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A functional integral representation of the grand canonical classical statis- 
tical integral for the inhomogeneous Coulomb fluid is derived. The charged 
species are confined between two interfaces, also defining the dielectric 
inhomogeneity in the system, bearing constant surface charges. The ther- 
modynamic potential is obtained in a closed form if the Gaussian approxima- 
tion for the fluctuations around the mean electrostatic potential is used. The 
formalism embodies the mean field (Poisson-Boltzmann) terms generalized 
by the presence of image interactions plus the correlation (fluctuation) terms, 
which give significant correction to the classical expressions for the force 
between charged interfaces. The numerical results for a counterion-only 
system with charged surfaces are treated in detail and compared with 
simulation data. 

An accurate description of the forces between charged dielectric bodies in an aqueous 
ionic solution is of paramount importance in assessing the stability of (bio)-colloidal 
systems. The standard Derjaguin-Landau-Verwey-Overbeek (DLVO) approach' was 
the first succesful theory in interpreting the measured forces between charged dielectric 
bodies in aqueous solution. It is based on the assumption that all the forces derive their 
origin from the fixed and fluctuating charges in and/or on the dielectrics involved. We 
shall not try to improve [as in ref. (3)] this basic assumption, but shall dwell on another 
problem that has recently received much attention, viz. on the consistent statistical- 
mechanical formulation of the (bio)-colloidal interaction problem. The reference model 
system of DLVO theory is the ionic solution, where the solvent is treated as a structureless 
continuum with a given dielectric constant. In simulation studies4 this reference model 
system was found to exhibit a strong interaction due to counterion correlations that can 
even reverse the sign of the force between two charged surfaces, effectively leading to 
an attraction at small intersurface separations. This type of correlation effect cannnot 
be explained in the frame of the simple mean-field type Poisson-Boltzman (PB) theory. 
This observation gave rise to a new approach to the colloidal interaction problem which 
avoids th i  drawbacks of the mean-field arguments and has the same level of accuracy 
as the usual integral closure approximations in the bulk liquid-state t h e ~ r i e s . ~  The 
agreement reached between the simulation studies and the results of the Kjellander- 
MarEelja (KM) theory6 for the total force between charged planar surfaces immersed 
in a counterion solution is satisfactory, yet a few questions have remained unclarified. 

The standard theory with which the simulation or KM results have been compared 
is the (by now classical) non-linear Poisson-Boltzmann theory. In the case of the 
interaction of two equally charged planar surfaces the PB theory will always lead to a 
repulsion, while in the frame of the DLVO theory the attraction is provided solely 
through the van der Waals forces, possibly modified by the presence of the electrolyte 
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612 In h o m ogen eous Cou lorn 6 Flu id 

between the surfaces.’ It is not clear whether the van der Waals contribution to the free 
energy, reflecting the fluctuations (correlations) of the local electrostatic potential around 
its equilibrium value (assumed to be zero in Lifshitz theory), of an inhomogeneous 
Coulomb liquid should be added to the PB free energy or not. The first question we 
wish to answer here therefore concerns the status of the van der Waals forces in 
calculations of the free energy of the inhomogeneous Coulomb fluid. The level of 
accuracy reached in the free-energy calculations in the frame of the KM theory is 
advanced, but so is the general numerical complexity if we compare it to the complexity 
of the simple PB theory. However, what is more important for the colloid stability 
problems is the question of whether the KM approximation scheme (the mixture 
formulation) will work in any other geometry except the planar one. We think it would 
be valuable to have an approximate theory that would lie in between the simple PB 
approach (as regards the numerical complexity) and the advanced theory (as regards 
the qualitative nature of the predictions). We will therefore inquire whether such an 
approximate theory can be constructed and whether it can be regarded as a type of 
interpolation between the PB and KM theories. We shall start our investigation with 
the classical grand partition function for an inhomogeneous Coulomb mixture confined 
to the space between two charged planar surfaces also defining the dielectric discontinuity 
of the system. Further, we shall rewrite the classical grand partition function in the 
form of the functional integral and develop the ‘action’ up to second order around its 
stationary value. We shall show that its extremum corresponds to the PB approximation, 
while the second-order Gaussian integral leads to an attractive contribution to the 
thermodynamic potential, generalizing the usual notions of the van der Waals forces. 
The part of the thermodynamic potential due to fluctuations (correlations) of the local 
electrostatic potential around its stationary value can be obtained in closed form using 
the WKB approximation. 

In the second part of our paper we consider in more detail two examples of our 
general results: a uni-univalent inhomogeneous electrolyte and a Coulomb system with 
only counterions present. We derive in closed form the thermodynamic potential of a 
limiting case for the first example and give full numerical results for the second. Finally 
we discuss the drawbacks and virtues of the theory presented. 

The general line of development of our view bears some resemblance to the work 
of Barnes and Davies,8 but we should point out that, contrary to our development, 
where the PB approximation is derived in a natural and consistent way with due attention 
being paid to the inclusion of image interactions on all levels of calculation, they take 
account of the images when deriving the response operator, but not in the PB equation 
itself. Such a procedure leads to severe inconsistencies in their final results, amounting 
to a curious situation that some of their formulae are correct and some are false. The 
primary reason for this situation lies in the fact that the image interactions have not 
been and cannot be treated properly in their approach. We shall give some further 
comments on their work in passing. 

Grand Partition Function of the Inhomogeneous Coulomb Fluid 

Our model system is composed of M charged species, with charges e, each containing 
N ,  point particles ( a  = 1 to A4 with C a  N,  = N ) ,  confined between two plane-parallel 
charged walls at z = * u  (fig. 1 ) .  The dielectric constants of the two walls are equal ( E ’ )  

and the dielectric constant of a structureless solvent is E. The electrostatic potential 
energy of two unit charges at r = (x, y ,  z )  and r’ = (x’, y’, z’) ,  u(  r, r‘) ,  in a pure Coulomb 
fluid is given by the solution of the Poisson equation of the form 

for (z l , lz ’ l<  a, with go the permittivity of free space and S the Dirac delta function. For 
-E&,V2u(r, r ’ )  = S ( r - r )  ( 1 )  
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Fig. 1. Inhomogeneous Coulomb fluid in the plane-parallel geometry. The dielectric constant of 
the structureless solvent is E ,  while both walls at z = * u  have the same dielectric constant E ’ .  The 

fixed external charges are situated at the surfaces of dielectric discontinuities. 

Izl> a the source term in eqn (1) is absent and E is substituted by E’ .  In the plane-parallel 
case which we consider here the interparticle potential exhibits translational invariance 
only in the transverse (x, y )  direction [with p = (x, y)  the transversal radius vector]; 
therefore we can write it in the form’ 

where Jo(x )  is the zero-order cylindircal Bessel function, while u(  Q;  z, z’) can be written 
in the form’ 

U ( Q ;  z, 2’ )  = ( ~ E E ~ ) - ’  [exp (-0 Iz - z’ l)  + ~’“(0; z, z ’ ) ] .  ( 2 6 )  
The first term in the above expression corresponds to the electrostatic potential energy 
of two unit point sources at r and r’, while the second term is. the contribution of the 
induced surface charges obtained by the application of the boundary conditions for the 
continuity of potential and dielectric displacement. The calculation is straightforward 
and gives’ 

2 f f  2 f f  
cosh ( Q z )  cosh (Qz’) + uim( Q ;  z, z’)  = sinh (Qz)  sinh (Qz‘) 

exp ( 2 Q a )  - a exp ( 2 Q a )  + LY 

(3)  

2 f f  2 f f  
cosh ( Q z )  cosh (Qz’) + uim( Q ;  z, z’)  = sinh (Qz)  sinh (Qz‘) 

exp ( 2 Q a )  - a exp ( 2 Q a )  + LY 

(3)  
with a = ( E  - E ’ ) / ( E  + E ‘ ) .  We can accordingly split the total interparticle potential into 
the point-charge and image contributions: 

u(  r, r’) = u’( r, r’) + Ui“( r, r ’ ) .  (4) 

In case there is no external field acting on the charges in the system the interaction 
energy UN can be written as 

The indices k and I run over all the particles in the system so that for 1 k N, we 
have ek = e, for N ,  d k d Nb ek = eh etc. The prime in the first sum means that all the 
k = 1 terms have to be omitted. Generally the surfaces with fixed charges on them 
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614 Inhomogeneous Coulomb Fluid 

contribute an external electrostatic potential [ +o( r)] in which the charged particles move. 
With no loss of generality we shall assume that in the intersurface space this external 
potential obeys the Laplace equation: 

V2+,( r )  = 0. (6) 

uN = i x  ekelu(rk, r l ) - i x  N,e;u’(r, r ) + $ C  eiu im(rk ,  r k ) + c  ek+O(rk)+ u0. (7) 

Uo is the self-energy of the external field, which in the purely electrostatic case can be 
written as 

In this case the total potential energy can be rewritten as 

k, I a k k 

(8) 

with Eo = -grad +,, and the range of integration encompassing the whole intersurface 
region, the region beyond the surfaces contributing only a constant term independent 
of the intersurface distance. The classical statistical integral is now 

If we combine the third and fourth terms in eqn (7) into an effective external potential 
composed of the image and the true external potential: 

(10) +:f ( r k )  = @O(rk)+iekuim(*k, rk) 

we get 
M 

exp(-PUN)=exp [ - ipx k, 1 e k e l u ( h , r l ) - P x e k + ~ f ( r k ) - p u O ]  k a = l  n ( Z : I N a -  ( 1 1 )  

p is the inverse thermal energy (P - ’  = k T )  and 

zI,=exp(Pp:); pL=1 2eau ’ ’ ( 4  4. (12) 

Expression (12) clearly diverges [since u’( r, r )  is a divergent quantity], but we will show 
later that this divergence is effectivelly cancelled by the other divergences due to the 
long-range nature of the Coulomb potential. 

Our further development of the expression for the partition function is based on the 
formal identity (see Appendix I) 

where the triangular brackets denote the averaging over a Wiener measure of the form 

( f ( rk ) )  = (det 8)1/2(2fl)1/2N l N e x p  [ - iZ  k, I 8 k , l + ( r k ) + ( r l ) ] / ( r k ) d 9 ( r l ) .  * *d+(rN) (14) 

with a covariance determined by the interparticle potential (see Appendix 11): 

Bk, l=Pu- l ( rk ,  r l ) -  (15) 

Taking into account eqn (13) we obtain the partition function (9), formally expressed as 

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

M
as

sa
ch

us
et

ts
 -

 A
m

he
rs

t o
n 

09
 F

eb
ru

ar
y 

20
12

Pu
bl

is
he

d 
on

 0
1 

Ja
nu

ar
y 

19
88

 o
n 

ht
tp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/F

29
88

84
00

61
1

View Online

http://dx.doi.org/10.1039/f29888400611


R. Podgornik and B. Zeki 615 

with CPo = - i  4Ef. The averaging over the Wiener measure (14) has clearly made it 
possible to express the partition function as an average of M independent terms. This 
fact can be further exploited if we compute the grand canonical statistical integral: 

where the absoute activity (z,, a = 1 to M )  and chemical potential ( p a )  are connected by l o  

za =exp ( ~ n / k T ) -  (18) 
In eqn (17) we have skipped the part of the configuration integral comming from the 
integrations over all the momentum variables since it is irrelevant for our subsequent 
discussion. Combining now eqn (16) and (17) with the definition 2, = z,zL we get 

M 

E = exp (Fa  exp {ipea[4(r) - Q o ( r ) ] }  d3r)) (194 
a = l  

while writing the average over the Wiener measure (14) in an explicit way leads to the 
grand canonical statistical integral in the form 

E = A I exp [ -$ I +(r)u-’(r, r ’ ) 4 ( r ’ )  d3r d3r’+ V ( r )  d3r-PUo 9 d+(r )  I 1 
with 9 d + ( r )  =lim ( N - , w )  d$(r,) d4(r2).  - - d4( rN)  

M 

a = l  

and 

A = [det @-‘(r, r’)]1’2/(27r)1/2N. (21) 
The expressions (19) are generalizations of the result first obtained by Edwards” for 
the homogeneous Coulomb fluid. We have nevertheless given the full derivation, since 
Edwards’ result cannot be directly applied to our model system. The functional integrals 
(19) cannot be evaluated exactly, since V( r) is not a Gaussian (second-order) function 
of ~ $ ( r ) ,  while only the Gaussian integrals can be evaluated explicitly (this remark does 
not apply to the one-dimensional case).” We therefore have to resort to a type of 
approximation procedure that would make the evaluation of eqn (19) possible. 

The standard problem connected with the use of the grand canonical ensemble 
now remains, uiz. to connect the absolute activity with the density of the species. We 
can either impose some assumed dependence of Na on pa or hold our system in 
equilibrium with a large reservoir with a fixed total number of particles.* Here we shall 
tacitly assume that the connection between Na and pa is known. 

The Extended Poisson-Boltzmann Approximation 

Expression (19) reveals that the grand canonical statistical integral is simply a sum over 
all the possible spatial profiles + ( r )  (‘paths’)13 of the form: 

c 
all spatial profiles of &(r) 

where, by analogy with Feynman’s approach to quantum mechanics, S can be termed 
the ‘action’, given by 

S = i p  J c$(r)u-’(r, r’)c$(r’) d3rd3r’- V ( r )  d3r+pUo.  I 
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616 Inhomogeneous Coulomb Fluid 

The most important contributions to the sum (22) come from the spatial profiles of +( r )  
which minimize the action S. The deviations from the stationary profile of # ( r )  can be 
approximately taken into account by developing the action around its stationary value 
up to the second order in deviations. In the l i t e ra t~re’~  this approximation is called the 
Pauli-Van Vleck approximation, but in the present context we propose the name 
‘extended PB approximation’, for the reasons that will become apparent later. This 
approximation is expected to give correct results for small deviations. For large devi- 
ations, Le. when it gives large corrections to the PB approximation, the extended PB 
approximation is only qualitatively correct, and more sophisticated theoretical methods 
should be used. 

If we denote by S@(r )  the deviation (fluctuation) of + ( r )  from the profile that 
minimizes eqn (23) we obtain to second order: 

where the subscript 0 means that the corresponding expression has to be taken at 
+( r )  = @( r )  with @( r )  the stationary profile satisfyimg the Lagrange equation, uiz. that 
the first functional derivative of the action be zero: 

M 

($)o= -p I u-’(r,  r’)@(r’)  d3r’+ip C fae: e~p{ipe~[@(r)-@~(r) ]}=O.  (25) 
a 

Since what remains in eqn (24) is only a quadratic functional of S@(r)  the functional 
integral (19) can be evaluated explicitly. As the second functional derivative can be 
obtained in the form 

we finally obtain (see Appendix 111) 
E ={det [ l+pW,(r ’ )u(r ,  #) ] } - ‘ I 2  

xexp (-$ I \ @(r)u-’ (r ,  r’)@(r’) d’rd’r’+I Vo(r) d3r-pU0) (27) 

with 1 denoting the matrix unity, uiz. the Dirac delta function, while the functions Vo 
and Wo can be given in an explicit form: 

Since we now 
proceed to the 
relationship” 

have an explicit form of the grand canonical statistical integral we can 
calculation of the thermodynamic potential. It is defined by the standard 

R = -kT In E. (29) 

u-yr, r’) = -&&,V2S(r-r’) .  (30) 

Before writing eqn (29) in an explicit form we recall (Appendix 11) that 

Furthermore, we make a transformation of variables @ +  i+, and <Po can be expressed 
by +zf as Q0 = -i+Ef. We also introduce the average electrostatic potential due to the 
ion cloud composed of the stationary potential and the external potential: 

+=*w = $44 + +:‘w (31) 
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R. Podgornik and B. i e k i  617 

Taking account of eqn (6) we can first write eqn (25) in the more familiar form: 
M 

- E E ~ V ~ ~ " ' ( ~ )  = C Tueu exp {-peU[4"'(r)] +$euuim(r, r ) }  
U 

which is the non-linear PB equation with the contribution of the image forces included 
in a consistent way. The same equation was derived for the one-component case in ref. 
(5) by a different route. Now we observe that both eqn (27) and (32), and therefore 
also eqn (29), are functions of Ta that contains the divergent quantity p: defined in eqn 
(12). 

The thermodynamic potential (29) should be a function of the chemical potentials 
defined in eqn (18) only, whereas in our case it is a function of the sum p,+p:,  the 
standard chemical potential plus the self-energy defined in eqn (12). To make eqn (29) 
dependent on pa only we shall make a Legendre transformation: 

where the transformed thermodynamic potential is now a function of pa only. The 
explicit form of eqn (33) is derived in Appendix IV. Taking into account the continuous 
form of the matrix identity (A3.4) the transformed thermodynamic potential can be 
finally obtained in the form: 

r r r 

J (grad 4ci)2 d3r-kkT Vo(r)  d 3 r + ~ ~ 0  @"grad 4" n d S +  J R = +&EO 

* + i k  T Tr In [ 1 + p Wo( r ') u ( r, r ' ) 3 - $k T Tr ( p Wo( r ) u ( r, r ' ) (34) 
with n the surface normal and d S  an area element. The operator Tr is defined as the 
sum (integral) over all the diagonal elements of the function on which it is operating. 
Wo and Vo are given by definitions (28) with the transformed potential Q, --* i+ and 
Q0-+ -i4zf. The form of the thermodynamic potential given above was derived under 
the additional constraint, uiz. that 4( r) should satisfy the boundary condition grad 4 . n = 
0 on the bounding surfaces of the system. This form of the boundary condition is a 
consequence of the fact that at the boundary the electric field due to the ion cloud is 
determined only by the external charges, since there is no absorption of the ions to the 
surfaces. 

In the first three terms of eqn (34), or in So of eqn (24), we can now recognize the 
usual PB expression for the thermodynamic potential of the inhomogeneous Coulomb 
fluid. It differs from the standard expression of the PB theory only due to the inclusion 
of the image forces. 

The reason for terming our approximation procedure the extended PB approximation 
will now emerge. The extremum condition for the action in the functional integral (22), 
viz. eqn (25), is the PB equation (with image interactions included), while the quadratic 
deviations from the stationary potential profile giving the fourth term in eqn (34) will 
be shown to lead to a generalization of the usual notion of the van der Waals force. 
While it is clear that the PB terms lead to a repulsive interaction between charged walls, 
the fluctuation (correlation) terms in the thermodynamic potential provide an attractive 
interaction. 

Since eqn (32) also presents a generalization of the standard PB equation owing to 
the presence of the image terms we shall now dwell on some immediate consequences 
of this fact. In plane-parallel geometry 4" depends only on the longitudinal coordinate, 
uiz. 4"( r )  = z), which is consistent with the Neumann boundary conditions discussed 
above. We now multiply eqn (32) by d+"/dz and integrate over z, obtaining 

+ E E ~ ( ~ )  d4"  - k T Y , , ( z ) - ~ ~  Wo(z) ( du'"(z, dz z) ) dz=const. 
(35) 
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618 Inhomogeneous Coulomb Fluid 

Ignoring the image terms, this is the usual result for the first integral of the standard 
PB equation. 

If we denote by p the local pressure in the space between the charged walls, the 
local balance of forces demands that the sum of dpldz, the density of force due to 
the field of the ion cloud and the density of force due to the image field, be zero. The 
balance of forces can therefore be written in the form 

with p,(z) the local charge density of the ath species that can be obtained directly from 
eqn (32) in the form 

p,(z) = z,e, exp (-pe,[+“’(z)+te,uim(z, z)]}. (366) 
From the force balance equation the standard procedure2 leads us to the osmotic pressure 
of the charged species in the intersurface space: 

Posm = kTV,( z = 0) .  (37) 
This is the usual Langmuir expression, with the image contribution implicitly included. 
The unknown constant in eqn (35) can now be determined so that the first integral of 
eqn (32) is given by 

~ & E O ( = )  d+“’ - ~ T V O ( Z ) - - ~ \ ~ ’ W ~ ( Z ) (  duim(z, dz z) )dz=-Pos., 

while the contact condition1’ can be easily obtained in the form 

Po,, = kTV,( a )  -+(a’/ EEO) + ; \: Wo(z) ( dui;F ‘I) dz (39) 

where u is the surface charge density. We now turn to the contribution of the thermody- 
namic fluctuations. 

The WKB Approximation 
Let us now dwell on the contribution of the fluctuations around the mean electrostatic 
potential to the thermodynamic potential. It is given by the last two terms in eqn (34). 
To evaluate the part of the thermodynamic potential due to fluctuations we use the well 
known matrix identity14 

Tr In [ 1 + p Wo( r ’) u ( r, r ’) J = Tr dpR, ( r, rr ) I% 
where RP( r, r’) is the resolvent operator, defined by 

R, ( r, r’) = Wo( r‘) u ( r, r’) - p Wo( rr’) u ( r, r’‘) R, ( rrr, r’) d3 r”. (41) 5 
Since for 121 s a, u( r, r’) satisfies the Poisson equation, we can operate on eqn (41) with 
the Laplace operator, which leads us to the following expression: 

EEoV R, ( r, r ’ ) - p W0( r ) R, ( r, r ’ ) = - W,( r ’ ) 6 ( r - r ’ ) . (42) 
It can be shown that R,(r, r’) satisfies the same boundary conditions as u(r,  r’.), and 
for IzI> a it satisfies the sourceless Laplace equation. In eqn (42) we can immediately 
recognize the equation for the screened electrostatic potential with a position-dependent 
value of the local Debye screening length plus the source term on the right-hand side. 
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R. Podgornik and B. Zeki 619 

Since the solution of eqn (42) is translationally invariant in the ( x , y )  plane in the 
plane-parallel case, we can express it in the form 

R p ( 4  r’) = ( 2 d - l  rJQ; z, Z’)JO(QlP 7’1) dQ (43 1 

and obtain, instead of eqn (42), 

-u2(z)rp(Q; z, z’) = -[ W,(Z‘)/&&o]S(Z-Z’) d2rp(Q; z, z’) 
(44) dz2 

with u2(z) = Q’+[p W o ( z ) / ~ ~ O ] .  For IzI > a, rp satisfies the ordinary Laplace equation: 

There exists no general analytic solution of eqn (44), so we must resort to additional 
approximations in order to solve it. The most straightforward one is the standard WKB 
schemeI6. In the WKB scheme the solutions of the sourceless eqn (44) are given asI6 

r p ( Q ;  z , z ’ ) = [ F , ( Q ; ~ ’ ) / u ( ~ ) ~ / ~ ] e x p  [ -1; u(z’)dz’] 

[I: 1 
( 4 6 4  

r p ( Q ;  z,z’)=[F2(Q; z’)/u(z)”’]exp + u(z’)dz’ (466) 

while the particular solution of the complete inhomogeneous equation is 

r p ( ~ ;  z, z’) = [ ~ o ( z r ) / 2 ~ ~ o ~ [ u ( z ) u ( z ’ ) 1 - ’ / 2  exp ( - 11: u(z”) dz’’1). (47) 

For Izl> a the two solutions of eqn (45) are 

rJQ; z, z’) = [WQ; Z’)/2E’EOI exp [Q(z+ 4 1  
r&?; z, z’) = [mQ; Z’)/2E’EOI exp [-Q(z- 4 1 .  

( 4 8 d  

(486) 

The functions Fi(Q, z’), i = 1-4, are obtained from the matching conditions at the 
boundaries z = f a .  The solution of eqn (42), which we need in order to evaluate eqn 
(40), can be obtained in the form: 

rp( Q; z, z’) = A [ exp ( - I u(  z”) dz” I)] 
+ B [ exp (I-: u (  z’) dr) cosh (I-: u(  z”) dz”) 

+ a cosh ( u(z”) dz”)] 

with the following abbreviations: 

A = [ W o ( z ’ ) / 2 ~ ~ o ] [ u ( z ) u ( z r ) ] - ” ~ 2  

B =  
2 a  exp (-2 u(z‘) dz’) 

-a 
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and 

Inhomogeneous Coulomb Fluid 

E U (  a )  - E’Q 
a =  (50) 

& U ( U ) + & ‘ Q ’  

In order to evaluate Tr Rp(r,  r’), which we will need in eqn (40), we first require 

with 
r/L(Q; z, 2) = [ WO(Z)/2EEO4Z)I(1+ C{exp “ 4 1  cash “z)+ 4)) (51) 

C = 2cu exp [ -2A( a)]/{ 1 - cu2 exp [ -2A( a)]} 

A( z) = [-: u(  z‘) dz’. 

The calculation of the trace term (40) is now straightforward. Taking into account the 
transformation (43) we arrive at 

d p  4 A r ,  r’) = ( S / 2 d  loa 0 d Q  I p  d P  Tr rJQ; z, 2‘) 
Tr 1p (52) 

where S is the area of the bounding surface. An explanation of the range of integration 
of Q is appropriate at this point. Since the interaction energy, eqn ( 5 ) ,  contains no 
repulsive component at small interparticle distances, the thermodynamic potential con- 
tains an essential divergence.” This divergence may be traced to the integral (52), which 
clearly diverges at the upper limit of integration of Q. To include the repulsive component 
of the interaction energy in an approximate manner we shall use a standard procedure’ 
and replace the upper limit of integration in eqn (52) by the cut-off 1/  6, with b of the 
order of the hard-core radius of the charged species, whenever we encounter a divergent 
integral. 

Proceeding with our development we first note the simple equality 
d 

Tr rcc( Q;  z, z’) =-( A(a) -In ( 1  - a 2 )  +In (1 - a 2  exp [-2A(a)]]). (53) 
d p  

If we now denote the last two terms in eqn (34) by f l F  we obtain, after taking into 
account eqn (40), (52) and (53); 

OF = LTs lom Q d Q  ( * ( a )  -In (1 - (Y’) +In (1  - a2 exp [-2A(a)]} 
47r 

-4kT Tr [ p  Wo(r)u’(r, r’)]. (54) 
We see from Appendix V how the divergence in the first term of eqn (54) is exactly 
cancelled by the same divergence in the last term. Eqn (54), the results of Appendix V. 
and the definition (50) give the fluctuation contribtuion to the thermodynamic potential 
in the final form: 

OF = -(kTS/47r) $[pWo( z ) / E E ~ ] ~ ’ ~  dz + F ( p  = p )  - F ( p  = 0 )  (55) 

with 

F ( P )  == kTS IOm Q d Q  (In { 1 - a’ exp [ -2A(a)]} -In (1 - a*) 

The functional dependence of F on p is hidden in a and ha, which are both functions 
of p. The two equations above present the last general result that can be obtained by 
the WKB approximation with no further specifications. At this point it is not straightfor- 
ward to give a physical interpretation of eqn (56): For that some limit expressions 
and/or concrete physical examples are necessary. Before doing this we will discuss the 
limitations of the last approximation made. 
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R. Podgornik and B. Zeki 62 1 

The WKB approximation introduces uncertainties in our results in addition to those 
already inherent in the extended PB approximation. As is well known,16, the approxima- 
tion works only if u ( z )  does not vary much with z. This will be the case only if we have 
no dielectric discontinuity (image forces) present and if the overall surface charges are 
small. Although these are severe requirements, we have used this additional approxima- 
tion only to present our results in a general closed form. As stated before, in certain 
concrete examples this approximation can be abandoned and we will discuss the ensuing 
results in a subsequent publication. What one should bear in mind is that the levels of 
the extended PB approximation and the WKB approximation as used here are different 
and non-overlapping. 

Model Calculations and Discussion 

We have now derived the general form of the thermodynamic potential of the Coulomb 
fluid in the case where the fluctuations around the mean potential are treated in the 
harmonic approximation. Furthermore, we have used the WKB approximation to derive 
the fluctuation part of the total thermodynamic potential in a closed form. We now 
give some limiting results and discuss a numerical example of the general formulae (34) 
and (55) derived above. 

Homogeneous Electrolyte 

The most revealing examples is the case of a homogeneous uni-univalent electrolyte 
confined between uncharged surfaces. We suppose that the local density of the electrolyte 
does not vary in the transverse direction. The PB terms in eqn (34) thus give only a 
constant contribution, so we are left with eqn ( 5 5 ) ,  where now 

The absolute activities of both component species in eqn (57) were taken to be equal 
while the absolute value of their charges was taken to be e,. The integral (56) can be 
dealt with analytically with the caveat that the upper bound is to be taken l / b  whenever 
a divergency arises, as discussed above. In the case of homogeneous electrolyte, eqn 
(55) reduces to the result of Barnes and Davies.8 [We obtain exactly their formulae 
(D.4), (D.5) and (D.6), the only difference being in the .absence of a divergent term 
which was improperly included in (D.4) since it cancels with the last term of their eqn 
(12).1 

By denoting K' = 2pze:/~~, and K'=  Q2+ K', we obtain eqn (55) in the form 
kTS2a K~ kTS 1 E - E "  

47r 3 47r 2 & + & I  

kTS K' 1 
47r 1 + & ' / &  1 -&I/& 

fi --- -+-- ( - ) ~ ~ l n b  
F -  

+- - [In 2 +- In (y) ] 
-cRTS 477 loa Q d Q  In [ 1 - (1; :::)* exp (-4Ka) 1 -= 47r loa Q d Q  In [ 1 - ( F-EI)2 & + & '  exp (-4Qa)]. 

Now the physical interpretation of the general result (55) begins to emerge. The first 
term is the Debye-Huckel contribution to the thermodynamic potential, lo The sub- 
sequent two terms present the contribution of the image forces to the thermodynamic 
potential, the second being the Onsager-Samaras (0s) result,' while the third term 
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622 Inhomogeneous Coulomb Fluid 

merely renormalizes the value of 6 in the 0s term. The last two terms in eqn (58) 
represent the difference of the screened zero-order Lifshitz-van der Waals7 terms of 
fully charged and uncharged systems. We note that the last term is cancelled by the 
corresponding expression for the uncharged system. These results are well known, and 
we give them only to show the consistency of our calculations with previous results. 

What we believe is not generally known is that these terms are derived on the same 
footing, uiz. as the contribution of the fluctuations around the stationary value (in this 
case zero) of the electrostatic potential. The first term corresponds to fluctuations in 
the bulk system, the second to fluctuations in a system with one interface present and 
the last two to fluctuations in a system with both interfaces. 

Inhomogeneous Electrolyte 

The other limiting example which can be evaluated in a closed form is the non- 
homogeneous uni-univalent electrolyte confined between two charged walls bearing 
equal surface charge density of magnitude u. We shall derive the limiting form of 
the thermodynamic potential in the case of no images ( E  = E ' )  at small intersurface 
separations, i.e. a --* 0.  In this case all the integrals over z can be approximated by 
the value of the integrand at z = O  times the range of the integration. Introducing 
K ' ( z )  = ~ W , ( Z ) / E E ~  and K 2 ( z )  = Q2+ ~ ' ( 2 )  we obtain for eqn (55) 

kTS2a ~ ~ ( 0 )  kTS K ~ ( Q )  

47r 3 47T 2 
fl, = -- - + - - (In 2 -i) 

47r (59) 

Wo( z) in the above expression depends on the solution of the PB equation in its standard 
form (no images), which is given in Appendix VI. In the limit a --.* 0 we derive 

K 2 ( 0 )  K2(a) -2ff/a (60) 
with a = @eo/EEO, so that in this limiting case we get, by combining eqn (59) with (60), 

43T 4 a 

In deriving eqn (61) from (59) the last integral has been approximated by its limiting 
form at a + 0 (see Appendix VII). Our last result is clearly far from the usual notions 
of van der Waals forces with an a-2  dependence at small intersurface distances. The 
leading term in eqn (61) goes as a-', and its magnitude is dependent on the value of 
fixed surface charges on the two walls. We note that if we were to take, in evaluating 
eqn (59),  only the solution of the linearized PB equation instead of the full non-linear 
equation, the leading term in eqn (61) would indeed go as a-2,  while its magnitude 
would still depend on u. The attractive forces dependent on the magnitude of the fixed 
charges in the system have no counterpart in the standard Lifshitz theory. 

Let us also note here that Barnes and Davies' have treated the same model system 
in the limit a -+ a. From our developments it clearly follows that their treatment is 
inconsistent, since they take account of the image forces when deriving the response 
operator equation but neglect them completely when calculating the equilibrium potential 
profile. Their results are consistent with ours only in cases when the system is 
homogeneous and/or has no dielectric discontinuities. 
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R. Podgornik and B. Zeki 623 

Counterion-only System 

The two limiting examples treated so far gave us some insight into the consequences of 
our general results (34) and (55 ) .  We shall now deal more thoroughly with a different 
model system, viz. charged walls with only counterions in between and with no image 
forces present. The numerical results for this system are of principal importance, since 
we can compare them with the simulation data4 and the KM theory.6 To make a real 
comparison possible we have to compute the pressure in the system, given by8 

The PB equation for the counterion-only system can be written in the form 

-- - - K ~  exp (-@I d2@ 
dz2 

with ~ ' = z e i / ~ ~ ~ k T  and @ = p e 0 4 " .  The boundary condition is derived from the 
equation for the overall neutrality of the system in the form 

d@ Peoa 
dz CEO 

- _-- - -2r  at z = + a .  -- 

The solution of eqn (63) for the plane-parallel case can be obtained in the closed form: 

= @,+ 2 In {cos [ K Z  exp ( - -@/2)2-"*]}  (65)  

with = @( z = 0). The boundary condition (64) can be easily transformed into 

a t a n ( a a ) = T  (66)  

and a is now defined as a = exp (-@0/2)2-1/2. The total pressure in the system can be 
written with the help of eqn (34), ( 5 5 )  and (62)  as 

where all the expressions can be evaluated in closed analytical form as functions of 'a 
and a. Before discussing in detail the numerical results we shall first state two limiting 
forms of the general expression (67).  

Let us first consider the limit of small intersurface distances, viz. a - 0. In this case 
we get from eqn (66) 

= ( r / a ) 1 / 2  (68)  

We therefore obtain for the pressure 

The a 4 0 limit of LRF is obtained through the same type of reasoning as eqn (61),  yielding 

LRF k T 2  (21')3/2 ,TI'(  i) +-- ln2--  - -_-_-  - s 4 n  3 a'/' 4.rr a 

'))'exp [-4a(Q2+2r/a)1/2]  . (70) 1 ( 0 '  + 2 r /  - 
( ~ ~ + 2 r / a ) ' / ~ +  Q 

+kT 
47r Q d Q  In [ 1 - ( 
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624 Inhomogeneous Coulomb Fluid 

Combining eqn (69) and (70), while approximating the last integral with its lowest-order 
term as a + 0, we obtain 

-kT ( 1  + (8Ta) In (16ra) - (16ra)’/’- . 
41r 2a2 3 2 

The other limit, a --+ 00, is more difficult to obtain, and we leave all the inessential steps 
to Appendix VIII. From eqn (66) we now have in this limit 

CY = ( 1  +). 
Combining the above result with eqn (69) it follows that 

Performing the necessary algebra (see Appendix VII I) we obtain the limiting expression 
for the interfacial pressure in the final form 

with T(x) the Euler gamma function. Inspection of both limiting forms (71) and (74) 
clearly reveals that in the first case the last term of eqn (71), and therefore the attractive 
contribution to the total pressure, dominates. In the opposite limit the first term of eqn 
(74) or the repulsive contribution exceeds the others. This clearly indicates that at small 
intersurface separations the usual PB approximation cannot predict even the sign of the 
interaction, since the contribution of the fluctuations to the total force overwhelm the 
PB terms. 

Fig. 2 and 3 give the complete numerical results for the pressure [eqn (67)] in the 
case of uni- and di-valent counterions. The simulation data of Gulbrandt et ~ 1 . ~  are 
also presented for comparison. While the quantitative agreement of our results with 
the simulation data is not particularly strong, and is clearly much worse than in ref. (9, 
we see that the correlation forces are present although too pronounced. 

Fig. 4 and 5 give the total pressure at 2a = 2.1 nm as a function of the variable surface 
charge on the walls. Here too the qualitative features of our results are in general 
agreement with the simulation data although as stated before the correlation contribution 
is too pronounced. Before assessing the quantitative value of our theoretical develop- 
ments one must not forget that in our calculations of the correlation term the WKB 
approximation was used, which is known to bring some uncertainties into the final 
results whenever the functional dependence of u ( z )  on z is pronounced. This is the 
case at the surface charge densities used in the above calculations. 

As stated above although one could dispense with the WKB approximation in the 
case of the counterion-only system, we did not venture to improve it, since our aim in 
this contribution was to explore only the overall qualitative features of our theory. We 
will give an exact treatment of the same model system in a subsequent publication. 

What clearly comes out of our calculation is the fact that the surface charge correlation 
effect can be dealt with on much simpler grounds than in ref. ( 5 ) ,  showing the link 
between the usual Lifshitz-van der Waals forces and the correlation forces. The extended 
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Fig. 2. The total pressure in the case of univalent counterions. The PB(. - - )  and the correlation 
(- .-) contributions are shown separately. The value of the surface charge is u = 0.22 A s m-*. 

The simulation results of Gulbrand et aL4 are also shown (a). 

1.5 

1.0 

m 

E 
Q 

Fig. 3. As fig. 2 except that here the counterions are divalent. 

PB approximation introduced here also sheds light on the intimate relationship between 
the Lifshitz theory and the PB scheme. Furthermore, the Debye-Huckel, Onsager- 
Samaras and Lifshitz-van der Waals contributions to the free energy of a charged system 
are shown to be deducible from the same fluctuation mechanism. 

Although the physical content (but certainly not the formal developments) of our 
contribution is the same as in ref. (8), the results of the latter work are largely inconsistent. 
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Inhomogeneous Coulomb Fluid 
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Fig. 4. The pressure in the counterion-only system at the intersurface separation 2a = 2.1 nm as 
a function of the surface charge density. The counterions are monovalent. The PB approximation 

(. - - )  and the simulation results4 (0) are also presented for comparison. 

n 
h 
& 
i 
4 
v 

0.2 t ............................................................................ .......... 

Fig. 5. As fig. 4 except that here the counterions are divalent. 

The formalism of Barnes and Davies does not allow for a derivation of the correct PB 
distribution law (with image forces included on all levels of calculation). These authors 
therefore proceeded by assuming the usual PB distribution with no image forces included, 
but have taken them into account only in the response operators, a procedure from 
which all their inconsistencies stem. 

Our approach to the (bio)-colloid interaction problem is close to the usual PB scheme, 
but introduces an important modification by including self-consistently the fluctuations 
of the local electrostatic potential around its mean-field value into the thermodynamic 
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R. Podgornik and B. Zeki 627 

functions. We have shown that these fluctuation (correlation) terms lead to the generaliz- 
ation of the van der Waals force that is in qualitative agreement with the simulation 
data. To assess the quantitative power of our approach we first must improve the WKB 
approximation introduced ad hoc, which will be done for the counterion-only system 
in a subsequent publication. 

Appendix I 

In deriving eqn (13) we have used the property of the N-dimensional Gaussian 
integrals,’ ’ viz. I, exp (-4; A;k@;@k+ix B;@i d@I d@2. * * d@N 

i 

= ( 2 ~ ) ’ / ~ ~ ( d e t  A)- ’ /2  exp ( -4x ik (A-l)ikBiBk),  (AI.l) 

We obtain eqn (13) from the above equation if we set Bi = ei and (Aik) - ’  = /3u(ri, rk). 

Appendix I1 

We have repeatedly used the matrix inverse [as in eqn (15)] defined in the standard way: 

( AII. 1 ) 

with Sik the Kronecker delta. In a continuous representation the above equation can 
be written in the form 

B-’(r,  r’)B(r’,  r”) d3r’= S(r - r ‘ ) )  (AII.2) 

with the Dirac delta function taking the role of the Kronecker delta symbol. We know 
that the Coulomb potential obeys the Poisson equation in the form 

-&EoV2U(r, r’) = S(r -  r’) (AII.3) 

I 
which can be rewritten as 

[ - ~ ~ ~ V ~ S ( r - r ’ ) ] u ( r ’ ,  r”) d3r’= S ( r -  r”) I (AI.4) 

from which, taking account of the definition of the inverse operator (A11.2), it follows 
that 

UP( r, r )  = - & E 0 V 2 S (  r - r ) ) .  (AI1.5) 

Appendix I11 

For the fluctuating part of the grand canonical partition function we have according to 
eqn (24) and (26) 

(A1 11.1 ) 
Using now the continuous limit ( N  + a) of eqn (AI.l) with Bi = 0 we get 

E F =  ( 2 ~ ) ” ~ ~  {det [Pu-’(r ,  r ’ ) + p 2 W O ( r ’ ) S ( r -  r‘)]}-’I2.  (A1 11.2) 
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Now combining the prefactor (21) to the functional integral (19) with the above result 
and using a continuous form of the operator identity: 

det A(det B)-’  = det (AB-’) (AIII.3) 
we arrive at the first term in eqn (27). In taking the logarithm of the grand partition 
function in eqn (29) we have merely used another operator identity: 

In det A = Tr In A ( A1 I I .4) 
arriving thus at the fourth term in eqn (34). 

Appendix IV 

The last term in eqn (33) can be transformed into 

C Nap: = ~ ( ~ T / ~ I T E E ~ )  d Q p  C Naei (AIV.l) 

where we have applied eqn (2a), (26) and the definition of p : .  The total number of 
the particles of the ath species can be written as a volume integral of the particle density 
obtained from the PB equation, i.e. eqn (36a). Taking into account the definition (28b) 
we arrive at: 

a I:’ a 

C Naei = Wo(r) d3r. (AIV.2) 

Combining the above equation with (AIV.l) and observing the definition of the Tr 
operator we obtain: 

a I 
C N a p L = A E I a d Q  I Wo(r)d3r=ikTTr[’Wo(r)u‘(r, r’)]. (AIV.3) 
a 2 4 ~  0 CEO 

Let us take the first and last 

47T 

Appendix V 

term of eqn (54) and denote their sum by I: 

Q d Q  A(a)l;=f-$kTTr [pW(r)u’(r, r’)] 

or by taking account of the definition (516) for A(a) and (4’26) for u’(r, r): 
I / ’  I =- kTS + a  dz [ loa Q d Q  (Q’+& Wo(z)) 

47T -a  CEO 

- Ioa Q’dQ-4 \a dQP WO(z)] .  
0 EEO 

(AV.l) 

(AV.2) 

The Q integrals in the above equation can be evaluated explicitly if, as discussed in the 
main text, we take as the upper limit of the integration the value 1/b, where b is of the 
order of magnitude of the particle radius: 

3/2 
I=- kTs j+a  4.rr -a  dz [ [l(l+p 3 b2 E E ~  Wo(z ) ) ]  -:($ W0(z))3’2 

1 --_-- 
3b3 2 E E ~  

In the limit 6 + 0 we obtain, to the lowest order 

(AV.3) 

(AV.4) 
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Appendix VI 

The PB equation (32) in the case of uni-univalent electrolyte with no image forces can 
be written in the form 

-- - K~ sinh @( z) 
d2@( z )  

dz2 
( AVI. 1) 

with (P=peoc$'' and K ~ = ~ Z ~ ~ / E E ~ R T .  The solution of this equation in the specified 
geometry is given in ref. (17) in the form involving the Jabobian elliptic function 
c d ( x ;  y):18 

with 

y = exp [@(z = O ) ] .  (AVI.3) 

y can be obtained from the boundary condition relating the derivative of @ on the 
surface to the surface charge density: 

or explicitly: '' 
2( I - y2 )  sn ( w ;  y )  
dn(w; y)cn(w; y ) -  K 

2y2a -- 

(AVI.4) 

(AVI.5) 

with w = a ~ / 2 y ' / ~  and sn, cn and dn denoting the standard Jacobian elliptic functions." 
In the limit of small intersurface separations ( a  4 0) we get from eqn (AVI.5): 

y = aK2/2a. (AVI.6) 

In the same limit we get 

K 2 ( 2 ) = K 2 ( y + Y - ' ) , K 2 / 7 = 2 ~ / U  

which is the result (60). 

(AVI.7) 

Appendix VII 

The last integral in eqn (59) can be written in a more explicit form by taking into account 
the definition of u ( z )  (see main text) and the limiting form of K ~ ( z ) ,  eqn (AVI.7): 

loa [ ( ( t 2 + 2 " " 2 - t ) 2  exp [-4(t2+2aa)1/2] (AVII.l) t d t l n  1 -  1 4 r a 2  (t2+2au)'/2+ t 

with the substitution t = Qa. In  the limit of a --* 0 the above integral can be to the lowest 
order in a approximated by the expression: 

which can now be dealt with analytically, leading to the 

( AVI I .2) 

last term in eqn (61). 
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630 Inhomogeneous Coulomb Fluid 

Appendix VIII 
In the case of non-homogeneous counterion-only system with no dielectric discontinuities 
at both charged walls, we obtain from eqn ( 5 5 )  and (56) 

flF kT kT 1 
-- - -- D ( a ) + -  - ( l n 2 + 9  K2exp[-@(a)] s 127r 47r 2 

+kT lom Q d Q  In { 1 - P 2  exp [-2A( a)]} 
47r 

( AVII I. 1) 

with the definitions 

D( a )  = 

A( a )  = I-: { Q2+ K 2  exp [ -@( z)]}”~ dz 

{A exp [-@( z ) ] } ~ ’ ~  dz ( AVI 11.2) 

(AVIII.3) 

I-: 
{ ~ ’ + ~ ~ e x p  [ - ~ ( U ) ] ) ’ ” - Q  
{ Q ~ +  K~ exp [-@(a)]}’’’+ Q’ 

P ( a )  = (AVIII.4) 

Introducing now eqn (65) into the above three expressions we get, after elementary 
integrations 

(AVIII.5) 
sin (aa) +In tan (:+:)I 7r aa 

cos2 (aa) 

+ 2 - arcsin [k sin( a a ) ]  (AVIII.6) 

~ ( ~ 1  = 23/2a2 

[1-k2sin2 ( a ~ ) ] ’ / ~ + k ’ s i n  ( a a )  Q 
[ I  - k2 sin2 ( a a ) ~ ’ / ~ +  k’ sin ( a a )  a 

A ( a ) = J 2 l n  

with 
v2 = 2 a ( 2 a 2 +  Q2)- ’ ,  k2 = Q 2 ( 2 a 2 +  Q’)-’. ( AVI 11.7) 

Furthermore we find by applying eqn (65) that 
2 a 2  

cos2 (aa) * 
K~ exp [-@(a)] = (AVIII.8) 

In the limit of a ---* m, with a determined by eqn (72), all the above expressions and 
particularly (AVIII.l) can be considerably simplified, giving rise to 

nF k ~ 2 ~ / ~  -- - -- [r2 - ( c)2 In ($)I +$I+ (In 2 -:) 
S 12T 

( 
( Q~ + 2r2)  1/2 + J2r  

+ 2r2)  l i 2  - J2r  2J2 ) exp ( - ~ Q u ) ] .  (AVIII.9) +kT 47r loa Q d Q  In [ 1 - ( 
The last term in eqn (AVIII.9) was obtained after inserting eqn (AVIII.6) into the last 
term of (AVIII.l) while noting that P ( a  ---* a) = 1. Furthermore, exponentation in the 
last term of eqn (AVIII.l) lowers the argument of the In term in eqn (AVIII.6). 

Differentiating the above expression with respect to a we obtain, after introducing 
the substitution Q = d 2  Ta sinh t 

( AVI 11.10) 
sinh2 t cosh t d t  

[cosh ( t/2)]4J2 exp (4d2ra  sinh t)  - 1 * 
- E 4 ~ 2 r 3  

4 T  
It is now straightforward to show that in the limit a --* 00 the above integral reduces to 
the last term in eqn (74). 
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