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We present a phenomenological one-parameter scaling equation of state that accurately represents osmotic pressures
of neutral flexible polymers in good solvents from the dilute through the semidilute regime. The equation comprises
a sum of scaled van’t Hoff and des Cloizeaux terms including a fitted parameter R, the “crossover index”, which
encapsulates all chemical specificity and determines the relevant prefactors. Strikingly different values of R are
found for the two very different systems poly(ethyleneglycol)/water (PEG) and poly(R-methylstyrene)/toluene
(PAMS). R-dependent rescaling collapses both data sets to a simple one-parameter scaling function. The fact that
the anomalous system PEG/water and the canonical system PAMS/toluene can both be described by the same
equation of state attests to the robustness of the polymer-scaling concepts introduced by de Gennes.

Introduction

Osmotic pressure was one of the first applications of scaling
analysis1 to the description of polymer properties in solution.
P.-G. de Gennes,2 by use of scaling arguments, was able to
simplify des Cloizeaux’s derivation of the osmotic pressure of
semidilute solutions.3 The analysis was based on a momentous
discovery made by de Gennes a few years earlier4 concerning
an analogy between long polymers and magnetic systems close
to a second-order phase transition. He assumed that the ideal
van’t Hoff osmotic pressure and the des Cloizeaux scaling form
of the osmotic pressure, which he presumed to have a power-
law dependence on concentration, were the same order of
magnitude at the crossover between the dilute and semidilute
regimes. This ansatz led immediately to the now-famous “9/4
law” for the semidilute osmotic pressure. de Gennes found this
expression consistent with available data on osmotic pressure
of polystyrene in carbon disulfide. His detailed proof of the
scaling hypothesis, however, relied on a comprehensive theo-
retical analysis of the polymer concentration dependence of the
correlation length, which had been measured experimentally by
neutron scattering.2

Here we show that the osmotic pressure of aqueous solutions
of poly(ethyleneglycol) (PEG, also known as poly(ethyleneox-
ide), PEO), a polymer of biological interest5 with often-noted
anomalous physical properties,6,7 surprisingly conforms to a
scaling equation of state. We propose a simple form for this
equation based on additive contributions from the ideal van’t
Hoff and des Cloizeaux limiting behaviors. By this method, we
show that the PEG data collapse precisely onto the scaling
equations of state of other neutral polymers in good solvents,

such as poly(R-methylstyrene) (PAMS) in toluene. The complete
scaling form of the PEG osmotic pressure parsimoniously unifies
all available experimental data that, until now, required time-
consuming, extensive, and complicated fittings.8 This economy
of description is particularly valuable in the context of the
osmotic-stress method. To quantify macromolecular interac-
tions,9 protein conformational transitions,10 DNA condensation
and collapse,11 as well as DNA packing in geneplexes12 and in
simple viruses,13 the osmotic method of probing the thermo-
dynamics of macromolecular solutions relies heavily on the PEG
osmotic equation of state.

Results

J. H. van’t Hoff, in a major advance of solution thermody-
namics, discovered a “deep-seated analogysindeed, almost an
identitysbetween solutions and gases” that enabled him to
formulate a universal limiting law for osmotic pressures of dilute
solutions.14 The surprising correspondence between solutions
and gases suggested that osmotic pressure, like other colligative
properties such as vapor-pressure lowering and freezing-point
depression, should depend only on the concentration of solute
molecules and not on their chemical nature.

van’t Hoff’s law applies directly to dilute solutions of
polymers. This well-known limiting expression for osmotic
pressure ΠvH is

where R is the universal gas constant, T is temperature, c is
polymer molar concentration, C is polymer mass concentration,
Mp is polymer molecular weight, Mm is monomer molecular
weight, and N is the number of monomers in a polymer chain.15

The van’t Hoff expression for infinitely dilute solutions is
usually extended to finite concentrations by a virial expansion.1,16
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J. des Cloizeaux, in a seminal contribution to modern polymer
physics,3 extended the notion of universality to the semidilute
regime in which polymer coils interpenetrate. The surprising feature
of his analysis is that in this regime the osmotic pressure of a
polymer solution depends only on monomer concentration, not on
the concentration or length of the polymer chains, and not on the
chemical nature of the polymers or monomers. des Cloizeaux’s
result was later incorporated into a full scaling description of
polymers.1,3,16-19 The des Cloizeaux ∼C9/4 limiting form for
polymer osmotic pressure ΠdC in the semidilute regime is1,3,16

where C* is a characteristic N-dependent polymer concentration
associated with the crossover between the dilute and semidilute
regimes and R is an undetermined numerical prefactor. C*
traditionally is taken as a semiquantitatively defined polymer
overlap concentration,1,16 i.e., C* ∼ N-4/5/Vj, where Vj is the polymer
partial specific volume.20

Up through the semidilute regime, the osmotic pressure can
be written symbolically as Π ) (ΠvHf ΠdC), where the arrow
means “goes from one limiting form to the other”.

It has been suggested previously that the asymptotic van’t Hoff
and des Cloizeaux expressions might be combined to produce a
universal equation of state. However, such an ansatz has not been
quantitatively investigated, tested, and assessed. The treatment of
most relevance to the present work is that of Rubinstein and
Colby,17 who focus on scaling behavior. They propose a sum of
two limiting terms, use approximate numerical C* values obtained
from independent light-scattering measurements,21 and achieve a

near fit to data in the des Cloizeaux regime. Our treatment uses a
similar equation but focuses on empirical evaluation of prefactors.
It does not use ancillary C* data, contains only one numerical
parameter, and produces an excellent fit over the whole data range
including the crossover region. Earlier, des Cloizeaux and Noda22

proposed a universal function with no free parameters which they
evaluated approximately in the asymptotic regimes. Ohta and
Oono23 derived a complicated one-parameter equation of state by
renormalization group methods that should be valid in both limits
as well as in the crossover regime. Freed24 using renormalization
group theory subsequently derived a more general integral equation
with no adjustable parameters, but which could not be evaluated
analytically. Schulz and Stockmayer25 presented a complicated
equation of state based on previous work by Knoll et al.26

Krasilnikov and Bezrukov27 proposed a nonscaling equation of state
related to ours. Ramos et al.28 suggested a crossover function with
two undetermined prefactors unrelated to our parametrization.

To cast eqs 1 and 2 into a unified scaling form, we formally
transform the independent variable C to (C/C*) using the identity
C/N ≡ (C/C*) (C*/N). The two limiting forms of the osmotic
pressure then assume the form:

Thus, for a given system of neutral flexible polymers in good
solvent comprising polymers of various sizes N at various
concentrations C, we expect a plot of ΠN9/5 vs C/C* to collapse
the low and high osmotic-pressure data simultaneously to the
limiting expressions in eq 3.

Figure 1. Osmotic-pressure data for PEG/water30 (top) and PAMS/toluene21 (bottom). The Mp values for 12 molecular weight PEG and 7 PAMS
polymers are shown in the upper and lower legends, respectively. PEG data are at 20 °C, PAMS at 25 °C. PEG concentrations were converted from
weight % to g/mL using partial specific volume Vj ) 0.825 mL/g.31 PAMS data were obtained by osmometry (squares) or light scattering (circles).
Light-scattering data were integrated by use of eq 4.
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We examine osmotic-pressure data for two very different
systems of neutral flexible polymers in good solvents: poly-
(ethyleneglycol) (PEG) in water and poly(R-methylstyrene)
(PAMS) in toluene. PEG consists of -CH2-CH2-O chains
having both hydrophilic and hydrophobic character. At room
temperature, PEG hydrogen-bonds to water and is highly water
soluble. Because of strong and complicated water-mediated
monomer-monomer interactions,6,29 PEG does not seem a likely
candidate to conform to a universal polymer equation of state
over the whole range of its concentrations. Osmotic pressures
of PEG/water, covering a wide range of sizes and concentrations,
have been measured extensively by Rand et al.30 PAMS consists
of -C-CH2 chains with a methyl group and benzene ring
attached to the R carbon. It is insoluble in water but dissolves
in toluene, a good solvent. Osmotic pressures of PAMS/toluene
have been measured accurately and extensively by Noda et al.21

over wide ranges of size and concentration. For neutral flexible
polymers in good solvents, these high-quality measurements
have become the canonical set of Π data, widely referenced
and displayed in many books on polymer physics.17,18 There is
virtually no chemical similarity between the systems PEG/water
and PAMS/toluene.

Figure 1 shows the raw Π data for both systems. The high-C
PAMS data are independent of N, as predicted by eq 2.

To plot the data in the scaling form of eq 3, we define CN
* ≡

N-4/5/Vj; i.e., CN
* is the N-dependent scaled part of C* exclusive

of its unspecified prefactor. Figure 2 shows plots of ΠN9/5 vs
C/CN

* . The collapse of data predicted by eq 3 is evident. All
PEG data collapse to a master curve, as do all PAMS data.

Data collapses have been demonstrated before. Noda et al.,21

in a famous plot, show a data collapse for PAMS/toluene plotted
as ΠMp/(CRT) vs C/C*, where C* values are determined from
experimental measurements of 〈Rg

2〉 and assumed prefactors.
They demonstrate an equation of state based on a second-order
virial expansion for C/C* < 1 and another based on a des

Cloizeaux expression for C/C* > 1. These equations fit the
collapsed data in their respective regimes, crossing near C/C*
= 1. However, the fits deviate from the data near the crossover
and do not provide a continuous equation of state encompassing
both regimes.

The data collapse of eq 3, shown in Figure 2, suggests a
simple scaling fitting function. We test a linear combination of
ΠvH and ΠdC constructed from eq 3 by replacing the imprecisely
defined C* with the precisely defined CN

* , replacing “f” with
“+”, and using R as a single fitting parameter. Thus, we seek
to fit the data for each polymer/solvent system by the one-
parameter non-virial interpolation function:

We call R the “crossover index”. Figure 3 shows fits of eq 4
to the collapsed data for both polymers. The fits are excellent.
Decompositions of the fits into their van’t Hoff and des
Cloizeaux components identify a “crossover concentration” for
each polymer system, defined as the concentration where ΠvH

) ΠdC, i.e., at C/CN
* ) R-4/5. The crossover concentrations and

R values for the two systems are significantly different.

It is noteworthy that neither crossover occurs at C/CN
* ) 1;

i.e., CN
* is not the crossover concentration, as it lacks the correct

prefactor.33 We define a new quantity C# ≡ CN
* multiplied by a

prefactor chosen to produce crossover at C/C# ) 1, whence C#

) R-4/5CN
* ) R-4/5N-4/5/Vj . Thus, for osmotic pressures, we

replace the semiquantitative oVerlap concentration C* with the
quantitative crossoVer concentration C# by assigning R-4/5 as a
CN

* prefactor. We note C#, via R, is different for each polymer/
solvent system.

Figure 2. ΠN9/5 vs C/CN
* scaling and data collapse. The data are the same as those in Figure 1. PEG: Mm ) 44 Da. PAMS: Mm ) 118 Da. For

PAMS/toluene, Vj ) 0.873 mL/g.32
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By use of C#, the collapsed data and fits for PEG/water and
PAMS/toluene can be compared. Normalizing the osmotic
pressure as Π̃ ≡ Π/(RT/MmVj), eq 4 takes the simple form:

All explicit R dependence factors out of the right side of the
equation; there are no undetermined prefactors. Π̃’s for the two
systems differ solely by their values of R, i.e., RPEG ) 0.49 and
RPAMS ) 0.162.

We plot Π̃N9/5R4/5 vs C/C# for both PEG and PAMS in Figure
4. The two datasets now collapse onto a single curve. When
superimposed on this curve, eq 5 is seen to provide a simple
and accurate one-parameter scaling equation of state for the
osmotic pressures of these two highly dissimilar polymer/solvent
systems.

Equation 5 provides an accurate representation of the
crossover region. The crossover width is independent of C# and
R. By use of an extrapolated-tangent method, the crossover
region can be shown to extend 8/(5 ln 10) log units to either
side of log(C/C#) ) 0. The van’t Hoff domain is Cj 0.2C#,
and the des Cloizeaux domain is CJ 5C#. The crossover extends
over a 25-fold range of C, or 1.4 units of log(C/C#).

Discussion

Our ansatz for the scaling form of the equation of state tidily
collapses the data for both polymers onto a universal curve.
For each system, all chemical specificities appear in only one

parameter, the crossover index R. Decomposition of the fit for
each system unambiguously defines a crossover concentration,
expressible in terms of R. Alpha is necessary to ensure accuracy
in the high-concentration limit. It encapsulates a number of
physical properties: microscopic structure, Flory radius, mono-
mer size and volume,20 and strength and range of interactions.
Although the PEG monomer size (∼3.5-7.2 Å)35 is less than
that of PAMS (∼7.2 Å),36 the complicated polymer-solvent
interactions for PEG/water6,29 lead to larger R, higher interaction
strength,37 hence a lower crossover concentration (cf. Figure
3), compared to PAMS/toluene. The interaction strength of PEG/
water is 4.4 times that of PAMS/toluene.37

Equation 5 depends crucially on the scaling exponents, T,
Mm, Vj , N, and R. The system is highly constrained. Systematic
error in any of these quantities would prevent the total collapse
of data. Our ansatz is validated by the fact that R is found to be
approximately independent of N.38 The double-limit formalism
precludes use of the virial expansion. The heuristic simple sum
of van’t Hoff and des Cloizeaux terms with a fitted des
Cloizeaux prefactor is accurate over the whole data range,
including the crossover region. It coincides almost exactly with
the much more complicated equation of state proposed by Ohta
and Oono23 on the basis of renormalization group analysis. Our
parameter R is related to an adjustable proportionality constant
in the Ohta-Oono formalism.40

Because the proposed phenomenological equation of state
contains only one parameter, a single Π measurement in the
semidilute regime in principle suffices to determine the entire
equation of state for each system of neutral flexible polymers
in good solvent, thus yielding Π’s for polymers of all sizes at

Figure 3. Fits, residuals, and crossover concentrations. Same data and axes as those in Figure 2. Blue (upper dataset) refers to PEG/water, red
(lower dataset) to PAMS/toluene. Heavy black lines are logarithmic fits of eq 4. Fitted values of R are RPEG ) 0.49 ( 0.01 (r2 ) 0.9926) and RPAMS

) 0.162 ( 0.002 (r2 ) 0.9972). Residuals are small with no systematic deviations (some smoothing results from integration of PAMS light-
scattering data). Straight lines are van’t Hoff and des Cloizeaux components of the fits. “Crossover concentrations” are where the van’t Hoff and
des Cloizeaux lines cross. C/CN

* values at crossover are PEG: 1.78 ( 0.03 and PAMS: 4.29 ( 0.05.34

Π̃N9/5R4/5 ) ( C

C#) + ( C

C#)9/4
(5)
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all concentrations. By reducing all specificity of each polymer/
solvent system to one number, the scaling equation of state
provides exquisite economy of description. It enables efficient
use of osmotic-stress methods, permits new analysis of polymer
channel-permeation measurements,27,41 and allows quantitative
interpretation of surface-brush scaling phenomena.42 The analytic
expression Π(R) provides an analytic expression for the
chemical potential µ(R) by simple integration, and allows Π
determinations by analytic integration of light-scattering data,
as done in Figure 1. Future applications include measurements
of the temperature, salt, and solvent-quality dependences of R
as well as Π studies of flexible, screened polyelectrolytes. The
effect of polydispersity on the fitted value of R is expected to
be minimal. Ohta and Oono23 tested the effects of very broad
distributions on their renormalization group formalism and
concluded that “the polydispersity effect is very small”.

In conclusion, we present a detailed, explicit demonstration
of the validity and robustness of the polymer-scaling universality
hypothesis. Despite its unusual physical and biological properties
that might suggest otherwise, the system PEG/water follows
precisely the same polymer-scaling laws as does PAMS/toluene.
We demonstrate that (1) proper scaling collapses extensive
osmotic-pressure data encompassing the dilute and semidilute
regimes for two vastly different polymer/solvent systems onto
a single universal curve, accurately described by a continuous
function of a single parameter; (2) this parameter, which we
name the “crossover index”, is analytically related to a precisely
defined “crossover concentration”, which replaces the prefac-
torless overlap concentration for osmotic-pressure scaling; (3)
all physical and chemical specificity for each polymer/solvent
system and all relevant prefactors are encapsulated in the
crossover index; (4) the crossover region between the van’t Hoff

and des Cloizeaux regimes has a universal shape with quantifi-
able boundaries.43

Finally, it is intellectually pleasing to note that both terms in
the proposed equation of state stem from deep-seated analogies
between different areas of physics: the van’t Hoff term from
the analogy between solutions and gases, and the des Cloizeaux
term from the analogy between polymers and magnetic systems
close to their second-order phase transition, as first noted and
described by P.-G. de Gennes.
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