
THE JOURNAL OF CHEMICAL PHYSICS 124, 044709 �2006�
Nonadditivity in van der Waals interactions within multilayers
R. Podgornika�

Laboratory of Physical and Structural Biology, NICHD, Building 9 Room 1E116, National Institutes
of Health, Bethesda, Maryland 20892-0924; Faculty of Mathematics and Physics, University of Ljubljana,
1000 Ljubljana, Slovenia; and Department of Theoretical Physics, Jožef Stefan Institute,
1000 Ljubljana, Slovenia

R. H. French
DuPont Company, Central Research, E356-384, Experimental Station, Wilmington, Delaware 19880
and Materials Science Department, University of Pennsylvania, Philadelphia, Pennsylvania 19104

V. A. Parsegian
Laboratory of Physical and Structural Biology, NICHD, Building 9 Room 1E116, National Institutes
of Health, Bethesda, Maryland 20892-0924

�Received 24 August 2005; accepted 18 November 2005; published online 30 January 2006�

Working at the macroscopic continuum level, we investigate effective van der Waals interactions
between two layers within a multilayer assembly. By comparing the pair interactions between two
layers with effective pair interactions within an assembly we assess the significant consequences of
nonadditivity of van der Waals interactions. This allows us to evaluate the best numerical estimate
to date for the Hamaker coefficient of van der Waals interactions in lipid-water multilamellar
systems. © 2006 American Institute of Physics. �DOI: 10.1063/1.2150825�
I. INTRODUCTION

Multilayers are ubiquitous in phospholipid assemblies1

as well as in polymers assembled either electrostatically2 or
by interlayer hydrogen bonding,3 and in inorganic systems
such as the intergranular films in silicon nitride structural
ceramics4 or interfaces and grain boundaries in perovskite-
based electronic ceramics.5 Understanding molecular interac-
tions in these systems is an important step in controlling the
assembly process. Though interactions in these assemblies
are due to many different specific properties, van der Waals
�vdW� interactions are a common underlying feature. De-
spite years of intense study the general and exact derivations
of van der Waals interactions on the Lifshitz level is
abstruse,6 unless one is satisfied with the pairwise additive
formulation of van der Waals interactions in multilayer
geometries.7

Here we will use a recent reformulation of the van der
Waals–Lifshitz interactions in multilayer geometries8 in
terms of an algebra of 2�2 matrices that will allow us to
derive simple and transparent formulas for the van der Waals
interactions within finely layered systems.9 In what follows
we will analyze how the presence of other layers in a multi-
lamellar system influences the effective pair interactions be-
tween a neighboring pair of layers. This will also allow us to
obtain accurate distance dependence and magnitude of the
van der Waals interactions in multilamellar systems.
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We will first derive the general formulas for the van der
Waals free energy of a multilayered system and then extract
the effective van der Waals pair-interaction potential between
two neighboring layers. We will compare this result with the
standard van der Waals–Lifshitz interaction between two lay-
ers and quantify the nonpairwise additive effects, i.e., the
difference between the full multilayer Lifshitz form and the
corresponding expression for a two-layer case.

II. FORMALISM

Consider a symmetric periodic array, Fig. 1, between a
left half-space L and a right half-space R. The periodic motif

FIG. 1. Schematic description of model. Left-hand side: multilamellar sys-
tem with A for lipid and B for water layers. Right-hand side: two isolated A

layers interacting across a single B layer.
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is the N times repeated sequence of AB pairs between L and
R, schematically L�AB�NAR. For concreteness imagine layers
A as lipid and all the other layers L . . .B . . .R as solvent.

We recently showed8,9 that in the Lifshitz theory compu-
tation of the secular determinant of the electromagnetic field
modes can be mapped onto an algebra of 2�2 matrices. The
see Ref. 12�. The � dependence of �A�i�� and �B�i�� is
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secular determinant in fact follows from the 11 elements of a
transfer matrix that can be simply constructed from the in-
teraction geometry as a product of discontinuity D and
propagator T matrices. In the case considered here, following
the “mnemonic” introduced in Ref. 8, the transfer matrix
assumes the form
�1�
The case of two isolated layers can be described with exactly
the same formalism with N=1.

In the above notation the discontinuity and propagator
matrices become

DAB = � 1 − �̄

− �̄ 1
� = − DBA �2�

and

TA,B = �1 0

0 e−2�A,Ba,b � , �3�

where a and b are the thicknesses of the A and B regions, and

�̄ = ��A�B − �B�A

�A�B + �B�A
� , �4�

with �A��� and �B��� the frequency-dependent dielectric
functions of regions A and B; �A,B

2 =Q2−�A,B�2 /c2, where Q
is the magnitude of the transverse wave vector and � is the
frequency of the corresponding em mode.

We will assume that region A corresponds to hydrocar-
bon, �A���, and regions L, B, and R to water, �B���, dielec-
tric responses. In the computation, below, we use
standard10,11 forms for �A��� and �B���, where the dielectric
response of water is described with one microwave relax-
ation frequency, five infrared relaxation frequencies, and six
ultraviolet relaxation frequencies, and that of the hydrocar-
bons with four ultraviolet relaxation frequencies �for details
presented in Fig. 2. By the Kramers-Kronig relations
�A,B�i�� decrease monotonically, limiting to 1 at very high
frequencies �1017 s−1.

The discontinuity matrix D describes the propagation of
the electromagnetic modes across the dielectric boundary
and the propagator matrix T their propagation inside a di-
electrically homogeneous region. The above equations are
valid for the transverse magnetic �TM� field modes.13 The
result for the transverse electric �TE� field modes13 is ob-
tained analogously via a formal substitution

�̄ = ��A�B − �B�A

�A�B + �B�A
� → � = ��A�B − �B�A

�A�B + �B�A
� , �5�

where �A,B denote magnetic permeabilities.
The transfer matrix with elements mik can be written

equivalently in the form

M = DRA � AN � TA � DAL, �6�

where the matrix A with elements aik has the form8,9

A = TA � DAB � TB � DBA

= � 1 − �̄2e−2�Bb �̄�1 − e−2�Bb�

− �̄e−2�Aa�1 − e−2�Bb� e−2�Aa�e−2�Bb − �̄2�
� . �7�

The product AN can be factored with the help of the Abelés
formula for square matrices.14 This formula can be repro-
duced straightforwardly via induction starting from the

15
trivial N=2 case so that
AN =
�det A�N/2

sinh � �sinh N�
a11

�det A
− sinh�N − 1�� sinh N�

a12

�det A

sinh N�
a12

�det A
sinh N�

a11

�det A
− sinh�N − 1��	 , �8�
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where

� 
 ln
1

2

Tr A
�det A

�1 +�1 − 4
det A

�Tr A�2� . �9�

Here e� and e−� are the two eigenvalues of the matrix A*

=A /�det A.
The em mode equation, from the secular determinant of

the TM field modes, can be written as m11
TM=DTM�� ,Q�=0,8

with an analogous equation for TE modes. The combined
secular determinant thus becomes the product D�� ,Q�
=DTM�� ,Q�DTE�� ,Q�. In the Lifshitz theory the fluctuation
free energy is directly related to the 11 elements of the tran-
fer matrix M.8 For a system of N �AB� layers it can be cast8

into a form containing the secular determinant of the TM and
TE modes

F�N;a,b� = kT�
Q

�
n=0

�

� ln m11
TM�i�n,Q�

+ kT�
Q

�
n=0

�

� ln m11
TE�i�n,Q� , �10�

where � is now explicitly the set of imaginary Matsubara
frequencies i�n= i2	�kT /
�n and the primed sum signifies
that the n=0 term is taken with the weight 1 /2. The sum
over the transverse wave vector can be written explicitly as

�
Q

→ S� d2Q

�2	�2 =
S

2	
�

0

�

QdQ , �11�

where S is the total area of the interfacial surface. In what
follows we take the standard assumption that the magnetic
susceptibilities of the materials, contrary to their dielectric
properties, are homogeneous and everywhere equal to
unity.12

We investigate the van der Waals interaction free energy,
defined as the difference

F�N;a,b� = F�N;a,b� − F�N;a,b → �� �12�

on the thickness of the solvent layer B. We can write

AN = �Det A��N−1�/2 sinh N�

sinh �
a11 − a�N� a12

a21 a22 − a�N� � ,

�13�

where

a�N� =
sinh�N − 1��

sinh N�
�Det A . �14�

Obviously a�N=1�=0. By Eq. �6� the m11 element of the trans-
fer matrix is obtained as

m11
�N� = �Det A��N−1�/2 sinh N�

sinh �
�a11 − a21�̄ + �̄�a12

− a22�̄�e−2�Aa − a�N��1 − �̄2e−2�Bb�� . �15�
Equivalently,
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m11
�N� = �Det A��N−1�/2 sinh N�

sinh �
�m11

�N=1� − a�N��1 − �̄2e−2�Bb�� .

�16�

In this way using Eq. �16� in the limit of N=1, the interaction
of two isolated lipid layers of finite thickness a at a separa-
tion b is trivially recovered. The van der Waals free energy is
proportional to the trace of the ln of the m11

�N� element of Eq.
�10�.12 If we discard all the irrelevant constants and bulk
terms �which scale linearly with the total thickness of AB
layers�, we are left with

ln m11
�N� = ln

sinh N�

sinh �
+ ln�m11

�N=1� − a�N��1 − �̄2e−2�Bb�� .

�17�

The secular determinant depends on both a and b as well as
an the dielectric properties of both materials. The van der
Waals free energy is defined via the ln of the secular deter-
minant, and thus we can extract the difference �Eq. �12��
from

ln
m11

�N��b�
m11

�N��b → ��
= ln

sinh N�

sinh N��

− ln
sinh �

sinh ��

+ ln
�m11

�N=1� − a�N��1 − �̄2e−2�Bb��
�m11

�N=1��b → �� − a�N��b → ���

�18�

and use it to evaluate the required interaction free energy.
For N�1, the extensive part of the above interaction

FIG. 2. Dependence of �A�i�� �lipid� and �B�i�� �water�. The inset shows

the dependence of the nonretarded limit Eq. �28� �̄��i��. Clearly for all the

Matsubara frequencies �̄��i�n��1, except in the static case n=0 where

�̄��i�n��1. The bottom dots merging into a continuum after �=�1

�1014 s−1 represent the Matsubara frequencies �n.
free energy is given by
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lim
N→�

ln
m11

�N��b�
m11

�N��b → ��
� N�� − ��� + O�N−1� . �19�

From Eq. �10� in the asymptotic limit of a large number of
layers, the interaction free energy thus becomes

F�N;a,b� = kT�
Q

�
n=0

�

� lim
N→�

ln
m11

�N��b�
m11

�N��b → ��

= NkT�
Q

�
n=0

�

��� − ��� 
 Nf�a,b� , �20�

where f�a ,b� can be interpreted as an effective pair interac-
tion between two neighboring layers in the stack. This ex-
pression should be compared with the van der Waals inter-
action energy between two isolated layers, which can be
derived from Eq. �18� for N=1 as

f0�a,b� = F�N = 1;a,b�

= kT�
Q

�
n=0

�

� ln�1 −
�1 − e−2�Aa�2�̄2e−2�Bb

�1 − �̄2e−2�Aa�
� .

�21�

This form can be derived by a variety of other methods.11,12
�b, the effective pair interaction �Eq. �25�� goes over to
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To derive a more explicit form for the effective pair in-
teraction f�a ,b� �Eq. �20�� in an array, use Eq. �9�,

� = ln�u + �u2 − 1� with

�22�

u =
1

2

1 − �̄2�e−2�Aa + e−2�Bb� + e−2��Aa+�Bb�

�1 − �̄2�2e−��Aa+�Bb�
,

or

� − �� = ln
1

2 1 − �̄2�e−2�Aa + e−2�Bb� + e−2��Aa+�Bb�

�1 − �̄2e−2�Aa�

+� G�a,b,�̄�

�1 − �̄2e−2�Aa�2
� . �23�

Here

G�a,b,�̄� = �1 − e−2��Aa+�Bb��2 − 2�̄2��e−2�Aa + e−2�Bb�

��1 + e−2��Aa+�Bb�� − 4e−2��Aa+�Bb��

+ �̄4�e−2�Aa − e−2�Bb� . �24�

This leads to the final result for the effective pair-interaction
energy
f�a,b� = kT�
Q

�
n=0

�

� ln
1

2 1 − �̄2�e−2�Aa + e−2�Bb� + e−2��Aa+�Bb�

�1 − �̄2e−2�Aa�
+� G�a,b,�̄�

�1 − �̄2e−2�Aa�2
� . �25�
The obvious difference of the two forms—the effective pair

interaction in an array �Eq. �25�� and the pair interaction of

an isolated pair of layers �Eq. �21��—is a consequence of the

nonadditivity of van der Waals interactions.

One should note here that in the limit of infinitely polar-

izable media, �̄2→1, Eq. �25� reduces to the interaction of
two metal plates. Obviously in this case, and for this case
alone, there are no effects due to the nonadditivity of van der
Waals interactions since the em field is ideally screened by
the dielectric interfaces.

III. RESULTS

A. The asymptotic limit, a™b

To build some intuition for nonpairwise additive effects,
first consider a few limiting results. For very thin layers a
f�a,b� = kT�
Q

�
n=0

�

� ln�1 −
�̄2�2�Aa�2e−2�Bb

�1 − e−2�Bb��1 − �̄2�2
�

→ − kT�
Q

�
n=0

�

�
�̄2�2�Aa�2e−2�Bb

�1 − e−2�Bb��1 − �̄2�2
, �26�

while the isolated pair interaction �Eq. �21�� in the same limit
takes the form

f0�a,b� = kT�
Q

�
n=0

�

� ln�1 −
�̄2�2�Aa�2e−2�Bb

�1 − �̄2�
�

→ − kT�
Q

�
n=0

�

�
�̄2�2�Aa�2e−2�Bb

�1 − �̄2�
. �27�

These expansions of the complete forms �Eqs. �25� and �21��
are valid only if the argument of the ln function is positive,
which is by definition always the case in the limit a�b.
The nonretarded limit, with c→� and �A,B→Q,
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�̄��� → �̄���� = � �B��� − �A���
�B��� + �A���� , �28�

can be evaluated analytically. We are left with the following
results for the effective pair potential:

f�a,b� � −
SkT�2a�2

2	�2b�4

	4

15 �
n=0

�

�
��

2��n�
�1 − ��

2��n��2 �29�

and the isolated-pair potential:

f0�a,b� �
SkT�2a�2

2	�2b�4 6�
n=0

�

�
��

2��n�
�1 − ��

2��n��
. �30�

Above S the total area of the interacting surfaces. The effec-
tive pair interaction in an array is thus enhanced by a factor

E =
	4

15 �
n=0

�

�
��

2��n�
�1 − ��

2��n��2� 6�
n=0

�

�
��

2��n�
�1 − ��

2��n��
.

�31�

With water and lipid dielectric responses this comes to E
=10.637 �by summing the first 1000 terms, the numerator
equals 607.179 and the denominator equals 55.442�. Non-
pairwise additive effects boost the interaction by a factor of
�10 in this particular case, which is substantial.

In order for the expansions �Eqs. �26� and �27�� to make
sense, the following two conditions have to be fullfilled:

�a/b�2�
n=0

�

�
��

2��n�
�1 − ��

2��n��2 � 1 and

�32�

�a/b�2�
n=0

�

�
��

2��n�
�1 − ��

2��n��
� 1.

Obviously the range of validity of these two conditions de-
pends on the largest value of the dielectric discontinuity.
Evaluating the first condition for the numerical case treated
above �water-lipid� with a=4 nm, we get the value of the
order of b�100 nm for the effective pairwise case and about
�10.637 times smaller value for the isolated pair case.

Should the dielectric discontinuity be very large at any
frequency, ��

2�i�n�→1, the range of validity of Eqs. �29�
and �30� is displaced towards very large values of the inter-
layer spacings b. For any finite value of b we recover the
Casimir result, valid for infinitely polarizable material A.

Note that the b dependence for the effective and isolated
pair cases remains unchanged: interactions vary identically
as f�a ,b�� f0�a ,b��b−4. The nonpairwise additive effects

thus merely boost the prefactor of this dependence.
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To estimate retardation effects we follow the standard
approach12 and assume that the speed of light in both mate-
rials is the same and equal to the speed of light in the inter-

vening medium �water� so that �A=�B. �̄��n� then retains its

nonretarded form, �̄���n� �Eq. �28��. This turns out to be a
very good approximation to quantitatively describe the retar-
dation effects.12 We thus get for the effective pair potential

f�a,b� � −
SkT�2a�2

4	�2b�4 ��b� , �33�

where

��b� =
	4

15

��
2�0�

�1 − ��
2�0��2 + �

n=1

�
4P�b�n���

2��n�

�1 − ��
2��n��2 �34�

and

P�z� = 3 Li4�e−2z� + 6z Li3�e−2z� + 6z2 Li2�e−2z�

+ 4z3 Li1�e−2z� , �35�

with Lim�x� the standard polylog function16 and �n

= ��n /c���B��n�. Obviously the large n terms in the above
sum are screened spatially with a characteristic length de-
pending on n. For the isolated pair interaction we get an
analogous formula

f0�a,b� � −
SkT�2a�2

4 �0�b� , �36�

FIG. 3. Dependence of ��b� and the ratio ��b� /�0�b� from Eqs. �33� and �36�
on the separation b. We see that the dependence of both functions ��b� and
�0�b� on b is weak. The nonpairwise boost remains pretty much the same as
in the nonretarded limit.
4	�2b�
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where now

�0�b� = 6
��

2�0�
�1 − ��

2�0��
+ �

n=1

�
4P0�b�n���

2��n�

�1 − ��
2��n��

�37�

with

P0�z� = e−2z�3 + 6z + 6z2 + 4z3� . �38�

Here again the large n terms in the above sum are screened
spatially with a characteristic length depending on n. Obvi-
ously, every term in the expression for the effective pair po-
tential is larger than the corresponding terms in the expres-
sion for the isolated pair potential. The same has to be true
for their sums. Both formulas �Eqs. �33� and �36�� are exact
in the limit of a�b.

Numerical results for ��b� and �0�b� are presented on
Fig. 3 for terms through n=1000. We see that the boost
��b� /�0�b� observed in the nonretarded limit survives retar-
dation to an extent ��b�a� /�0�b�a�=11.02.

The range of validity of the asymptotic Eqs. �33� and
�36� is given by the inequalities

�a/b�2��b� � 1 and �a/b�2�0�b� � 1, �39�

respectively. For ��b� as shown on Fig. 3 and a=4 nm the
interlayer separation has to be of the order of b�100 nm for
the effective pair-interaction case and a number �11.02
smaller for the isolated pair case. It thus takes a while until
the asymptotics become reliable estimates for the interaction.

B. General behavior

We now note from Fig. 2 that in the case of lipid-water

systems the nonretarded form of �̄, i.e., �̄���n�, can be large

only for zero frequency, where �̄��0��1. At all other
j Matsubara frequencies the differences in dielectric re-

sponses are usually small so that �̄���n��1. Our strategy
will thus be to treat differently the n=0 and the n�1 terms
in the sum over the Matsubara frequencies. In the first case
we will evaluate the complete integral in Eq. �25�, whereas
for all the other terms we will make the approximation

�̄��n��1. To estimate retardation effects we again follow
the standard approach12 and assume the equality of the

speeds of light in materials A and B, thus �A=�B. For �̄��n�
we thus again retain only the nonretarded form, �̄���n�.

1. Small �̄�„��n…, no retardation

We start, however, by first deriving a few approximate

formulas and only then make full numerical evaluation. Start

a + b

Downloaded 30 Jan 2006 to 128.231.88.5. Redistribution subject to A
with the nonretarded form and expand all the terms in the n

sum with respect to the dielectric discontinuity �̄, assuming

this to be small. To the second order in �̄ we remain with

f�a,b� = kT�
Q

�
n=0

�

� ln�1 −
�̄2��n��1 − e−2�Aa�2e−2�Bb

�1 − e−2��Aa+�Bb��
�

→ − kT�
Q

�1 − e−2�Aa�2e−2�Bb

�1 − e−2��Aa+�Bb�� �
n=0

�

��̄2��n� �40�

for the effective pair interaction and

f0�a,b� = kT�
Q

ln�1 − �̄2��n��1 − e−2�Aa�2e−2�Bb�

→ − kT�
Q

�1 − e−2�Aa�2e−2�Bb�
n=0

�

��̄2��n� �41�

for the isolated pair interaction. This nonretarded, small di-
electric discontinuity limit then gives

f�a,b� � −
SkT

4	�a + b�2���2,
b

a + b
� − 2��2,1�

+ ��2,
b + 2a

a + b
���

n=0

�

��̄2��n� , �42�

where ��2,x� is the Riemann zeta function, and similarly,

f0�a,b� � −
SkT

4	
� 1

b2 −
2

�a + b�2 +
1

�b + 2a�2��
n=0

�

��̄2��n� .

�43�

Clearly the last two results reduce to Eqs. �29� and �30� in

the limit a�b and �̄�1. We can numerically evaluate the
two infinite sums in Eqs. �42� and �43�, obtaining

�n=0
� ��̄2��n�=0.633 by summing the first 1000 terms. Note

also that the ratio f�a=4 nm,b� / f0�a=4 nm,b� varies no
more than between 1 and 1.082 for the whole range of b.

2. Small �̄�„��n…, retardation

Now let us add the effects of retardation but still keep

the small dielectric discontinuity approximation �̄�1. As-
sume again that the speed of light in both materials equals
the speed of light in the water regions; the retarded result

comes out as
f�a,b� � −
SkT

4	�a + b�21

2
���2,

b

a + b
� − 2��2,1� + ��2,

b + 2a

a + b
���̄2�0� + �

n=1

� �Z�2 + 2�n�a + b�,
b

a + b
�

− 2Z�2 + 2�n�a + b�,1� + Z�2 + 2�n�a + b�,
b + 2a���̄2��n�� ,
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



044709-7 Nonadditivity in van der Waals interactions within multilayers J. Chem. Phys. 124, 044709 �2006�
with

Z�2 + y,x� 
 �
m=0

�
e−�x+m�y

�x + m�2 + y�
m=0

�
e−�x+m�y

�x + m�
. �44�

Obviously the function Z�2+y ,x� is exponentially screened
with y. Thus retardation acts to suppress higher-order terms
in n.

What about the isolated pair interaction? In complete
analogy to Eq. �44�,

f0�a,b� � −
SkT

4	
1

2
� 1

b2 −
2

�a + b�2 +
1

�b + 2a�2��̄2�0�

+�
n=1

� �R�2�nb�
b2 −

2R�2�nb�
�a + b�2

+
R�2�nb�
�b + 2a�2��̄2��n�� , �45�

where

R�y� = e−y�1 + y� . �46�

Equation �45� is quite similar to Eq. �44�, except for the
definition of the retardation function, Z�2+y ,x� vs R�y�.
This is as much as we can evaluate analytically. Now con-
sider the full numerical evaluation of the effective and iso-
lated pair interactions.

3. Large �̄�„��0…, small �̄�„��nÐ1…, complete numerics

As already stated, we assume that the dielectric discon-
tinuity is large only for the n=0 term. We thus retain the full
form of the zero-order term; all the higher-order terms we

expand to second order in �̄. To these terms we also apply
the approximation that the speed of light everywhere equals
that in the water medium. The n�1 terms thus look the same
as in Eqs. �44� and �45�. We can use the above results except
that we substitute a complete integral for the zero-order term,
i.e., from Eq. �20�,

f�a,b� �
SkT

4	
�

0

�

QdQ���Q,� = 0� − ���Q,� = 0��

−
SkT

4	�a + b�2 �
n=1

�

G�a,b,�n��̄�
2 ��n� , �47�

where

G�a,b,�n� = Z�2 + 2�n�a + b�,
b

a + b
� − 2Z�2 + 2�n�a

+ b�,1� + Z�2 + 2�n�a + b�,
b + 2a

a + b
� . �48�

Similarly, the appropriate form for the pairwise interaction

derived from Eq. �21� is obviously
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f0�a,b� =
SkT

4	
�

0

�

QdQ ln�1 −
�1 − e−2�Aa�2�̄2�0�e−2�Bb

�1 − �̄2e−2�Aa�
�

−
SkT

4	�a + b�2 �
n=1

�

G0�a,b,�n��̄�
2 ��n� , �49�

where

G0�a,b,�n� = R�2�nb�
�a + b�2

b2 − 2R�2�nb�

+ R�2�nb�
�a + b�2

�b + 2a�2 . �50�

These two equations, Eqs. �47� and �49�, can be evaluated
numerically. For meaningful comparison define Hamaker
coefficients12 as

f�a,b� =
SH�a,b�
12	b2 and f0�a,b� =

SH0�a,b�
12	b2 . �51�

Instead of comparing the free energies of interaction we can
now discuss their more compact Hamaker coefficients. We
speak of Hamaker “coefficients” rather than Hamaker “con-
stants,” because they depend in an essential way on b, see
Fig. 4. Clearly, for any value of b the Hamaker coefficient of
the effective pair interaction in an array is larger than the
Hamaker coefficient of the isolated pair interaction, their ra-
tio going from 1 at small b to �10 at large b.

Note that the effects of nonadditivity, as quantified by
the ratio H�a ,b� /H0�a ,b�, are large. Asymptotically they ap-
proach the value �11, obtained already in the limit of large
separation b�a, i.e., ��b�a� /�0�b�a��11. This is a huge,
an order of magnitude, boost in the interaction.

Note, however, that nonadditive effects vanish at small
separations, b�a, where we are effectively back to isolated
pair interactions which indeed can be reduced to the interac-
tion of two semi-infinite lipid regions across water. This,
of course, makes perfect sense. Our calculation gives
H�a ,b�a�=4.3 zJ. The standard theoretical result with no
retardation effects12 usually quoted is H�a ,b�a�=3.6 zJ,
while the experimental values are in the range H�a ,b�a�
�1–10 zJ.17

IV. DISCUSSION

We have evaluated the nonpairwise additive contribution
to the effective interactions between two layers in an infinite
stack. As far as we are aware, this is the only complete evalu-
ation of the nonpairwise additive effect in Lifshitz–van der
Waals interactions; multilamellar geometry appears to be the
only one that permits such a calculation. In the general case,
the Axilrod-Teller potential gives the nonpairwise additive
contributions in the case of three pointlike particles. Unfor-
tunately there is no easy generalization of this result to the
case of an arbitrary, large number of particles.

The most important lesson that follows from our calcu-
lation is that the nonpairwise additive effects can be large
and persistent over a substantial regime of interlamellar spac-
ings. In the multilamellar geometry, they become more im-

portant the larger the separation between the layers. The ratio
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between the Hamaker coefficients in the nonpairwise and
isolated pair interaction cases, Fig. 4, reaches the asymptotic
value of �10, one order of magnitude, for large separations.

The asymptotic, large b, regime of the interaction is
reached only for very large values of b, on the order of a few
100 nm. In that regime, Fig. 5, the interaction decays as the
fourth power of the interlamellar separation and remains
again approximately ten times stronger than in the isolated
pair case. The start of the asymptotic regime depends cru-

FIG. 4. Hamaker coefficients from Eq. �51� as a function of the water layer
thickness b for the lipid layer thickness a=4 nm. The curve � represents
H�a ,b� and � represents H0�a ,b� from Eq. �51�. The inset shows the ratio
of both Hamaker coefficients. The ratio approaches �11 in the limit of
b�a.

FIG. 5. Comparison between Hamaker coefficients of the exact evaluation
�Eq. �47�� and large b expansion �Eq. �33��, where the Hamaker coefficient
is defined as H�a ,b�= 3

4kT�a /b�2��b�. Consistent with analytic estimates the
asymptotic expansion, Eq. �33�, scales as b−4 and becomes valid for

b�300 nm.
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cially on the largest dielectric discontinuity in the system,
usually given by the static value of ���0�. The larger the
discontinuity, the farther away the entry point into the
asymptotic regime. In the limit of infinitely polarizable
�metal� interfaces, the asymptotic regime is never reached
and the system remains in the Casimir limit all the time. In
this case because of the infinite polarizability, many-body
effects are nonexistent. The interaction decomposes exactly
into a sum of Casimir terms.

For small separation we are, in general, back to the result
for two semi-inifinite half-spaces �see Fig. 6�. Both the ef-
fective pairwise interaction as well as the isolated pair inter-
action tend then to the same limit in this case. For not-too-
large interlamellar spacings, b�5 nm and a�4 nm, the
isolated pair interaction can be approximated by the nonre-
tarded small dielectric discontinuity form �Eq. �43��,

f0�a,b� � −
SH0�a,b � a�

12	b2 �1 −
2b2

�a + b�2 +
b2

�b + 2a�2�
= −

SH0
eff�a,b�

12	b2 , �52�

except that the value of the Hamaker coefficient is given by
the complete, not just the nonretarded, value valid in the
limit of small interlamellar spacings as H0�a=4 nm,b�a�
=4.3 zJ. This form �Eq. �52�� is usually used in experimental
determination of the Hamaker coeffcient in the case of small
interlamellar spacings. There H0 usually comes out in the
range of 2.87–9.19 zJ �Ref. 17� for dimyristoyl phosphati-
dylcholine �DMPC� and dipalmitoyl phosphatidylcholine
�DPPC� multilayers. The effective pairwise result with the

FIG. 6. Behavior of the Hamaker coefficients defined in Eq. �51� for small
values of the interlamellar spacing, 0�b�20 nm. The upper circles denote
the values obtained from the effective pairwise expression �Eq. �47�� and
lower squares from the isolated pair expression �Eq. �49��. The approximate
forms �Eqs. �52� and �53�� work only for small values of b.
same philosophy would follow from Eq. �42� as
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f�a,b� � −
SH�a,b � a�
12	�a + b�2 ���2,

b

a + b
� − 2��2,1�

+ ��2,
b + 2a

a + b
�� = −

SHeff�a,b�
12	�a + b�2 . �53�

Again this fit to the effective pairwise Hamaker constant
works only for small values of the spacing with the limiting
value of H�a=4 nm,b�a�=4.3 zJ. For an extended range in
b the complete formulas �Eqs. �47� and �49�� are preferable.

We have given the best estimate of the effective pair

interactions between lipid layers in a multilamellar stack,

where the solvent is water, that takes into account nonpair-

wise additive terms to all orders in a resummed version of

the van der Waals interaction energy. We evaluated the effec-

tive Hamaker coefficient, �4.3 zJ for small values of the

spacing. This value coincides exactly with the estimate for

two semi-infinite half-spaces. For larger values of interlamel-

lar spacing the effective van der Waals interaction free en-

ergy between a pair of layers in the stack and the correspond-

ing Hamaker coefficient turn out to be much larger, up to an

order of magnitude, than in the case of the isolated pair in-

teraction. This order-of-magnitude boost in the van der

Waals interactions is something one should seriously con-

sider in other contexts where nonpairwise additive effects

have not yet been seriously contemplated.
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