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We compute the force on a small neutral polarizable object moving at velocity ¥ relative to a photon
gas equilibrated at a temperature 7. We find a drag force linear in v. Its physical basis is related to that in
recent formulations of the dissipative component of the Casimir force, i.e., the change in photon
momentum in emission and absorption between the moving body and the stationary thermal bath. We
estimate the strength of this universal drag force for different dielectric response functions and
comment on its relevance in various contexts, especially to radiation-matter coupling in the cosmos.
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The residual drag force on an atomic force microscope
tip close to, but not in direct contact with, a substrate
in vacuo raises an important and fundamental question
on the origin of noncontact friction [1]. Other experi-
mental techniques also are sensitive to noncontact fric-
tion [2]. Since it became clear that the Casimir effect, a
noncontact phenomenon, can lead to a dissipative drag
(see [3] and references therein), it has become a primary
focus of theoretical research [4]. Such Casimir dissipative
drag occurs when electromagnetic field fluctuations
equilibrate in a specific reference frame, relative to which
another system (e.g., a dielectric or a conducting body) is
in uniform motion [3,5-7]. Such relative motion can
involve different bodies, as for two conducting plates
with relative motion in the parallel direction, for a neu-
tral body moving relative to a conducting plate, or for
two harmonic oscillators in relative motion [3,8—13]. In
these cases, the radiation equilibrates within one of the
bodies, with the friction depending upon the proximity of
the other.

In the present work, we show that similar friction can
also occur when a single body moves relative to a thermal
bath of the electromagnetic field excitations, such as those
between the walls of an oven or in the cosmic microwave
background. However, in this case the coupling between
field and matter, essential for the Casimir effect, is pro-
vided by the reference frame of the field excitations. The
friction has no position dependence, i.e., it is spatially
homogeneous. The consequence is a universal dissipative
drag acting on all matter in relative motion with respect
to a thermalized photon gas. To estimate the magnitude of
this universal drag, we evaluate it as a function of the
dominant frequency of the electromagnetic response of
the body for dielectrics and conductors.

Consider the Lorentz force
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PACS numbers: 95.30.Jx, 07.79.Lh, 68.35.Af, 95.30.Dr

on a dielectric in fields E(? 1), E(? t). The charge and
the current densities in the dielectric are set by the

polarization, P(7 t), such that p(7 1) = ~V-P and
j(7 1) = 0,P, where p, j must obey the continuity equa-
tion 9,p + V- j = 0. Assume that the response of matter
to the field is both linear as well as spatially local. Thus,
we write in MKS units

P 1) = ¢ f,\/e(t — EF 1) dr', )

where the dielectric susceptibility in the frequency do-
main y,(w) is dimensionless. In condensed matter
X.(w) = €(w) — 1. For weakly interacting molecules or
atoms y,(w) = pya,,(w)/ €y, with pyy = N/V the atomic
or molecular number density of the medium and «,,(w)
the polarizability of a single molecule or atom.

With the polarization proportional to the field, the
force is bilinear in the field. This bilinearity holds for
objects moving at arbitrary nonrelativistic velocities rela-
tive to the frame of reference of the thermal bath. We
require the thermal average of the force acting on a
moving body in unbounded space filled with radiation at
rest. Our reference frame is that where the particle is
instantaneously at rest and the photon gas moves with
velocity ©. The average force is obtained in terms of the
thermal averages of the Fourier components of the field
correlations. In unbounded space, the Fourier decompo-
sition of the polarization and electric fields is

-

B E(k, w) = [ dt f &Pr B, E(7, t)e~ikF-ion  (3)

Application of Maxwell’s equations in Fourier space leads
to the following form of the thermal average (- - -) of the
Lorentz force:
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where we take note of the fact that the electric field has no
sources in empty space. A slight generalization of the
standard expression for the thermal average of the corre-
lator of the electric field vectors (Eq. 77.12 of Ref. [14])
yields
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Here
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where k = |k| and

1
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is the Bose occupation number for a photon distribution at
temperature 7, moving with velocity ¥, and B8 =
(kgT)~'. Equation (6) generalizes the fluctuation-dissipa-
tion theorem to a translationally invariant system, and
takes a Gibbs distribution corresponding to a photon gas
moving with velocity v, just as is done for excitations in
superfluidity [15]. From Eq. (6), we find the average of the
Lorentz force
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Substitution of Egs. (5) and (6) into Eq. (4) with v=20
gives an integral over k that, by symmetry, is zero. To
obtain the first nonzero term, it is convenient to eliminate
first the delta functions by integrating over w, and then to
expand in powers of ¥ (as is done to obtain the normal
fluid density in the theory of superfluidity). We find
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where we have taken the dielectric to be homogeneous so
that the integral over the volume of the moving body
simply gives V. Alternatively, by following the arguments
of Volokitin and Persson [11], one can start from the rate
of dissipation of energy in the rest frame of the fluctu-
ating field,
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Here we take into account that in the rest frame of the
thermalized photon gas the total electric current is given
via the linearized Lorentz form j — j + pv. Apart from
the heat production (dW,)/(dt) in the frame of the body,
Eq. (8) is reproduced immediately.

We now write, in a standard way, y,.(w) = y.(w) +
ix!(w), noting that the real part is an even and the
imaginary part is an odd function of the argument. The
expression for the force can now be written as

AahcV
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X [1 + n(ck, k) + n(—ck, ©)].  (10)

Expanding the Bose occupation number to the lowest
order in velocity, we have n(ck, k) — n(—ck, k) =
cothl Blick + O(w?) and 1+ n(ck k) + n(—ck k) =
%csc?z%ﬁﬁck[ﬁh(ﬁ- 9)] + O@3). Placed in Eq. (10),
the k-space integral over the term in y/(ck) is zero, by
symmetry. The remaining term then yields

Bk kk(k - D)y (ck)
(2m)* sinh?1Bhck

(F) = 8mwBH*c)V (11)
Performing the angular integral over Bk gives a factor
of 477/3. Reverting again to @ by substituting k = w/c
gives
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This is our fundamental result. EM field fluctuations exert
a drag, proportional in the lowest order to the velocity, on
a particle that moves with respect to the frame of refer-
ence in which the EM field fluctuations are thermalized.

Setting this force to Mv /7, where M is the total mass of
the object and 1/7 is the drag time, and using p, =
MV, yields the result that

2
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We now consider Eq. (13) in three different contexts:
molecules, dielectric, and conducting condensed matter.
First, assume that the dielectric response of the medium
can be characterized by a single sharp absorption line at
wp. Because 1 is proportional to x/(w), obviously each
of the absorption lines for a molecule or a dielectric

will contribute additively to the integral in Eq. (13).
We set x/(w) = xob(w/wy — 1), where xo = pya,,/€o

(12)
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characterizes the strength of the absorption. This assump-
tion, with x = 3 Bliw, gives

<37TpMC5ﬁ4 \sinh*(x)
T =
20x0(kgT) )

In this form, the relaxation time depends strongly on the
absorption frequency wg as shown in Fig. 1. The relaxa-
tion time has a minimum at a temperature dependent
frequency (see Fig. 1) that coincides with the minimum
of the function f(x) = [sinh?(x)]/x®, at x,, = 2.98, where
f(x,,) = 0.137. Taking this minimum at x,, into account,
the smallest possible relaxation time can thus be obtained
from the above equation in the form

e
=5

where  C = {[37f(x,)]/2°(pyuc’ ")/ (xok)]. At this
minimum, the absorption frequency fiwy = 2x,,kgT is
proportional to the first Matsubara frequency. The tem-
perature dependence of this minimal possible relaxation
time is the upper curve in Fig. 2.

A different formula for 7 is obtained for metals, which
have constant conductivity at frequencies below the col-
lision time of their charge carriers. In this case y,(w) =
—[o/(ieyw)]. Inserting this into Eq. (13), the inverse
relaxation time for drag now takes the form

ﬁ2 00 4
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FIG. 1 (color online). Relaxation time (in years) vs the pri-
mary relaxation frequency [w( in Eq. (14)] for three different
temperatures, 7 = 300K, 7 =1000K, and T = 3000 K
(upper, middle, and lower curves). The frequency at the mini-
mum is iwy = 5.9694kzT. We take p,, to be the mass density
of water and y, = 1. Numerically this value corresponds to a
single particle of molecular polarizability «,, /€y =
1.0 X 1073 m? and a proton mass 1.67 X 107 kg.

mon metals, the value of €,/ o is between 1071710717 s,
For €y/0 = 1078 s, the temperature dependence of the
relaxation time is given in Fig. 2.

The times given in the figures are relatively long,
corresponding to the general weakness of this universal
thermal drag. Two circumstances under which such long
times might be observable are ovens and the cosmos.

Tungsten ovens can operate at temperatures as high as
3000 K. If an atom or ion or molecular beam passes
through such an oven, it will be subject to drag due to
this mechanism, wherein a thermal photon is absorbed
and then reemitted. Figure 2 shows that the drag time
should be very long, and correspondingly difficult to
observe. On the other hand, atom or ion traps might be
instructive in this context. Presently, atoms can only be
trapped at milli-Kelvin temperatures. However, ions with
temperatures as high as keV can be trapped. Ba* has a
resonance near 500 nm, or 2 €V, which is about 6 times the
thermal energy associated with a 3000 K oven. For this
resonance, the drag time would be near the minimum in
Fig. 1, and corresponds to about a day (=10°s). The
associated quality factor Q is about 10°s/107'0s =
10%', which is very large. In reality, an oven, or cavity,
does not support a continuum of frequencies, but has a
density of states with discrete resonances. Although the
radiation is very low between the cavity resonances, on
resonance the intensity can be higher than in free space
by perhaps a factor of 10%. However, in that case the ion
line would have to be represented more accurately than by
a 6 function in frequency, and would yield different
results than our Eq. (15).

For the cosmos, it is believed that hydrogen atoms
condensed from protons and electrons when the radiation
cooled to about 3000 K, and that the coupling of cosmic
radiation and matter due to Compton scattering becomes

log (t[ years]) 2
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FIG. 2 (color online). Relaxation time (in years) vs tempera-
ture. For the dielectric response (upper curve), Eq. (15), we
plot the minimal relaxation time obtained for the relaxation
frequency, which is proportional to the first Matsubara fre-
quency. The values y, and «,, are the same as in Fig. 1. For
metallic response (lower curve), Eq. (17), we take the charac-
teristic time €;/0 ~ 107!8 s, well within the range of conduc-
tivities of simple metals.
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ineffective below this condensation temperature [16].
However, as seen in Fig. 1, atoms, ions, and molecules
with absorption in the appropriate frequency range
should remain coupled to the cosmic radiation as its
temperature drops from the 3000 K condensation tem-
perature to perhaps 300 K or even a bit less. This cou-
pling could influence the structure and anisotropies
observed in recent experiments on the cosmic microwave
background [17]. It could also influence the behavior of
molecules formed from the residue of novas and super-
novas, and then subject to drag from a still-hot cosmic
microwave (i.e., electromagnetic) background. At much
lower temperatures, macroscopic bodies can coalesce, in
which case geometrically determined resonances may
become relevant.

We would like to thank Hans Schuessler for valuable
discussions.
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