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The Boundary Condition

Recently, Miklavic! criticized the use of “absorbing” boundary
condition (here the term absorbing refers to the random walk
nomenclature and should not be mixed with polymer adsorption)
which is commonly used in some models of polymer confinement.
The point of departure of his criticism appears to be a seeming
discrepancy between the contact theorem derived in the framework
of an exact statistical mechanical analysis® under quite general
assumptions and the contact theorem that follows from our own
work? which seems to disagree with its presumed general form.
The disagreement between the two was traced down to the
absorbing boundary condition used “traditionally” in connection
with the confined polymer problems and was resolved by Miklavic
in favor of the contact theorem in its standard form, whereas the
absorbing boundary condition was considered to be in error. While
we disagree in most respects with the argumentation given by
Miklavic, we do recognize that the underlying problem is real
and will try to give an outline of its resolution the way we envision
it.

The continuous chain (Edwards) model* describing the statistics
of flexible (or semiflexible) polymeric chains has proved its merits
in a wide variety of works that we have no intention to enumerate
here. Itis based on a path integral representation (for details see
ref 7) of the polymer end-to-end distribution function (the polymer
Green function)
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where /is the polymer step length, 8 = (kT)-! the inverse thermal
energy, and N/ the total length of the polymeric chain, while ¢
is the external potential acting on the chain. R(n) is the local
coordinate of the nth bead along the chain. We should note here
that the external potential ¢ can also assume the role of an auxiliary
field which, through the Hubbard—Stratonovich transformation
(the random field method, ref 4), describes the intrachain
interactions. In this case, the partition function contains also an
additional averaging over the ensemble of auxiliary fields. This
form of the polymer Green function is usually taken as a point
of departure for advanced renormalization group analyses.

The path integral representation of the polymer distribution
function is equivalent to the following Schrédinger type equation
(for details see ref 7)
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together with the condition Gs(R,R’;N=0) = 6(R-R’). In the
case of a confined but otherwise ideal (noninteracting) polymer,
whose interaction with the bounding surfaces is short range (on
the order of the step length of the chain), one can approximate
the external potential ¢(R) with ¢(R) = x6(z), where z is the
coordinate locally perpendicular to the bounding surface located

atz=0;thusR =(z,p). From eq 2 one obtains that at the surface -

the Green function satisfies the “radiation” boundary condition
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where n is the local normal to the surface. « here stands for the
magnitude of the polymer—bounding surface interaction. For x
> 0, polymer is depleted from the surface region as the interaction
between the polymer beads and the bounding surface is repulsive,
and for x < 0, polymer is adsorbed to the surface since the
interaction is attractive. The solution of the problem defined by
eqs 1 and 3 can be obtained in closed form

ey o) = 1 2-2')(Q2+5)! /2
G, (Q:z.,2%s) AP+ ST /Z[e“ W@+ g
‘_Qz +9)'2—« £ FHNQH) 2
@+ + lo
with
G,RR:N) = £ [5- 040 J(Qlo - p)G (032,245

)
where L-! stands for the inverse Laplace transform acting on the
variable s. The above form of the Green function can be used
as a starting point for the analysis of polymer adsorption problem
(x < 0) due to short-range surface adsorbing potential,® a case
which was investigated recently in connection with membrane
curvature energy.® [The behavior of eq 5 is very different for
positive and negative values of x. This is clearly evident from the
fact that for negative x the second term in brackets has a
singularity at Q = («2—5)'/2.] Since the polymer cannot penetrate
the wall, there is a discontinuity in the Green function and Jor its
derivatives right at the wall for any finite x > 0. However, as
x is progressively increased the value of the Green function at the
wall continuously approaches zero. Thus, in the limit k — «, the
radiation boundary condition (3) continuously reaches the
absorbing limit, G4(Q2;z=0,z";s) = 0, describing a polymeric chain
completely excluded from the wall. In this limit, the Green
function remains continuous across the wall, turning to zero right
at the wall itself. The absorbing limit can thus be reached in a
continuous fashion. It thus follows, contrary to the conclusion
reached by Miklavic, that the Green function can remain
continuous even across a discontinuous (infinite) potential barrier.

The singular repulsive potential at the wall affects also the
monomer (density) distribution, defined as
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thatvanishes right at (and outside) the walls. Let us call, following
Joanny et al.,° the monomer concentration very near, but not
exactly at the wall, p; (the definition will become clear in what
follows). In the continuous chain model, the short-range potential
#(2) isin fact “fuzzy” over a length Az ~ I (the step length) close
to the surface, since the continuous model is insensitive to the
spatial variations in the external potential below this scale. The
physical meaning of the delta function distribution of the external
wall-polymer potential is thus that the short-range repulsive wall
potential vanishes for separations larger than z ~ I. We can
therefore define the contact concentration in the continuous model
as

py(r) = (6)
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if the bounding surface is at z = 0. We shall see later on that
this quantity does not vanish and in fact represents the contact
density entering the standard contact theorem of statistical
mechanics. The structure of the above equation is such that it
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relates the physical contact density (left side) to the specified
limit of the density in the continuous model close to the wall
(right side). The two are not the same because of the nature of
the steeply varying short-range potential at the wall. If the wall
potential would be smooth on the scale of the step length, the
contact density would, of course, correspond exactly to the
continuous model density right at the wall. One should also note
that while p,(z=0) is insensitive to other (adsorbing) long-range
wall-polymer potentials (it is in fact constant and equal to zero),
their characteristics would distinctly affect p;. This is most clearly
seen with charged polymers where long-range electrostatic
attraction between the polymer beads and the wall promotes
adsorption of the chain to the surface.?

The above definition of the contact density is quite general but
has different implications for different models of the polymeric
chains. In the lattice mean-field theories,’ p; would simply
correspond to the monomer density in the first lattice plane just
beyond the wall. In the polyelectrolyte Poisson—-Boltzmann
approximation,$ the contact density would be identified directly
with the density right at the wall (if the polymer beads are of
vanishing extension).

The Contaét Theorem

We now approach the problem of the evaluation of forces acting
on the bounding surfaces confining the polymer, or what amounts
to the same thing, the evaluation of the pressure () acting in
thesystem. Inwhat follows, weshall limit ourselves to the ground-
state dominance limit where all local physical properties of the
polymer reach a well-defined limit for N — . We shall also
assume that the external field ¢ depends only on the transverse
coordinate (¢(r) = ¢(z)) and has a short-range (singular) repulsive
contribution (of the type discussed in the previous section)
superimposed on a long-range interaction of a general form. In
this case, the polymer Green function assumes the approximate
form

Gy(rF'sN) =~ Y(2) Y(z)e *MY ®

where the eigenfunctions ¥(z) are now normalized in such a way
that

po(2) =¥Xz)  with [p(z)dz=N/S  (9)

where S is the total area of the bounding surface. In the ground-
state dominance limit, the equation defining the Green function
eq 2 assumes the form of an eigenvalue equation
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where additionally the eigenfunctions have tosatisfy the absorbing
boundary condition, ¢(z=0) = 0. We have thus decoupled the
effects of the wall-polymer potential into a short-range part
(affecting the boundary condition) and the remaining long-range
part. Aftersome manipulations we can derive from the eigenvalue
equation the following relation
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The force per unit bounding surface area can be written® as
the average force, acting on the unit surface area

(%) - e

where p,(z) is the monomer density distribution. Using eq 11
and the definition of the force per unit bounding surface area,
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Comments

we are led to the following conclusion
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This is the required relation expressing the force equilibrium in
the system. We have derived this relation before but with
somewhat different argumentation? (starting from the variational
principle for the free energy). Since it expresses the pressure in
the system in terms of statistical mechanical averages right at the
wall, it could be termed a contact theorem. On the other hand,
the exact statistical mechanical analysis, as rightly pointed out
by Miklavic,' leads to a different form of the contact theorem,}
viz.

P = kTp,(z=0") (14

with some variations in the case of long-range (Coulombxc)
interactions between the particles, when the contact theorem
assumes the form P = kT,(z=0*) — (02/2¢¢), where o is the
surface charge density at the impenetrable wall and other symbols
have their standard meaning. In the above relation, p(z=0+)
stands for the one particle (or monomer in the case of polymeric
chains) density right outside the bounding wall. Superficially,
there thus appears to be a fundamental inconsistency between
the contact theorem as applied to simple fluids and as applied to
polymers in the continuous chain approximation. Miklavic tried
toresolve this puzzle by claiming that it is due to the “unphysical”
(“absorbing”) boundary condition in the case of a confined polymer
(p¢(2=0) = 0). In our view, the resolution of the conundrum is
of a different yet more fundamental type.

What is in fact the limit p,(z=0%*) in the case of a continuous
chain polymer? In the continuum (Edwards) model, the mo-
lecular details below the scale defined by the steplength are not
resolved. Thus, also the external potential confining the polymer
is in fact spread over a length Az ~ /. The appropriate surface
limit of the monomer density in the continuum model should thus
be py(2=0%) = py(z~1). Infact,inthe frame of the ground-state
dominance one obtains the following relation

P =kT: (MZ)) ~kT¢( e
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The p; introduced above is the same as the one introduced in the
context of the boundary condition. The form of the contact
theorem for polymeric chains described in the framework of the
continuous chain model thus coincides with its form derivable on
general grounds from statistical mechanics. Just as in the case
of the boundary condition one has to be aware of the coarse-
graining underlying the continuous chain model.

There remains the question of the range of validity of the
continuous chain contact theorem, eq 13, if one relaxes the ground-
state dominance as well as the mean-field restraint. The procedure
toderive the contact theorem in this general case is rather formal,
based on the full expression for the Green’s function, eq 1, where
the averaging over auxiliary fields, if the intrachain interactions
are present, is done last (see the discussion in the Appendices D
and F of ref 4). We do not want to reproduce the whole of the
derivation at this point, since it does not add much to what has
already been said in connection with the ground-state dominance
contact theorem but will rather concentrate on some of its crucial
steps. First of all one has
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where ¥ is a Gaussian random field (a disorder field!2) which in
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the ground-state dominance limit (¥ > 1) becomes equal to ¢.
The Gaussianrandom field ¥ is introduced to represent the Green
function in a simple form (see ref 4 for details). The derivatives
with respect to the transverse coordinate z are taken at the
bounding surface. Also one can derive the following result?

(a\p(r,n)aw (r:n) <(dz(n)) >¢ an

where the correct interpretation of the symbolically written square
of the derivative of z with respect to nat the surface is (dz(n)/dn)
— (Zn+1 = 2,)(2n - 2,-1). [Similar relations can be derived in the
functional integral formulation of quantum mechanics and are
thoroughly discussed in ref 13. They can be obtained by starting
from a discretized representation of the Green function eq 1 and
evaluating the indicated derivatives.] Thus, we finally get for
the general form of the contact theorem for sterically excluded
polymers in the continuous chain limit

_ m( dz(n) )
2P =0 (8)

where the averaging in the last term is done over the polymer
configurations, over the position along the polymeric chain and
over the auxiliary fields ¢. The term on the right-hand side of
the above relation appears to be nothing but the (zz) component
of the polymer stress tensor (T;) in the continuous chain
representation,'! evaluated at the bounding surface, thus making
eq 18 particularly transparent from the mechanical point of view
since it asserts that 2 = -T;;n,, where n, = (0, 0, 1); i.e., it is
a unit vector in the z direction. [Note that the defmmon of
(dz(n)/dn)? as a symmetrized square of the first derivative leads
to a possibility that if the polymer chain snakes its way mostly
along the bounding surface, (z,+ — z,)(z, — z.-;) Will be on the
average negative, making the pressure, eq 18, positive (i.e.,
repulsive in the case of two apposed surfaces confining the
polymer).] The ground-state dominance limit of the contact
theorem can now be obtained also directly from eq 18 in the form
of eq 13.
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The conclusion that follows from the above discussion is that,
for a continuous model polymeric chain excluded from the
bounding surface through a short-range delta-like potential, the
correct form of the contact theorem is given by eq 18. This form
is also completely consistent with the general form of the contact
theorem, eq 14, if one interprets the contact density in view of
the coarse-graining inherent in the chain Hamiltonian eq 1,
entering the continuous chain representation.
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