �finite temperature
and nonideally polarizable surfaces� interactions between
surfaces in vacuo5,6 can be properly understood only if one
takes into account the disordered nature of charges on and
within the interacting surfaces.6–8 Possible causes of sample-
and history-specific charge disorders in this case include the
patch effect, where the variation of the local crystallographic
axes of the exposed surface of a clean polycrystalline sample
can lead to a variation of the local surface potential.9 Amor-
phous films deposited on crystalline substrates can also show
a similar type of surface charge disorder, showing a grain
structure of dimensions sometimes larger than the thickness
of the deposited surface film.10 On the other hand, adsorptiona�Electronic mail: a.naji@damtp.cam.ac.uk.
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of various contaminants can influence the nature and type of
the surface charge disorder.

Since the nature and distribution of the charge disorder
in any of the force experiments are in general seldom known,
we pursue a strategy of assessing the consequences of differ-
ent a priori models of the distribution of charge disorder. In
what follows, we will thus assume that the charge disorder
stems from randomly distributed monopolar charges, which
may be present both in the bulk and/or on the interacting
surfaces and can be either annealed or quenched. In the
quenched case, the disorder charges are frozen, whereas in
the annealed case, the disorder charges are subject to thermal
fluctuations at ambient temperature and can thus adapt them-
selves in order to minimize the free energy of the system. We
do not deal with effects due to disorder in the dielectric re-
sponse of the interacting media,11 which presents an addi-
tional source of disorder meriting further study. We have
shown in our previous works8,12,13 that the type and the na-
ture of the charge disorder induce marked changes in the
properties of the total interaction between apposed bodies
and the force arising from the presence of disordered charges
can dominate the underlying Casimir–van der Waals �vdW�
effect at sufficiently large separations. The analysis of the
interaction fingerprint of the charge disorder can be useful in
assessing whether the experimentally observed interactions
can be interpreted in terms of disorder effects or are due to
pure Casimir–vdW interactions. In this study, we will con-
tinue with the assessment of this interaction fingerprint in the
case of two semi-infinite net-neutral dielectric slabs �sepa-
rated by a layer of vacuum or an arbitrary unstructured di-
electric material as shown in Fig. 1� by generalizing our
formalism to include two different mechanisms.

�i� The “patchy” distribution of the charge disorder,
which may arise due to finite correlations between the
carriers of the charge disorder. This is a rather realistic
assumption in view of the graininess observed in in-
teracting surfaces.9,10

�ii� The dielectric inhomogeneity effects in highly asym-
metric systems, where the two slabs and the interven-
ing medium may in general have different dielectric
properties.

For interacting bodies carrying no net charge, the part of
the interaction due to monopolar quenched charge disorder
can be seen from a full quantum field-theoretical formalism14

to be coupled directly to the zero-frequency or classical vdW
interaction �corresponding to the zero-frequency Matsubara
modes of the electromagnetic field�. The situation would be
more complicated in the case of annealed disorder if one is to
account for the higher-order Matsubara frequencies and a
general treatment is missing at present. In this work, we shall
examine the effects of quenched and annealed charge disor-
der by focusing specifically on the zero-frequency vdW in-
teraction. It is well known that the higher frequency Matsub-
ara terms in the total vdW interaction free energy become
relatively unimportant at sufficiently high temperatures
and/or sufficiently large intersurface separations.5 In this pa-
per, we will restrict ourselves to this regime, which is also
most relevant experimentally6 and consider the short-
distance quantum effects elsewhere.14

As we shall demonstrate, the interplay and competition
of the underlying vdW effect between the two semi-infinite
slabs and the interaction induced by the charge disorder can
give rise to a variety of different interaction profiles, includ-
ing, most notably, nonmonotonic interactions as a function of
the interslab distance. In particular, when the two dielectrics
interact across a medium of higher dielectric constant, the
disorder force can become strongly repulsive and thus gen-
erate a potential barrier when combined with the vdW force,
which is attractive in that case. While, in the situation where
the intervening medium has a dielectric constant in between
that of the two slabs,15 the disorder can generate an attractive
force, which can balance the repulsive vdW force, leading
thus to a stable bound state between the two dielectric slabs.
Therefore, the charge disorder, if present, can provide an
intrinsic mechanism to stabilize interactions between net-
neutral bodies. These features emerge because the disorder-
induced interactions typically decay more weakly with the
separation than the vdW interaction and depend strongly on
the dielectric inhomogeneities in the system.

The above features vary depending on whether the dis-
order is assumed to be quenched or annealed. The effects due
to annealed charge disorder can be distinctly different from
those of the quenched charge disorder. In the case of an-
nealed charges, the effective interactions turn out to decay
more rapidly and in fact in a similar way as the pure vdW
interaction, whereas in the case of quenched charges, the net
interactions decay more weakly with the separation, i.e., as
�D−�, where �=1 if the disorder is present in the bulk of the
slabs and �=2 if the disorder is confined to the bounding
surfaces of the slabs.

The organization of the paper is as follows. In Sec. II,
we introduce the details of our model and the formalism used
in our study. The general results are derived in Secs. III A
and III B for the case of quenched and annealed disorders,
respectively. We shall proceed with the analysis of the effec-
tive interaction between two identical slabs in Sec. IV, where
we shall focus mainly on the effects due to spatial correlation
in the distribution of the charge disorder. In Sec. V, we study
the interaction in dielectrically asymmetric systems by con-
sidering two dissimilar dielectric slabs that interact across an
arbitrary dielectric medium. The results and limitations of
our study are summarized in Sec. VI.

FIG. 1. We consider two semi-infinite net-neutral slabs �half-spaces� of
dielectric constant �1 and �2 interacting across a medium of dielectric con-
stant �m. The monopolar charge disorder �shown schematically by small
light and dark patches� is distributed as random patches of finite typical size
�correlation length� in a layered structure in the bulk of the slabs and on the
two bounding surfaces at z= �D /2. It may be either quenched or annealed.
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II. MODEL

Let us consider two semi-infinite slabs of dielectric con-
stants �1 and �2 and temperature T with parallel planar inner
surfaces �of infinite area S� located normal to the z axis at
z= �D /2 �see Fig. 1�. The inner gap is filled with a material
of dielectric constant �m. The inhomogeneous dielectric con-
stant profile for this system is thus given by

��r� = ��1 z � − D/2
�m �z� � D/2
�2 z � D/2.

	 �1�

We shall assume that the two dielectric slabs have a disor-
dered monopolar charge distribution, ��r�, which may arise
from randomly distributed charges residing on the bounding
surfaces ��s�r�� and/or in the bulk ��b�r��, i.e., ��r�=�s�r�
+�b�r�. The charge disorder is assumed to be distributed ac-
cording to a Gaussian weight with zero mean �i.e., the slabs
are net-neutral� and the two-point correlation function16



��r���r���� = G�� − ��;z���z − z�� , �2�

where 

¯ �� denotes the average over all realizations of the
charge disorder distribution, ��r�. We have thus assumed that
there are no spatial correlations in the perpendicular direc-
tion, z; however, in the lateral directions �= �x ,y� �in the
plane of the dielectrics�, we have a finite statistically invari-
ant correlation function whose specific form may depend on
z as well. This implies that the charge disorder is distributed
in general as random “patches” in a layered structure in the
bulk of the slabs as well as on the bounding surfaces.

The total correlation function can be written as the sum
of the surface �s� and bulk �b� contributions,

G�� − ��;z� = gs�z�cs�� − ��;z� + gb�z�cb�� − ��;z� .

�3�

For the slab geometry, we generally assume that the lateral
correlation functions may be different for the two slabs, i.e.,

cs�x;z� = �c1s�x� z = − D/2
c2s�x� z = D/2,

 �4�

cb�x;z� = �c1b�x� z � − D/2
0 �z� � D/2
c2b�x� z � D/2,

	 �5�

and that the surface and bulk variances are given by

gs�z� = e0
2�g1s��z + D/2� + g2s��z − D/2�� , �6�

gb�z� = �g1be0
2 z � − D/2

0 �z� � D/2
g2be0

2 z � D/2.
	 �7�

The lateral correlation between two given points is typi-
cally expected to decay with their separation over a finite
correlation length �“patch size”�, which could in general be
highly material or sample specific. However, the main as-
pects of the patchy structure of the disorder can be investi-
gated by assuming simple generic models with, for instance,

a Gaussian or an exponentially decaying correlation func-
tion. Without loss of generality, we shall choose an exponen-
tially decaying correlation function according to the two-
dimensional Yukawa form,17

ci��x� =
1

2	
i�
2 K0� �x�


i�
� , �8�

where 
i� represents the correlation length for the bulk or
surface disorder ��=b ,s� in the ith slab �i=1,2�. The case of
a completely uncorrelated disorder8 follows as a special case
for 
i�→0 from our formalism. We should emphasize that
the correlation assumed for the bulk disorder is only present
in the plane of the slab surfaces and not in the direction
perpendicular to them. This assumption is wholly justified
only for layered materials. In all the other cases of the bulk
disorder, one would normally expect the same correlation
length in the direction perpendicular to the surfaces. We will
deal with this model in a separate publication.

III. FORMALISM

The partition function for the classical vdW interaction
�the zero-frequency Matsubara modes of the electromagnetic
field� may be written as a functional integral over the scalar
field ��r�,

Z���r�� =� �D��r��e−�S���r�;��r��, �9�

with �=1 /kBT and the effective action

S���r�;��r�� =� dr�1

2
�0��r�����r��2 + i��r���r�� .

�10�

The above partition function can be used to evaluate aver-
aged quantities such as the effective interaction between the
dielectric bodies. However, since the charge distribution,
��r�, is disordered, it is necessary to average the partition
function over different realizations of the charge distribution.
The averaging procedure differs depending on the nature of
the disorder. In what follows, we consider two idealized
cases of either completely quenched or completely annealed
disorder18 �the intermediate case of partially annealed disor-
der is also analytically tractable13 but will not be considered
here�.

A. Correlated quenched disorder

The quenched disorder corresponds to the situation
where the disorder charges are frozen and cannot fluctuate
and equilibrate with other degrees of freedom in the system.
As it is well known, the disorder average in this case must be
taken over the sample free energy, ln Z���r��, in order to
evaluate the averaged quantities.18 Therefore, the free energy
of the quenched model is given by

�Fquenched = − 

ln Z���r���� . �11�

The Gaussian integral in Eq. �9� as well as the disorder av-
erage can be evaluated straightforwardly in this case,
yielding16
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�Fquenched =
1

2
Tr ln G−1�r,r��

+
�

2
� drdr�G�� − ��;z���z − z��G�r,r�� ,

�12�

where G�r ,r�� is the Green’s function defined via

�0 � · ���r� � G�r,r��� = − ��r − r�� . �13�

Note that the free energy �12� of the quenched model is
expressed in terms of different additive contributions, i.e.,

Fquenched = FvdW + Fb + Fs. �14�

The first term above is nothing but the usual contribution
from the zero-frequency vdW interaction,

�FvdW = 1
2Tr ln G−1�r,r�� , �15�

which is always present between neutral dielectrics even in
the absence of any monopolar charge disorder. The second
and the third terms represent contributions from the bulk and
surface disorder ��=b ,s�,

�F� =
�

2
� drdr�g��z�c��� − ��;z���z − z��G�r,r�� .

�16�

The quenched expression �12� is valid for any arbitrary
disorder correlation function G��−�� ;z� and dielectric con-
stant profile ��r�. In what follows, we shall focus on the
particular case of planar dielectrics by employing Eqs. �1�
and �3�–�7�. In this case, the zero-frequency vdW contribu-
tion is obtained �per kBT and unit area� as5

�FvdW

S
=

1

2
� d2Q

�2	�2 ln�1 − 12e−2QD� . �17�

The force associated with this contribution, fvdW=
−�FvdW /�D, follows as

�fvdW

S
= −

Li3�12�
8	D3 . �18�

The dielectric jump parameters are defined as

i =
�i − �m

�i + �m
�19�

at each of the bounding surfaces �i=1,2�, and Li3� · � is the
trilogarithm function defined by

Li3�z� = �
n=1

�
zn

n3 . �20�

The dielectric constants of the system enter the expression
�17� via the terms 1 and 2. If 12�0, then the vdW
interaction between the slabs is attractive; otherwise, the
vdW force is repulsive.

The expression in Eq. �16� can be calculated in a
straightforward manner. We obtain the bulk disorder contri-
bution as

�Fb

S
= − �B�m� dQ

Q

e−2QD

1 − 12e−2QD� g1bc1b�Q�
��1 + �m�22

+
g2bc2b�Q�
��2 + �m�21� , �21�

and the surface disorder contribution as

�Fs

S
= − 2�B�m� dQ

e−2QD

1 − 12e−2QD

�� g1sc1s�Q�
��1 + �m�22 +

g2sc2s�Q�
��2 + �m�21� , �22�

at all separations D, where

�B = �e0
2/�4	�0� �23�

is the Bjerrum length in vacuum ��B�56.8 nm at room tem-
perature� and ci��Q� is the Fourier transform of the correla-
tion function ci��x�. For the particular form of ci��x� chosen
in Eq. �8�, we have a Lorentzian Fourier transform �for i
=1,2 and �=b ,s� as

ci��Q� =
1


i�
2 Q2 + 1

. �24�

The total force between the dielectric slabs carrying
quenched charge disorder thus follows from fquenched=
−�Fquenched /�D and the preceding free energy expressions as

�fquenched

S
= −

Li3�12�
8	D3 − 2�B�m

� �
0

� dQe−2QD

�1 − 12e−2QD�2� g1bc1b�Q�
��1 + �m�22

+
g2bc2b�Q�
��2 + �m�21 +

2Qg1sc1s�Q�
��1 + �m�2 2

+
2Qg2sc2s�Q�

��2 + �m�2 1� . �25�

We notice that the quenched disorder contribution to the
force has a number of interesting features. We see that the
forces generated due to the charge disorder in slab 1 and slab
2 are independent and additive. If we remove the charge
disorder from either slab, we see that there is still a contri-
bution coming from the other slab. This is because the charge
distributions on average do not interact with each other. As
the charge distribution in opposing slabs is uncorrelated, the
average force on a charge in slab 1 due to a charge in slab 2
is zero as the charge in slab two is equally likely to have a
positive charge as a negative charge. In fact, the charges in
slab 1 are only correlated with their image charges in slab 2;
this means that on average the charge distribution in slab 1
only interacts with its image in slab 2 and vice versa. The
sign of the interaction between charges in slab 1 and their
images in slab 2 depends on 2. If 2 is positive, that is, the
dielectric constant of slab 2 is greater than that of the inter-
vening material, �2��m, then the force due to the charge in
slab 1 is attractive. Therefore, the contribution of the charge
in each slab to the net force depends on the dielectric con-
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trast between the opposing slab and the intervening medium.
Thus, while the vdW contribution depends on the product
12, the contribution from the quenched charge distribution
in slab 1 depends on variance g1s,b of the charge on the
surface or bulk of this slab but on 2 of the slab 2. This leads
to a rich phenomenology of possible net interactions. For
example, if 1 and 2 are both positive, the vdW force is
attractive and so are the forces due to both charge distribu-
tions. However, if 1 and 2 are negative, the vdW force is
again attractive, but the force due to both quenched charge
distributions is repulsive. Also, note that while the vdW term
shows a standard 1 /D3 decay with the surface separation D,
the disorder contribution turns out to have a much weaker
decay with the separation8 as we shall analyze further in the
forthcoming sections. Therefore, the interplay between these
different contributions can lead to characteristically different
interaction profiles depending on the system parameters.

B. Correlated annealed disorder

In the annealed model, disorder charges are assumed to
fluctuate in thermal equilibrium with the rest of the system,
and thus, in particular, the charge distribution in the two
slabs can adapt itself to minimize the free energy of the
system. In this case, the disorder degrees of freedom should
be treated statistically on the same footing as other degrees
of freedom, which implies that the disorder average must be
taken over the sample partition function Z���r��.18 Hence,
the free energy of the annealed model reads

�Fannealed = − ln

Z���r���� . �26�

The annealed free energy may be evaluated using Eqs. �2�,
�9�, and �26� as

�Fannealed = 1
2Tr ln�G−1�r,r�� + �G�� − ��;z���z − z��� .

�27�

Note that unlike the quenched case, Eq. �12�, the disorder
contributions cannot be in general separated from the pure
vdW contribution when the disorder is annealed.

In the case of two interacting planar dielectrics, we shall
make use of Eqs. �1� and �3�–�7� in order to calculate the
fluctuational trace-log of the modified inverse Green’s func-
tion G−1�r ,r��+�G��−�� ;z���z−z�� in Eq. �27�. By em-
ploying standard procedures,19 we find

�Fannealed

S
=

1

2
� d2Q

�2	�2 ln�1 − 1g�Q�2g�Q�e−2QD� , �28�

where we have �for i=1,2�

ig�Q� =
�mQ − �i

�Q2 + 4	�Bgibcib�Q�/�i − 4	�Bgiscis�Q�

�mQ + �i
�Q2 + 4	�Bgibcib�Q�/�i + 4	�Bgiscis�Q�

.

�29�

The total force, fannealed=−�Fannealed /�D, in the annealed
model thus follows as

�fannealed

S
= −

1

2	
� Q2dQ

1g�Q�2g�Q�e−2QD

1 − 1g�Q�2g�Q�e−2QD . �30�

The annealed interaction free energy, or the corresponding
force, has a form reminiscent of the zero-frequency vdW
interaction between two semi-infinite slabs20 with renormal-
ized dielectric mismatch, ig�Q�, depending on the in-plane
wave-vector Q. Indeed, one can argue for the following exact
correspondence based on the vdW interactions between me-
dia with volume and surface embedded mobile charges:20,21

the term �Q2+4	�Bgibcib�Q� /�i corresponds to bulk Debye-
like “screening,” stemming from the annealed bulk disorder
response to local electrostatic fields. It can be obtained alter-
natively by analyzing the fluctuational modes of the Debye–
Hückel fields as opposed to the Laplace fields.20 The term
4	�Bgiscis�Q�, on the other hand, stems from the response of
the mobile charges confined to the dielectric surfaces to elec-
trostatic fields, corresponding to surface disorder-generated
screening.21 It can be derived alternatively by considering
the response of the surface polarization to local electrostatic
fileds.21 The combination of the two terms in Eq. �30� cannot
be written as a sum of two terms depending linearly on cib

and cis. This signifies that the bulk and surface disorder ef-
fects for the annealed case are obviously not additive and
cannot be analyzed separately.

Note also that the case of an uncorrelated annealed dis-
order �cib ,cis=1� corresponds exactly to the situation where
the semi-infinite slabs are considered to be composed of a
free Debye–Hückel plasma of positive and negative charges
at equilibrium.22 A nontrivial correlation function as we use
here can be obtained for such a plasma only in the presence
of an underlying non-Coulombic interaction of the mobile
ions with, e.g., impurities that induces such correlations in
the distribution of the ions.17

IV. SYMMETRIC CASE OF TWO IDENTICAL SLABS

We now analyze the preceding analytical results in the
situation where the two dielectric slabs are identical, i.e., we
have �i=�p �i=�, gis=gs, gib=gb, and 
is=
ib=
 for both
slabs i=1,2.

A. Quenched disorder-induced interactions

In the case of quenched disorder, one can expand the
Lorentzian correlation function ci��Q�, Eq. �24�, in powers of
the dimensionless ratio of the correlation length to the inter-
surface separation, 
 /D, and thus express the total force �25�
in the form of a series expansion as

fquenched = f �0� + �
n=1

�

f �n�, �31�

where the leading order term

�f �0�

S
= −

gb�B

2�pD
−

2�mgs�B�ln�1 − 2��
��m + �p�2D2 −

Li3�2�
8	D3 , �32�

corresponds to the free energy of the system in the presence
of a completely uncorrelated disorder �
=0�,8 and the higher-
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order terms that stem from the lateral disorder correlations
follow as

�f �n�

S
= −

4gb�B�m

��m + �p�2D
�
n=1

�

�− 1�n 
2n

D2nC2n+1Li2n�2�

−
8gs�B�m

��m + �p�2D2 �
n=1

�

�− 1�n 
2n

D2nC2n+2Li2n+1�2� ,

�33�

where Cn=��n� /2n. The above series expansion is most suit-
able for the situation where 
 /D is small.

Let us first consider the leading order uncorrelated dis-
order free energy f �0� in Eq. �32�. This contribution exhibits a
few remarkable features.8 First, it shows a sequence of scal-
ing behaviors with the separation that stem from different
origins: a leading 1 /D term due to the quenched bulk disor-
der, a subleading 1 /D2 term from the surface charge disor-
der, and the pure vdW term that goes as 1 /D3, i.e.,

�fvdW

S
= −

Li3�2�
8	D3 . �34�

While the vdW term is always attractive in a symmetric sys-
tem, the disorder contributions �first and second terms in Eq.
�32�� are attractive when the dielectric mismatch �0 �i.e.,
when the dielectric constant of the intervening medium is
smaller than that of the slabs� and repulsive otherwise. The
former case ��0� has been investigated in detail previ-
ously in the context of two identical dielectric slabs in
vacuum ��m=1�.8

Note that since the forces induced by an uncorrelated
disorder exhibit a much weaker decay with the separation,
they may completely mask the standard vdW force �which is
always present regardless of any charge disorder� at suffi-
ciently large separations.8 One might expect that globally
electroneutral slabs would exhibit a dipolarlike interaction
force to the leading order rather than the monopolar forms
1 /D �or 1 /D2� obtained for the bulk �or surface� charge dis-
tribution. As noted before, the physics involved is indeed
subtle as the disorder terms result from the self-interaction of
the charges with their images �which follows from G�r ,r�,
Eq. �12�, in the limit of zero correlation length� and not from
dipolar interactions �which come from an expansion of
G�r ,r�� when �r−r�� is large�. Statistically speaking, each
charge on average �as any other charge has an equal prob-
ability of being of the same or opposite sign� only sees its
image, thus explaining the leading monopolar form in the net
force.23

Note that the above discussion holds at separations much
larger than the correlation length 
 �corresponding to small
patch size compared to the separation distance D�, where the
disorder can be considered effectively to be statistically un-
correlated. At smaller separations �or for larger correlations
lengths�, one must take into account the higher-order correc-
tions as well. The next leading correction due to disorder
correlations for small 
 /D follows from Eq. �33� as

�f �1�

S
�

gb�B�m
2Li2�2�
��p + �m�2D3 +

3�mgs�B
2Li3�2�
��m + �p�2D4 , �35�

which has an opposite sign to the zeroth-order term and thus
tends to weaken the zeroth-order effect. Note however that
the higher-order corrections in Eq. �33� alternatively change
sign and their net effect leads to a total force, which can be
evaluated numerically, e.g., directly from Eq. �25�. The re-
sults are shown in Fig. 2 for the case of two identical dielec-
tric slabs in vacuum. As seen in Fig. 2�a�, the attractive
disorder-induced forces indeed diminish �albeit rather slowly
as seen in the inset� as the disorder correlation length is
increased �by several orders of magnitude from 
=0 up to

�5 mm in actual units in the figure�. For a large correla-
tion length or at small separation �large 
 /D�, the total force
thus tends to the nondisordered vdW force �34� that scales as
1 /D3 �thick solid line�, while for a small correlation length
or at large separation �small 
 /D�, the force increases and
shows a crossover to the maximal uncorrelated disorder
value �32� that scales as 1 /D �top dotted line�. The latter is
obviously from the bulk disorder, which, if present, gives
rise to the most dominant effects.
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FIG. 2. �a� Magnitude of the rescaled total force, ��f �lB
3 /S �Eq. �25��, be-

tween two identical net-neutral dielectric slabs in vacuum ��m=1� bearing
quenched monopolar charge disorder as a function of the rescaled distance,
D / lB. The results are plotted here for fixed �p=10, gs=0 �no surface disor-
der� and bulk disorder variance gb=5�10−8 nm−3, and varying disorder
correlation lengths 
 / lB=0, 200, 103, 104, and 105 �from top to bottom�.
Inset shows the ratio of the total force to the pure zero-frequency vdW force
�34� between the slabs in the absence of charge disorder for the same range
of D. �b� Same as �a� but here we fix �p=10, gs=0, and 
 / lB=200 and vary
the bulk disorder variance in the range gb=10−7, 10−8, 10−9, 10−10, and
10−11 nm−3 �from top to bottom�. Solid curve is the pure vdW force �34�. �c�
Same as �b� but here we fix 
 / lB=200, gb=5�10−8 nm−3, and gs=gb

2/3 and
vary the dielectric constant of slabs as �p=2 �top dotted curve�, 10, 40, and
100 �bottom dot-dashed curve�. All graphs are plotted in log-log scale.
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The crossover behavior depends also significantly on the
disorder variance and the dielectric mismatch �Figs. 2�b� and
2�c��. Similar trends as described above can be observed by
varying the bulk disorder variance, gb, as shown in Fig. 2�b�
�here, gb varies within the typical range24 of
10−11–10−7 nm−3, corresponding to impurity charge densi-
ties of 1010–1014 e0 /cm3�. The results in Fig. 2�c�, however,
reveal a nonmonotonic dependence on the dielectric mis-
match. The disorder contribution tends to decrease both for
small and large slab dielectric constant. This can be seen
directly from Eqs. �32� and �33� as the disorder-induced
force vanishes in the limits �p→� or →1 �perfect conduc-
tor� and →0 �homogeneous medium, in which case the
vdW force vanishes as well�.

It is interesting to note that the first-order corrections due
to bulk correlations scales in the dipolar form as 1 /D3,
which is similar to the vdW contribution. Hence, these cor-
rections tend to renormalize the ideal zero-frequency Ha-
maker coefficient, A�3�kBT�Li3�2� /4, associated with the
vdW term �defined via fvdW /S=−A / �6	D3�� to an effective
value given by

Aeff =
3kBT

4
Li3�2� −

3gbe0
2�m
2Li2�2�

2�0��p + �m�2
. �36�

This value is smaller �larger� than the ideal value A when
�0 ��0� and can even change sign.

B. Annealed disorder-induced interactions

In the case of annealed disorder, the total force between
the dielectric slabs is given by Eq. �30�. It shows that the
force in this case cannot be expressed simply as a sum of
different additive contributions as in the quenched case.
Rather, it follows from the combined effect of the annealed

disorder fluctuations and the underlying vdW effect, which
again reflects the fact that the disorder charge distribution in
this case can adapt itself in order to minimize the total free
energy of the system.

The resulting total force is shown in Fig. 3 for the sym-
metric case of two identical dielectric slabs in vacuum. For
the sake of presentation, we have plotted the ratio of the
annealed force �30� to the vdW force �34�, which clearly
shows that the net force is bounded by two limiting laws,
namely, the ideal limiting force

�f ideal

S
= −

��3�
8	D3 , �37�

which is similar to the one obtained between perfect
conductors5 and the vdW force �34� in the absence of any
disorder charges. These constitute the upper and the lower
bounds for the annealed force in the general symmetric case
with �0, i.e.,

�fvdW� � �fannealed� � �f ideal� . �38�

Note that the above limiting values can be established sys-
tematically from the general expression �30� and are strictly
attractive �negative sign�. The lower bound vdW force is
nonuniversal �i.e., material dependent� and is obtained as-
ymptotically in the limit of small disorder variance �gb , gs

→0� or small separations. The upper bound is universal and
follows in the limit of strong disorder variance �gb or gs

→�� or large separations. The crossover from one limit to
the other can be achieved by increasing the distance or the
disorder variance as seen in Fig. 3.

In general, the net interaction forces in the annealed case
turn out to decay more strongly with the slab separation dis-
tance as compared with the case of quenched charge disor-
der. In fact, the charge fluctuations in the annealed case tend
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FIG. 3. �a� Ratio of the total force �30� to the zero-frequency vdW force �34� between two identical net-neutral dielectric slabs in vacuum ��m=1� bearing
annealed monopolar charge disorder as a function of the rescaled distance, D / lB. The results are plotted here for fixed �p=10, gs=0 �no surface disorder�,
gb=5�10−8 nm−3, and varying disorder correlation length 
 / lB=0, 200, 103, and 104 �from top to bottom�. Annealed curves are bounded by the perfect
conductor result, Eq. �37� �top solid line�, for large disorder and the vdW result, Eq. �34� �bottom solid line�, for no disorder. �b� Same as �a� but here we have
fixed �p=10, gs=0, 
 / lB=200, and bulk disorder variance varied in the range gb=10−7, 10−8, 10−9, 10−10, and 10−11 nm−3 �from top to bottom�. �c� Same as
�a� but here we fix gs=0, gb=5�10−8 nm−3, and 
=0 and vary the dielectric constant of the slabs as �p=2, 10, 40, and 100 �from top�. Inset shows a closer
view of the curves for �p=40 and 100 �from top�. Top dotted lines correspond to Eq. �37�. All graphs are plotted in log-log scale.
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to induce interaction forces that, on the leading order, behave
in a dipolar form �decaying as �1 /D3 with the distance�—
just as one would expect for the case where the slabs are
simply composed of free �mobile� positive and negative
charges as discussed previously in Sec. III B. This is funda-
mentally different from the monopolarlike interaction forces
obtained, on the leading order, between the slabs carrying
quenched charge disorder �Sec. IV A�.

In the annealed case, the disorder correlations play a
similar role as in the quenched case and tend to weaken the
disorder-induced forces. As seen in Fig. 3�a�, the magnitude
of the force drops from its value for an uncorrelated disorder
�
=0�, and also the crossover between the two limiting be-
haviors as discussed above is “delayed” when the disorder
has a finite correlation length, 
.

It is also remarkable to note that Eq. �37� is obtained in
general as the large-distance �D→�� behavior for the total
force between any two arbitrary dielectric slabs regardless of
their dielectric constant and disorder variance. It thus dem-
onstrates the intuitive fact that dielectric slabs with annealed
charges tend to behave asymptotically in a way similar to
perfect conductors. This is one of the distinctive features of
the annealed disorder as compared with the quenched disor-
der, whose effects depend significantly on the material prop-
erties. The deviations due to material properties and the dis-
order variance in the annealed case contribute a repulsive
subleading force in the symmetric case, which can be deter-
mined from a series expansion at large separations. If the
surface disorder is negligible as compared with the bulk dis-
order �gs�gb�B�, we obtain �up to the first few leading or-
ders�

�fannealed

S
� −

��3�
8	D3 +

3�m��3�
�64	3gb�B�pD4

−
3�m

2 ��3�
8	2gb�B�pD5

+
15
2�m��5�

2�64	3gb�B�pD6
−

45
2�m
2 ��5�

16	2gb�B�pD7 . �39�

While in the opposite situation where the bulk disorder is
negligible �gs�gb�B�, we obtain

�fannealed

S
� −

��3�
8	D3 +

3�m��3�
16	2gs�BD4 +

15�m
2��5�
16	2�BgsD

6 .

�40�

We should emphasize that although the annealed force
decays at large separations in a similar fashion as the pure
vdW force, its magnitude can nevertheless exceed the vdW
force by a few orders of magnitude if the dielectric constant
of the intervening material �m is increased toward that of the
slabs �see Fig. 4�a��. The asymptotic behavior of the an-

nealed force is similarly described by the pure vdW result
�34� and the ideal expression �37� even if the dielectric con-
stant of the �identical� slabs is smaller than that of the inter-
vening medium, �0. However, in this case, these two lim-
iting results do not constitute the upper and lower bound
limits for the total force as the force ratio f / fvdW exhibits a
nonmonotonic behavior with a local minimum at some inter-
mediate separation between the slabs �Fig. 4�b��.

The special case of a dielectrically homogeneous system,
�1=�2=�m, constitutes another example where annealed and
quenched disorder effects differ on a qualitative level and
may thus be easily distinguished. In this case, the total force
�25� due to quenched disorder vanishes trivially at all sepa-
rations, while the total force due to annealed disorder re-
mains finite. Since the vdW contribution vanishes in a dielec-
trically homogeneous system as well, the total force in this
case comes purely from the electrostatic interactions of an-
nealed charges in the two slabs �Fig. 5�.

V. ASYMMETRIC CASE OF TWO DISSIMILAR SLABS

So far, we have considered only the case of a symmetric
system composed of two identical semi-infinite slabs. In
practice, however, one may often deal with a situation where
the dielectric constant or disorder variance of the two slabs is
different. In this case, the resulting fluctuation-induced inter-
actions may exhibit qualitatively different features as com-
pared with the fully symmetric case that we shall explore
further in this section.
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FIG. 4. �a� Same as Fig. 3�a� but here we fix �p=50,
gs=0, gb=5�10−8 nm−3, and 
=0 and vary the dielec-
tric constant of the intervening medium as �m=2, 10,
20, and 40 �from bottom to top�. �b� Same as �a� but
here we fix the dielectric constant of the slab as �p

=10 and vary that of the intervening medium as �m

=30, 40, 60, and 80 �from top to bottom�. Top dotted
lines correspond to Eq. �37�.

10
-9

10
-8

10
-7

10
-6

10
-5

D/lB

f
l

/S

10 50 100 200 400

100

1

ζ(3)

β
Β3

|
|

FIG. 5. The rescaled magnitude of the �attractive� force, Eq. �30�, between
two identical net-neutral dielectric slabs bearing annealed monopolar charge
disorder in a dielectrically homogeneous system ��1=�2=�m� as a function
of the rescaled distance, D / lB. Here we plot the resulting force for �1=�2

=�m=1, 10, 40, and 100 �from top to bottom� and for uncorrelated bulk
disorder in both slabs with 
=0, gb=5�10−8 nm−3, and gs=0. Top solid
line shows the universal limiting expression �37�.
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A. Interaction between a disordered
and a disorder free slab

Let us first consider briefly the situation where the two
slabs are dielectrically identical, �1=�2 �1=2=�, but
bear different degrees of quenched or annealed monopolar
charge disorder. For the sake of simplicity, let us assume that
one slab is disorder free �g1b ,g1s=0 and 
1=0�, whereas the
other slab contains disorder charges of bulk and surface vari-
ance g2b and g2s and correlation lengths 
2b=
2s=
2 �recall
that in any case, the net monopolar charge in each slab is
taken to be zero�.

This case is particularly interesting because it shows the
interconnection between the disorder and the dielectric inho-
mogeneity in the system. In the quenched case, we find that
the disorder contribution to the total force is nonzero �even
though one of the slabs does not contain any disorder
charges�, and is simply given by half the value obtained in
the fully symmetric case �see Eq. �31�� in the previous sec-
tion if we set g2b=gb, g2s=gs, and 
2=
 �the vdW contribu-
tion is the same in both cases�. This result follows straight-
forwardly from the general quenched expression �25� or Eq.
�A1� �see the Appendix� and again reflects the fact that the
quenched contribution is basically due to the interaction of
disorder charges with their image charges �as these are the
only “charges” with which they are “correlated” across the
intervening gap�. This is why the disorder forces in the
quenched case depend essentially on the dielectric jump
across the bounding surfaces as discussed before.

In the annealed case, the disordered dielectric slab tends
to behave asymptotically as a perfect conductor, while the
disorder free slab behaves as a dielectric material. This low-
ers the magnitude of the maximum net force that can be
achieved in this system as compared with the case where
both slabs bear annealed charges; the latter case is obviously
more favorable thermodynamically as the system can
achieve a lower free energy. The net annealed force in
vacuum still falls between two well-defined limits as shown
in Fig. 6. The two bounding limits are given by

�fvdW� � �fannealed� � �f�� , �41�

where fvdW, Eq. �34�, is obtained in the limit of weak disor-
der or at small separations, and f�, defined as

�f�

S
= −

Li3��
8	D3 , �42�

is obtained in the limit of strong disorder or large separation.
Thus, in marked contrast with the fully symmetric case, we
find that the large-distance interaction here becomes nonuni-
versal and could be either attractive ��0� or repulsive �
�0�. This points to the possibility of repulsive total forces in
the annealed case that will be discussed in the following
section.

B. Nonmonotonic interaction between dissimilar
slabs with ε1<εm<ε2

It is clear that the vdW force �18� becomes repulsive
when the dielectric constant of the intervening medium is
between that of the two semi-infinite slabs, i.e., �1��m

��2 �such a case has been investigated experimentally in
Ref. 15�. However, in this case, the force stemming from the
quenched charge disorder can be attractive and thus, if
present, may compete against the repulsion due to the vdW
forces. In order to investigate this situation further, let us first
consider the case of an uncorrelated disorder by setting the
disorder correlation lengths equal to zero. Also without loss
of generality, we assume that the slabs contain only
quenched bulk disorder with equal variances g1b=g2b=gb in
the two slabs. The net quenched force in this case reads

�fquenched

S
= −

Li3�12�
8	D3 −

gb�B�

2��1 + �2�D
, �43�

where we have defined

� =
��1 − �m�
�2 + �m

+
��2 − �m�
�1 + �m

. �44�

Obviously, the contribution from bulk disorder �second term
in Eq. �43�� can change sign as the dielectric constant �m is
varied in the range �1��m��2, while the vdW term �first
term� remains always repulsive. It is easy to see that for �m

→�1, we have ��0 and thus an attractive disorder force,
and for �m→�2, we have ��0 and thus a repulsive disorder
force. This behavior is shown in Fig. 7�a�, where �1=5 and
�2=50 are fixed and �m varies in the range �m=10, 15, 25,
and 40 �dashed curves from bottom�. In accordance with our
findings in the symmetric case, the large-distance behavior is
always dominated by the disorder contribution �as the disor-
der force decays more weakly with the separation�, while the
repulsive vdW force in this case plays the role of a stabiliz-
ing force at small separations.

The resulting effect is that the total force varies non-
monotonically and vanishes at a finite distance, D0, between
the two slabs given in the present case by

D0
2 = −

Li3�12�
4	gb�B�

��1 + �2� . �45�

This represents a stable “equilibrium” separation �bound
state� between the two slabs corresponding to a minimum in
the interaction free energy. On the other hand, the maximum
attractive force due to the influence of quenched disorder is
reached at a larger separation,
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FIG. 6. Same as Fig. 3�a� but for two dissimilar dielectric slabs in vacuum
��m=1� with one slab being disorder free �g1b ,g1s=0, 
1=0� and the other
slab containing annealed charge disorder of variance g2b=5�10−8 nm−3,
g2s=0. Here, we fix �p=10 and vary the disorder correlation length as

2 / lB=0, 200, 103, and 104 �from top to bottom�. The results in this case are
bounded by the limiting values given by Eqs. �34� and �42� �solid lines
labeled by Li3�2� and Li3��, respectively�; see Eq. �41�. The top solid line
�labeled by ��3�� is from Eq. �37�.
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Dmax = �3D0. �46�

These results may be used to optimize the thickness of the
intervening medium in order to achieve the maximum or
minimum force magnitude between the slabs.

In the presence of a correlated disorder, the disorder-
induced effects weaken �Sec. IV A�, and thus, as the disorder
correlation is increased, the attractive tail as well as the
stable bound state is gradually washed out as shown in Fig.
7�b�.

We find similar features when the disorder charges are
annealed as seen in Fig. 7�c�. However, in line with our
finding in the symmetric case, the net force falls off more
rapidly with the separation when the disorder charges are
annealed. The large-distance behavior coincides again with
the universal expression �37� and can be much larger in mag-
nitude than the pure vdW force �18� when �m tends to the
larger dielectric constant �2 as shown in the inset of Fig.
7�c�.

C. Nonmonotonic interaction between dissimilar
slabs with ε1 ,ε2<εm

In the case where the intervening medium has a higher
dielectric constant than the two slabs, �1 ,�2��m, the vdW

effect leads to an attractive force between the two slabs, Eq.
�18�, which again dominates at small separations. If the dis-
order is quenched, the force generated by the disorder can
become repulsive and thus lead to a potential barrier and a
long repulsive tail at large separations. This is shown in Fig.
8�a�, for the case of two slabs with uncorrelated bulk disor-
der of equal variances �g1b=g2b=gb�, where we have fixed
�1=15 and �2=25 and vary �m in the range �m=30, 40, 60,
and 100 �dashed curves from bottom�. The total force, in this
case, is given again by Eq. �43�. Note that the disorder-
induced force �second term� is always repulsive in the case
with �1 ,�2��m �i.e., ��0�. Thus, the separation distance
D0, Eq. �45�, corresponds to an unstable equilibrium distance
between the two slabs, and Dmax gives the distance at which
the maximum repulsive force due to the influence of
quenched disorder is achieved.

The above features change dramatically if the disorder
charges are assumed to be annealed. In fact, the net annealed
force appears to follow a trend similar to what one expects
from the pure vdW force, i.e., in contrast with the quenched
case, the net annealed force turns out to be attractive and
vary monotonically with the separation �Fig. 8�b��. However,
the ratio of the net force to the vdW force �18� shows that the
relative magnitude of the force can vary nonmonotonically
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FIG. 7. �a� The rescaled total force, �flB
3 /S �Eq. �25��, between two dissimi-

lar net-neutral dielectric slabs interacting across a medium of dielectric con-
stant �m varying in the range �m=10, 15, 25, and 40 �dashed curves from
bottom�. Here, we have fixed the dielectric constant of the slabs as �1=5 and
�2=50, which contain uncorrelated quenched disorder �
1=
2=0� of fixed
disorder variances g1b=g2b=5�10−8 nm−3 and g1s=g2s=0. Inset shows a
closer view of the region around the minimum. �b� Same as �a� but plotted
for correlated quenched disorder. Here, we fix �m=20 and vary the correla-
tion length as 
 / lB=0, 20, 100, 500, and 104, which is taken to be equal in
both slabs 
1=
2=
. Inset again shows a closer view of the region around
the minimum. �c� Same as �a� but for �uncorrelated� annealed disorder ob-
tained from Eq. �30� for �m=10, 20, and 40. Inset shows the ratio of the total
force to the pure zero-frequency vdW force �18� in the absence of charge
disorder for a wider range of separations. The horizontal dotted lines show
the limiting expression �37�.

10 15 20 25 30

0

2E-06

4E-06

0 100 200 300 400
-1E-06

0

1E-06

2E-06

3E-06

4E-06

5E-06

D/lB

β
fl

/S
B3

a)

10
1

10
2

10
310

-1

10
0

10
1

f
f v

d
W

/

-6E-08

-5E-08

-4E-08

-3E-08

-2E-08

-1E-08

0

fl
/S

β
Β3

D/lB

4003002001000

b)

10
1

10
2

10
3

-10

-5

0

f
f v

d
W

/

0 100 200 300 400
-1E-07

0

1E-07

2E-07

3E-07

D/lB

fl
/S

β
B3

c)

FIG. 8. �a� The rescaled total force, �flB
3 /S �Eq. �25��, between two dissimi-

lar net-neutral dielectric slabs interacting across a medium of dielectric con-
stant �m varying in the range �m=30, 40, 60, and 100 �dashed curves from
bottom�. Here, we have fixed the dielectric constant of the slabs as �1=15
and �2=25, which contain uncorrelated quenched disorder �
1=
2=0� of
fixed disorder variances g1b=g2b=5�10−8 nm−3 and g1s=g2s=0. Inset
shows a closer view of the region around the maximum. �b� Same as �a� but
for annealed disorder obtained from Eq. �30�. Inset shows the ratio of the
total force to the vdW force �18� for a wider range of separations; here the
horizontal dotted lines correspond to Eq. �37�. �c� Same as �a� but for one
slab being disorder free �g1b=g1s=0, 
1=0� and the other slab containing
annealed charge disorder of variances g2b=5�10−8 nm−3 and g2s=0
�dashed curves from top correspond to �m=30, 40, 60, and 100�. Inset shows
the ratio f / fvdW for a wider range of separations; the horizontal dotted lines
correspond to Eq. �42� where  should be replaced by 1
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and deviate significantly from the underlying vdW force
�Fig. 8�b�, inset�. In particular, one observes that the relative
net force may be enhanced here by an order of magnitude at
large separations. This is again due to fluctuations of an-
nealed charges that can redistribute in the slabs in such a way
as to minimize the free energy and thus favor a higher attrac-
tive force.

In the preceding discussion, we assumed that the two
slabs have similar annealed disorder variances, which leads
to a purely attractive force between the slabs for �1 ,�2��m.
It turns out that the annealed disorder can also lead to a
repulsive force in this case, provided that the charge is dis-
tributed asymmetrically between the two slabs. In Fig. 8�c�,
we show the results for the case where one of the slabs is
disorder free, but the other slab contains annealed charge
disorder of finite variance. As seen, one can achieve an in-
teraction �potential� barrier even with the annealed charges.
This effect is stronger when �m is smallest and disappears
when �m→�.

VI. DISCUSSION

In this paper, we have shown that the effective interac-
tion induced by the quenched or annealed monopolar charge
disorder can give rise to various novel features in the overall
interaction between two net-neutral semi-infinite dielectric
slabs depending on the detailed assumptions about the disor-
der and the dielectric inhomogeneities in the system. The
quenched case and the annealed case of disorder differ in the
sense that in the former the disordered charges are frozen and
cannot fluctuate, while in the latter, the disordered charges
are subject to thermal fluctuations and adapt themselves to
minimize the free energy of the system. Our analysis is based
on recent developments, which unify the salient features of
the zero-frequency vdW interaction and the physics of the
charge disorder.8,12,13 Based on these developments, we ar-
gue that in the case of two dissimilar slabs, the charge
disorder-induced electrostatic interaction can have an oppo-
site sign to the zero-frequency vdW interaction and can thus
give rise to a nonmonotonic net interaction between the
slabs. The most surprising features of our analysis pertain to
the case of disorder-induced interactions across a medium of
higher dielectric constant than that of the two slabs. In this
case, the net force may become strongly repulsive and can
lead to a potential barrier for stiction when combined with
the attractive vdW force. In the opposite case, where the
intervening medium has a dielectric constant in between that
of the two slabs, the disorder may generate a long-range
attraction, which opposes the repulsive vdW force and can
thus promote a stable bound state for the two bounding di-
electrics. These salient features of the disorder-induced inter-
actions are due to the slower decay of these interactions and
their stronger dependence on the dielectric inhomogeneities
in the system as compared to the corresponding vdW inter-
action.

This comparison between the disorder-induced and the
classical zero-frequency vdW interaction is in order since
both of them are expected to be valid in the regime of large
intersurface separations �or high temperatures� as considered

in this work and that is also most relevant to recent
experiments.6 The precise correction presented by the higher-
order Matsubara frequencies25 is highly material specific, but
its magnitude �relative to the zero-frequency term� is typi-
cally small for the most part of the separation range consid-
ered here and remains negligible in comparison with the dis-
order effects.

The nonmonotonic interactions predicted within our
model emerge in highly asymmetric systems where the slabs
and the intervening medium have different dielectric con-
stants. In fact, an experimental investigation of the Casimir-
vdW interactions in such systems has been made possible
recently,15 which could facilitate the study of possible
disorder-induced effects in these systems as well. On the
other hand, recent ultrahigh sensitivity experiments in vacuo
have revealed the existence of long-range anomalous forces
that have been related to electrostatic disorder effects.6 For
the experimental sphere-plane geometry,6 a naive application
of the proximity force approximation5 to the results derived
above for uncorrelated disorder would lead to forces with the
leading behavior �ln D+O�D−1� in the quenched case �from
Eq. �32�� and �D−2+O�D−3� in the annealed case �from Eqs.
�39� and �40��. Thus, an effective scaling exponent �defined
as D−�� of ��1 �consistent with recent experimental
observation6 of a residual electrostatic force scaling as D−0.8�
may be obtained in the quenched case, both with the bulk
disorder �plane-plane and sphere-plane geometry� and the
surface disorder model �sphere-plane geometry� in the re-
gime where the disorder correlation length is relatively
small. A more detailed comparison with force measurements
should be attempted once the experimental and methodologi-
cal uncertainties surrounding experiments are sorted out.6

In general, the impurities carrying the monopolar charge
disorder can make contributions to the dielectric constant of
the material through their intrinsic polarizability. This may
renormalize the dielectric constant, but otherwise, the gen-
eral expressions we have obtained remain intact. It should be
noted, however, that the density of such impurity charges is
very small in many realistic situations relevant to our study,
and we have consistently used disorder concentration of
�much� less than 10−7 e0 /nm3 throughout the paper.24 The
charge disorder effects are still considerable at these concen-
trations, but any renormalization of the dielectric constant
will be negligible.

Being disorder-induced, one should be in principle also
able to compute the corresponding statistical moments of the
disorder-induced forces averaged over the disorder
realizations.26 Note that these fluctuations over the disorder
will be different from the thermal fluctuations of the Casimir
force studied in Ref. 27, which are present even in the ab-
sence of disorder.
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APPENDIX: GENERAL EXPRESSION FOR THE
FORCE IN THE QUENCHED CASE

In the general case where the two slabs �labeled by i
=1,2� have different dielectric constants and charge disorder
parameters, we can write the total force, Eq. �25�, as a series
expansion in powers of 
i� /D �for the bulk and surface dis-
order, �=b ,s�, i.e.,

fquenched = f �0� + �
n=1

�

�f1
�n� + f2

�n�� , �A1�

where we obtain

�f �0�

S
= −

g1b�B��2 + �m�2

2��1 + �m���1 + �2�D
−

g1s�B�m�ln�1 − 12��
��1 + �m�21D2

−
g2b�B��1 + �m�1

2��2 + �m���1 + �2�D
−

g2s�B�m�ln�1 − 12��
��2 + �m�22D2

�A2�

and

�f1
�n�

S
= −

2g1b�B�m

��1 + �m�21D
�
n=1

�

�− 1�n 
1
2n

D2nC2n+1Li2n�12�

−
4g1s�B�m

��1 + �m�21D2 �
n=1

�

�− 1�n 
1
2n

D2nC2n+2Li2n+1�12� ,

�A3�

where Cn=��n� /2n. The expression for f2
�n� is obtained sim-

ply by replacing the subindex 1 with 2 and vice versa.
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