
Isotropic-nematic transition of surface embedded polymers and the associated tubulization
transition of the embedding surface

R. Podgornik*
Laboratory of Structural Biology, Division of Computer Research and Technology, National Institutes of Health,

Bethesda, Maryland 20892
and Department of Theoretical Physics, J. Stefan Institute, 1000 Ljubljana, Slovenia

~Received 25 March 1996!

A self-interacting polymer can undergo an orientational ordering transition, depending on the magnitude of
the nematic interaction. The effect of embedding such a polymer into a flexible surface on this transition is
studied on the mean-field level. Renormalized values of the elastic constants of the ‘‘dressed’’ surface are
derived as functions of the orientational order parameter of the polymer chain. In the disordered state the
surface tension and curvature modulus remain scalars, but depend on the surface coverage of the embedded
polymer. In the nematic state there is a symmetry-breaking transition leading to anisotropic elastic constants.
At a sufficiently large nematic order parameter the effective surface tension in the direction perpendicular to
the nematic axis can become negative, leading to tubulization of the embedding surface.
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I. INTRODUCTION

Usually the adsorption of polymers onto surfaces is dis-
cussed in terms of more or less diffuse adsorption layers,
composed of trains, loops, and dangling ends. There is
enough corroborating evidence that in many cases this sim-
plified picture correctly captures the salient features of the
polymer adsorption phenomena@1#.

However, some recent results on adsorption of highly
charged polyelectrolyes onto oppositely charged molecular
surfaces give evidence to much stronger bonding of the ad-
sorbing polymer to the surface@2,3#. It seems that the poly-
mer adsorbs flat onto the surface without any observable
loops, dangling ends, and even a very restricted number of
crossings among the different segments of the chain, as the
strong electrostatic attraction can apparently override any en-
tropy driven tendency for less tightly bound configurations.

In this respect one can envision the adsorption process
more as an embedding of polymer chains into~or onto! the
adsorbing~supporting! surface. The theoretical significance
of this observation would be that an analysis of the adsorp-
tion phenomenon could be carried out without taking into
consideration the extremely improbable configurations with
local desorption of the polymers~loops and dangling ends!.
In a certain sense this simplifies the analysis because the
chains can be treated as embedded into the supporting ma-
trix. However, the embedding also signifies that there is a
strong coupling between the polymer and the surface con-
figurations and thus the pertaining degrees of freedom cannot
be decoupled and treated separately.

In this contribution we shall address the interplay of the
polymer and surface degrees of freedom in connection with
the nematic ordering transition of a polymer chain embedded
~i.e., tightly adsorbed! onto a flexible, fluid surface. It will be

established that there can be no effective decoupling of the
tight adsorption problem~embedding! into a separate poly-
mer and surface parts. The influence of the surface degrees
of freedom on the polymer ordering transition, as well as of
the polymer degrees of freedom on the effective elastic con-
stants of the ‘‘dressed’’~meaning surface plus polymer! sur-
face, will be derived and discussed. The renormalized form
of the surface elastic constants will be shown to lead to a
tubulization transition of the embedding surface.

II. OVERVIEW

I first present a sketchy overview of the main results and
conclusions reached in the paper. Starting from an orienta-
tionally ~nematically! interacting polymer chain embedded
into a soft~membrane! surface, conditions for a second-order
symmetry-breaking orientational ordering transition are de-
rived. The presence of surface shape fluctuations only mar-
ginally influences the critical point of the transition. The
nematic orientational order parameter, defined in a standard
way @4# as S5 1

2(3^cos2Q&21), whereQ is the angle be-
tween the local direction and the nematic axis, is obtained as
a solution of

S5A12A 1

2~ber̄ !bua8
, ~1!

wheree is the elastic modulus of the polymer chain,r̄ is the
polymer surface density~surface coverage!, andua8 is pro-
portional to the excluded volume of the nematic interaction
ua , renormalized due to the presence of the embedding sur-
face shape fluctuations

bua8→bua2
1

2

be

r̄
^~ci2ck!

2&0 , ~2!
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whereci is the embedding surface curvature in the direction
i , with i5x,y. The average in the above equation is with
respect to the bare surface, i.e., with no embedded polymers.

Tied to this transition are also changes in the overall
~dressed! elastic constants of the membrane. A closed ex-
pression is derived for the renormalized elastic constants,
surface tension (g) and the elastic modulus (Kc), of the
dressed membrane

g→g12
l

b
s̄a1e c̄a ,

Kc→Kc1
e

r̄
s̄as̄b , ~3!

where the indexa describes the components of the indexed
quantities in the reference frame of their eigencoordinate sys-
tem. Thusa can be eithern, signifying a component parallel
to the nematic axis, or', signifying a component perpen-
dicular to the nematic axis.s̄a is the mean-field orientational
tensor of the embedded polymer andc̄a its mean-field
squared curvature tensor.l is a scalar depending on the ori-
entational order parameter.

Following from the above expression for the renormalized
values of the elastic constants, we show that the renormal-
ized surface tension can change sign in the direction perpen-
dicular to the nematic axis for a sufficiently large nematic
order parameter. Basing our analysis on the recent general
investigation of the tubulization transition of polymerized
membranes by Radzihovsky and Toner@5#, we show, in the
framework of Landau theory, that the preferred conformation
of the surface is a tubule with the long axis perpendicular to
the nematic direction of the embedded polymers. The tubu-
lization transition of the membrane does not coincide with
the isotropic-nematic transition of the embedded polymers.

III. ANALYSIS

A. Outline

The formalities of the derivation are a bit convoluted so I
will give a short guided tour before actually developing
them. The point of departure is the usual flexible chain
Hamiltonian together with the ‘‘embedding ansatz,’’ con-
straining the chain to lie on the supporting surface. The ex-
pression for the partition function following from these pre-
mises is developed in Sec. III B. A closed form of the
partition function can be obtained by introducing collective
variables of the polymer chain: density, orientational tensor,
and tensor of the squared curvature. This is developed in
Sec. III C together with the final form of the partition func-
tion in collective coordinates in Sec. III D. This partition
function has a simple closed-form solution if the collective
variables are treated in a mean-field manner, ignoring local
fluctuations in their values along the surface. This is done in
Sec. III E, leading to the final derivation of effective elastic
constants of the dressed membrane in Sec. III F. Once these
are derived the tubulization transition can be described by
means of the formalism set forth by Radzihovsky and Toner
@5#, as is done in Sec. III G.

B. Theory and formalism

The position of thenth bead along the polymer contour is
described by a position vectorr¢(n)5„x(n),y(n),z(n)…,
which is a continuous, differentiable function of arc length
n, while the total length of the polymer isN. I limit myself to
a single polymer chain case, but a generalization to many
chains is quite straightforward. Let the embedding surface be
represented in the Monge parametrization asz
5z(x,y)5z(r¢), wherer¢ is the two-dimensional radius vec-
tor. In this notation the partition function of a flexible, but
otherwise noninteracting, polymer chain embedded into the
surfacez(r¢) can be written as@6#

J~z„r¢~n!…!5E •••E Dr¢~n!)
n

d~z~n!2z„r¢~n!…!

3)
n

d„r¢̇~n!221…e2bH0„r¢̇~n!…, ~4!

where

bH0„r¢~n!…5
1

2
beE

0

NS d2r¢~n!

dn2
D 2

5
1

2
beE

0

N

@r¢̈~n!#2dn. ~5!

be is the energy associated with polymer bending and can be
related to the persistence length@6#. By integrating out the
z(n) variable and enforcing the continuity condition

r¢̇(n)251 only globally @7#, i.e.,

^r¢̇~n!2&5^r¢̇~n!21 ż„r¢̇~n!…2&51, ~6!

one is led to the following form of the corresponding parti-
tion function:

J„z~r¢ !…5E •••E Dr¢~n!exp@2bH0„r¢~n!…#, ~7!

where some irrelevant constant terms have been omitted. The
effective HamiltonianH0„r¢(n)… has been obtained@6# as

bH0„r¢~n!…5
1

2
beE

0

NFr¢̈~n!21 z̈~n!2dn1lE
0

N

@r¢̇~n!2

1 ż~n!2#dn

5
1

2
beE

0

NFr¢̈~n!21S ]z~r¢ !

]r¢ i
r¢̈ i~n!

1
]2z~r¢ !

]r¢ i]r¢k
r¢̇ i~n!r¢̇k~n!D 2Gdn1lE

0

NS r¢̇~n!2

1
]z~r¢ !

]r¢ i

]z~r¢ !

]r¢k
r¢̇ i~n!r¢̇k~n!D dn, ~8!
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where the constantl is the Lagrange multiplier, ensuring the
global condition Eq.~6!, to be determined later. The validity
of the above Hamiltonian is restricted to the case of a global
continuity constraint Eq.~6! ~for details of this transforma-
tion see@6# and @8#!.

In the case of a self-interacting polymer chain the Hamil-
tonian has two additional terms corresponding to the interac-
tions between different segments

bH0„r¢~n!…→
1

2
beE

0

N

r¢̈~n!2dn1
1

2
bE

0

NE
0

N

dndmViso@r¢~n!

2r¢~m!#1
1

2
bE

0

NE
0

N

dndm@r¢̇~n!3r¢̇~m!#2

3Van-iso„r¢~n!2r¢~m!…, ~9!

where the interaction has been split into an isotropic part and
an anisotropic part, of a general nematic form@7#. After in-
tegrating out the variablez(n) and taking into account the
fact that the chain is embedded into the surfacez(r¢) one
obtains for the interaction part

1

2
bE

0

NE
0

N

dndmViso„r¢~n!2r¢~m!…

1
1

2
bE

0

NE
0

N

dndmF„r¢~n!,r¢~m!…Van-iso„r¢~n!2r¢~m!…

~10!

where I used the shorthand V„r¢(n)2r¢(m)…
5V„r¢(n)2r¢(m);z„r¢(n)…2z„r¢(m)…) and defined

F„r¢~n!,r¢~m!…5@r¢̇~n!21 ż2„r¢~n!…#@r¢̇~m!21 ż2„r¢~m!…#2@r¢̇~n!r¢̇~m!1 ż„r¢~n!…ż„r¢~m!…#2

5r¢̇ i
2~n!r¢̇k

2~m!2r¢̇ i~n!r¢̇ i~m!r¢̇k~n!r¢̇k~m!1@r¢̇ i
2~m!r¢̇k~n!r¢̇ l~n!

1r¢̇ i
2~n!r¢̇k~m!r¢̇ l~m!22r¢̇ i~n!r¢̇ i~m!r¢̇k~n!r¢̇ l~m!#

]z

]r¢k

]z

]r¢ l
1••• . ~11!

In the definition ofF„r¢(n),r¢(m)… I limited myself only to
terms up to and including second order in the derivatives of
z(r¢), in order to be consistent with the harmonic approxima-
tion assumed later for the bare surface Hamiltonian.

The final integration in the partition function has to be
over the surface degrees of freedomz(r¢). Assuming that in
the absence of the embedded polymer the surface energy is
given byV„z(r¢)…, the partition function can be cast into the
form

J~N!5E •••E Dz~r¢ !J„z~r¢ !…exp@2bV„z~r¢ !…#. ~12!

In what follows I start from the assumption thatV„z(r¢)… is a
quadratic functional of the form

V„z~r¢ !…5
1

2
gE @¹'z~r¢ !#2d2r¢1

1

2
KcE @¹'

2 z~r¢ !#2d2r¢

5
1

2E g ik

]z~r¢ !

]r¢ i

]z~r¢ !

]r¢k
d2r¢

1
1

2E Kiklm

]2z~r¢ !

]r¢ i]r¢k

]2z~r¢ !

]r¢ l]r¢m
d2r¢ , ~13!

whereg is the bare surface tension andKc is the bare cur-
vature elastic modulus. In order to facilitate later computa-

tions the surface energy and the curvature modulus tensors
are introduced, which for a bare isotropic membrane assume
the straightforward formg ik5gd ik and Kiklm5Kcd ikd lm .
By gathering all the terms in lnJ„z(r¢)… that contribute to
quadratic order inz(r¢) one will be in position to evaluate the
rescaled values of the elastic modulus and the surface ten-
sion, which is the aim of this computation.

Also conveniently for later developements we introduce
S0(Q¢ ) through Fourier decomposedz(r¢)

V„z~Q¢ !…5(
QW
S0~Q¢ !uz~Q¢ !u2, ~14!

with

S0~Q¢ !5 1
2gQ21 1

2 KcQ
4. ~15!

S0(Q¢ ) is of course connected with the structure function of
the bare membrane.

C. Collective variables

One proceeds by defining collective variables in terms of
which the partition function Eq.~7! assumes the form that
allows an explicit introduction of mean fields. The three col-
lective variables introduced to this effect are density, orien-
tational tensor, and the tensor of the squared curvature
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r~r¢ !5E
0

N

dnd„r¢2r¢~n!…,

s ik~r¢ !5E
0

N

dnr¢̇ i~n!r¢̇k~n!d„r¢2r¢~n!…,

cik~r¢ !5E
0

N

dnr¢̈ i~n!r¢̈k~n!d„r¢2r¢~n!…. ~16!

It should be noted here that since all the above collective
variables are defined on a two-dimensional surface, they do
not share the same properties with their three-dimensional
counterparts. For instance, the orientational tensor does not
satisfy the equality Trs ik(r¢)5r(r¢) @7#. Later on an analo-
gous relation valid in two dimensions will be derived in de-
tail. Furthermore, the squared curvature tensor is not con-
nected with the torsion of the polymer chain, but can be
simplified by means of the Frenet equation for a planar curve
into

cik~r¢ !5E
0

N

dnk2~n!n¢ i~n!n¢k~n!d„r¢2r¢~n!…

5^k2~n!n¢ i~n!n¢k~n!&chain, ~17!

wherek(n) is the~planar! curvature andn¢ i(n) is the normal
vector of the chain.

With collective variables the partition function Eq.~7! can
be cast into the form

J„z~r¢ !…5E •••E Dr¢~n!Dr~r¢ !Ds ik~r¢ !Dcik~r¢ !

3dS r~r¢ !2E
0

N

dnd„r¢2r¢~n!…D
3dS s ik~r¢ !2E

0

N

dnr¢̇ i~n!r¢̇k~n!d„r¢2r¢~n!…D
3dS cik~r¢ !2E

0

N

dnr¢̈ i~n!r¢̈k~n!d„r¢2r¢~n!…D
3exp@2bH„r¢~n!,r~r¢ !,s ik~r¢ !,cik~r¢ !…#. ~18!

The HamiltonianH„r¢(n),r(r¢),s ik(r¢),cik(r¢)… is obtained by

substituting the collective variables intoH0(r¢). Assuming,
furthermore~for the sake of convenience!, that both the iso-
tropic as well as the anisotropic parts of the interaction po-
tential have the form of contact interaction
Viso(r¢ ,r¢8)5uid

2(r¢2r¢8) and Van2iso(r¢ ,r¢8)5uad
2(r¢2r¢8),

one remains with the following form of the interaction
Hamiltonian:

bH„r¢~n!,r~r¢ !,s ik~r¢ !,cik~r¢ !…

5
1

2
beE

0

N

dnr¢̈~n!21lE
0

N

dnr¢̇~n!2

1
1

2
beE d2r¢

]z~r¢ !

]r¢ i

]z~r¢ !

]r¢k
cik~r¢ !

1lE d2r¢
]z~r¢ !

]r¢ i

]z~r¢ !

]r¢k
s ik~r¢ !

1
1

2
beE d2r¢ r21~r¢ !

]2z~r¢ !

]r¢ i]r¢k

]2z~r¢ !

]r¢ l]r¢m
s ik~r¢ !s lm~r¢ !

1buaE d2r¢@s i i ~r¢ !skl~r¢ !2s ik~r¢ !s i l ~r¢ !#
]z

]r¢k

]z

]r¢ l

1
1

2
buiE d2r¢ r2~r¢ !1

1

2
buaE d2r¢$s i i

2 ~r¢ !

2Tr@s ik~r¢ !#2%. ~19!

Here only terms up to and including second order inz(r¢)
and its derivatives have been retained. A higher-order term

can be derived from therẄ i(n)r¢̇k(n)r¢̇ l(n) term in Eq. ~8!

after ther¢(n) integration and has been consequently omitted.

D. Partition function

The next step is to introduce functional Fourier transform
representations ford functions appearing in Eq.~18!. For
eachd function we thus obtain an auxiliary field, the inte-
gration over which ensures that the definitions in Eq.~16! are
satisfied. Calling the auxiliary fieldsf(r¢) for r(r¢), c ik(r¢)
for s ik(r¢), andt ik(r¢) for cik(r¢), we obtain the relation

J„z~r¢ !…5E •••E Dr~r¢ !Ds ik~r¢ !Dcik~r¢ !Df~r¢ !Dc ik~r¢ !Dt ik~r¢ !3J„f~r¢ !,c ik~r¢ !,t ik~r¢ !…

3exp@2bH„z~r¢ !;f~r¢ !,c ik~r¢ !,t ik~r¢ !;r~r¢ !,s ik~r¢ !,cik~r¢ !…#, ~20!

where

J„f~r¢ !,c ik~r¢ !,t ik~r¢ !…5E •••E Dr¢~n!exp@2bH0„r¢~n!;f~r¢ !,c ik~r¢ !,t ik~r¢ !…#. ~21!

The definitions employed in the above two formulas were
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bH0„r¢~n!;f~r¢ !,c ik~r¢ !,t ik~r¢ !…5
1

2
beE

0

N

dnr¢̈~n!21lE
0

N

dnr¢̇~n!22lE
0

N

dn1 ı̇E
0

N

dnf„r¢~n!…

1 ı̇E
0

N

dnc ik„r¢~n!…r¢̇ i~n!r¢̇k~n!1 ı̇E
0

N

dn tik„r¢~n!…r¢̈ i~n!r¢̈k~n!, ~22!

while

bH„z~r¢ !;f~r¢ !,c ik~r¢ !,t ik~r¢ !;r~r¢ !,s ik~r¢ !,cik~r¢ !…5
1

2
beE d2r¢ cik~r¢ !

]z~r¢ !

]r¢ i

]z~r¢ !

]r¢k
1lE d2r¢ s ik~r¢ !

]z~r¢ !

]r¢ i

]z~r¢ !

]r¢k

1
1

2
beE d2r¢ r21~r¢ !s ik~r¢ !s lm~r¢ !

]2z~r¢ !

]r¢ i]r¢k

]2z~r¢ !

]r¢ l]r¢m

1buaE d2r¢@s i i ~r¢ !skl~r¢ !2s ik~r¢ !s i l ~r¢ !#
]z

]r¢k

]z

]r¢ l

1
1

2
buiE d2r¢ r2~r¢ !1

1

2
buaE d2r¢$s i i

2 ~r¢ !2Tr@s ik~r¢ !#2%

2 ı̇E d2r¢ r~r¢ !f~r¢ !2 ı̇E d2r¢ s ik~r¢ !c ik~r¢ !2 ı̇E d2r¢ cik~r¢ !t ik~r¢ !.

~23!

The partition function of the membrane with an embedded
flexible polymer chain can now be obtained in several
straightforward steps. Let us first of all introduce the renor-
malized potentialṼ„z(r¢)… which, is of the same form as Eq.
~13! but with renormalized values ofg ik andKiklm ,

g ik~r¢ !→gd ik1ecik~r¢ !12
l

b
s ik~r¢ !12ua@s l l ~r¢ !s ik~r¢ !

2s l i ~r¢ !s lk~r¢ !#,

Kiklm~r¢ !→Kcd ikd lm1
e

r~r¢ !
s ik~r¢ !s lm~r¢ !. ~24!

The renormalized values ofg ik andKiklm thus depend on the
set r(r¢), s ik(r¢), and cik(r¢). The corresponding Fourier
representation would ensue as

Ṽ„z~Q¢ !…5
1

2(Q¢
@g ik~Q¢ !QiQk1Kiklm~Q¢ !QiQkQlQm#

3uz~Q¢ !u2. ~25!

Now we construct a generating functional~functional
Fourier transform! of exp2bṼ„z(r¢),r(r¢),s ik(r¢),cik(r¢)… at
some quenched value of the membrane shapez(r¢). By defi-
nition one has

exp@2bṼ„z~r¢ !,f~r¢ !,c ik~r¢ !,t ik~r¢ !…#

5Zz~r¢ !„f~r¢ !,c ik~r¢ !,t ik~r¢ !…

5E •••E Dr~r¢ !Ds ik~r¢ !Dcik~r¢ !

3exp„2bṼ„z~r¢ !,r~r¢ !,s ik~r¢ !,cik~r¢ !…

2 ı̇E d2r¢ r~r¢ !f~r¢ !2 ı̇E d2r¢ s ik~r¢ !c ik~r¢ !

2 ı̇E d2r¢ cik~r¢ !t ik~r¢ ! D , ~26!

where the left-hand side should be read symbolically as a
shorthand for the functional Fourier transform.

Finally, the partition function can be expressed as an av-
erage of the product of the generating functional with vari-
ables f(r¢),c ik(r¢),t ik(r¢) and the partition function of a
single polymer chain in the orienting field of external sources
f(r¢), c ik(r¢), and t ik(r¢), averaged over all the conforma-
tions of the membrane, i.e.,

J~N!5E Dz~r¢ !Z„z~r¢ !…, ~27!

with

Z„z~r¢ !…5E •••E Df~r¢ !Dc ik~r¢ !Dt ik~r¢ !

3exp@2bṼ„z~r¢ !,f~r¢ !,c ik~r¢ !,t ik~r¢ !…#

3J„f~r¢ !,c ik~r¢ !,t ik~r¢ !…. ~28!
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Obviously the general form of the partition function is un-
tractable and additional approximations have to be consid-
ered to get a closed-form solution.

E. Mean-field approximation

It was recently shown@6# that a similar partition function
can be evaluated explicitly by introducing a mean-field de-
scription of the polymer collective coordinates
r(r¢),s ik(r¢),cik(r¢) as well as their auxiliary fields
f(r¢),c ik(r¢),t ik(r¢) by suppressing theirr¢ dependence and
treating them as constants. Thus, by introducing
r(r¢)→ r̄, s ik(r¢)→s̄ ik , and cik(r¢)→ c̄ik as well as
ı̇f(r¢)→f̄, ı̇c ik(r¢)→c̄ ik , and ı̇t ik(r¢)→ t̄ ik one can first of
all explicitly evaluate the partition function of a single chain
with external sourcesJ(f̄,c̄ ik , t̄ ik). This calculation will not

be repeated as it has been already detailed in@6#. The final
result valid in the limitN@1 can be obtained as

2kT lnJ~f̄,c̄ ik , t̄ ik!

5
N

2(a S ~l1c̄a!

S be

2
1 t̄aD D

1/2

1
N

2p
qmax(

a
lnS 11

2t̄a
be D

2Nl1Nf̄, ~29!

where the indexa refers to the eigenvalues so thatc̄a , t̄a are
the indexed eigenvalues ofc̄ ik and t̄ ik . The next step now is
to evaluateZz(r¢)(f̄,c̄ ik , t̄ ik) on the mean-field level. In com-
plete analogy with the calculations in@6# I obtain

2kT lnZz~r¢ !~ f̄,c̄ ik , t̄ ik!5
1

2
be c̄aE d2r¢S ]z~r¢ !

]r¢a
D 21ls̄aE d2r¢S ]z~r¢ !

]r¢a
D 21 1

2
ber̄ 21s̄as̄bE d2r¢

]2z~r¢ !

]r¢a
2

]2z~r¢ !

]r¢b
2

1bua~Trs̄a!s̄bE d2r¢S ]z~r¢ !

]r¢b
D 22buas̄as̄bE d2r¢

]z~r¢ !

]r¢a

]z~r¢ !

]r¢b

1
1

2
buiSr̄2

1
1

2
buaS@~Trs̄a!22Tr~ s̄a!2#2Sr̄f̄2Ss̄ac̄a2Sc̄a t̄a . ~30!

What remains now is the final integration over the membrane
modesz(r¢) or equivalently over their Fourier components
z(Q¢ ). It is performed in such a way that all the terms de-
scribing the bare membrane and thus depending only on
S0(Q¢ ) are discarded as they do not enter the mean-field
evaluation of collective variables or their auxiliary fields.
The final expression obtained in this way forJ(N) thus
assumes the form

kT lnJ~N!>
N

2(a S ~l1c̄a!

S be

2
1 t̄aD D

1/2

1
N

2p
qmax(

a
lnS 11

2t̄a
be D 2Nl1Nf̄

2Sr̄f̄2S(
a

s̄ac̄a2S(
a

c̄a t̄a

1
1

2
buiSr̄21

1

2
buaS@~Trs̄a!22Tr~ s̄a!2#

1
1

2(Q¢
lnS 11be(

a
c̄a

Qa
2

bS0~Q¢ !

12l(
a

s̄a

Qa
2

bS0~Q¢ !

1
be

r̄
(
a,b

s̄as̄b

Qa
2Qb

2

bS0~Q¢ !
D . ~31!

In the above equation I have limited myself to the lowest
orders inc̄a ands̄a , meaning to first order inQ

2 terms and
to second order ins̄a for Q4 terms, all the higher orders
have been discarded. This essentially limits the validity of
conclusion derived from Eq.~31! to the regime of low sur-
face coverage of the membrane, i.e., to smallr̄.

Introducing now

bS~Q¢ !5bS0~Q¢ !1be(
a

c̄aQa
212l(

a
s̄aQa

2

1
be

r̄
(
a,b

s̄as̄bQa
2Qb

2, ~32!

I obtain the set of mean-field equations~the leftmost quantity
stands for the minimizing variable!

c̄a : t̄a5
be

2 (
Q¢

Qa
2

bS~Q¢ !
,
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t̄a : c̄a52
N/S

4 S ~l1c̄a!

S be

2
1 t̄aD D

1/2S be

2
1 t̄aD 21

1
N/S

p

qmax
be S 11

2t̄a
be D 21

,

s̄a : c̄a5bua@~Trs̄a!2s̄a#1l(
Q¢

Qa
2

bS~Q¢ !

1
be

r̄
(
b

s̄b(
Q¢

Qa
2Qb

2

bS~Q¢ !
,

c̄a : s̄a5
N/S

4

1

A~l1c̄a!S be

2
1 t̄aD

,

r̄: f̄5bui r̄2
be

2r̄2(a,b (
Q¢

s̄as̄b

Qa
2Qb

2

bS~Q¢ !
,

f̄: r̄5N/S,

l:
N/S

4
(
a

1

A~l1c̄a!S be

2
1 t̄aD

5~N/S!2(
a

s̄a(
Q¢

Qa
2

bS~Q¢ !
. ~33!

The appearance of the wave vectorqmax is a consequence of
the limit of the continuous description of a polymer chain
and should be inversely proportional to the Kuhn length.

At this point a perturbation expansion in terms of the
surface coverage of the polymersr̄ is introduced and only
the lowest order is taken into account, essentially making the
approximationS(Q¢ )→S0(Q). SinceS0(Q) is by assumption
isotropic, one has

(
Q¢

Qa
2

bS~Q¢ !
>(

Q¢

Qa
2

bS0~Q!
5 lim

r¢→r¢
8K ]z~r¢ !

]r¢a

]z~r¢8!

]r¢a8
L
0

5F,

(
Q¢

Qa
2Qb

2

bS~Q¢ !
>(

Q¢

Qa
2Qb

2

bS0~Q!
5 lim

r¢→r¢8
K ]2z~r¢ !

]r¢a
2

]2z~r¢8!

]r¢8b
2 L

0

5F uudab1F'~12dab!. ~34!

The index 0 signifies that the averages are taken with respect
to a bare membrane. ObviouslyF is the strength of the sur-
face normal fluctuations andF uu andF' are the strengths of
the surface curvature fluctuations.

At this point the calculation performed here substantially
deviates from@6#. Since in that case the polymer was ideal,
i.e., noninteracting, the orientational ordering was due to

higher-order expansion terms inS(Q¢ ), omitted here, as they
would only rescale the already existing transition point but
not its qualitative characteristics.

The mean-field equations can now be solved by means of
the ansatz

s̄a5
r̄

2~11F !
~16S!, ~35!

where S is the orientational order parameterS
5 1

2 (3^cos2Q&21) @4# with Q being the angle between the
local direction and the nematic axis. It thus follows that in
this case Trs̄ ik5 r̄/(11F) and as announced, thus differs
from the three-dimensional equivalent Trs̄ ik5 r̄. The differ-
ence is due to the projection of the continuity condition Eq.
~8! onto a fluctuating surface@6#.

Putting this ansatz into the minimization conditions, we
are left with the results

SF ~12S2!22
1

2~ber̄ !Fbua2
be

r̄
~F uu2F'!G G50,

l5
1

2~be!

2~11S2!

~12S2!2
2

r̄

~11F !2 S bua1
be

r̄
~F uu1F'!D

c̄a52
r̄

2~be!2~11F !

~17S!

~12S2!
1
2r̄

be

qmax
2p~11F !

. ~36!

Clearly the solution of the above equations describes a
second-order surface orientational transition characterized by
S50 andSÞ0. The critical point of the transition is given as
a solution of

2ber̄5
1

Fbua2
be

r̄
~F uu2F'!G . ~37!

The transition involves only the variablesb, e, and r̄ and
can thus be achieved by either a variation in temperature,
polymer stiffness, or polymer surface coverage.

F. Effective elastic constants

The corresponding renormalization of the effective mem-
brane elastic constants can be obtained on this level of ap-
proximations from
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bS~Q¢ !→bS0~Q!1be(
a

c̄aQa
212l(

a
s̄aQa

2

1
be

r̄
(
a,b

s̄as̄bQa
2Qb

2

5
1

2
bgQ21

1

2
bKcQ

41
1

2
be(

a
c̄aQa

2

1l(
a

s̄aQa
21

1

2

be

r̄
(
a,b

s̄as̄bQa
2Qb

2 . ~38!

The renormalized values of the elastic constants can be read
off as

g→g1e c̄a12
l

b
s̄a ,

Kc→Kc1
e

r̄
s̄as̄b . ~39!

One observes first of all that the elastic modulus of the
dressed membrane changes because of the elasticity of the
embedded polymer, while the surface tension changes be-
cause of two distinct contributions: one stemming from the
fact that polymer is embedded into the surface and thus
scales linearly withl, the other one stemming from the cou-
pling between the curvature of the surface and curvature of
the embedded chain.

If I now write

bS~Q!5
1

2
S uu~Qx

21Qy
2!1

1

2
S'S~Qx

22Qy
2!

1
1

2
bKc~Qx

21Qy
2!21

1

2

be

r
@s uu~Qx

21Qy
2!

1s'S~Qx
22Qy

2!#2, ~40!

thus defining the quantitiess uu and s' as well asS uu and
S' , I obtain

S uu5bg12becuu12S 2l1bua
r̄

~11F ! Ds uu ,

S'52bec'12S 2l1bua
r̄

~11F ! Ds' , ~41!

while

s uu5s'5
r̄

2~11F !
,

cuu5S 2r̄

be

qmax
2p~11F !

2c'D ,
c'5

r̄

2~be!2~11F !~12S2!
. ~42!

It is clear from Eq.~40! that, depending on the orientational
order parameter in the nematic phase, the elastic energy will
be destabilized ifS uu2S'S,0. This destabilization of the
surface energy is due to the existence of an easy axis, in the
direction perpendicular to the nematic axis, characterized by
a much smaller surface energy than in the direction parallel
to the nematic axis. This effect follows directly from the
anisotropic packing of the polymer on the embedding sur-
face.

G. Tubulization transition

Renormalized elastic constants are now taken as a point
of departure for the general analysis of the effective elastic
energy. The recent quite general formalism developed by
Radzihovsky and Toner@5# is taken as a lead.

Instead of choosing the Monge parametrization for the
surfacer (x,y)5„x,y,z(x,y)… one can write down the elastic
energy Eq.~40! directly in terms ofr (xi) with x15x, and
x25y. Also in order to ensure stability, in view of the dis-
cussion preceding this section, appropriate fourth-order
terms@9# have to be added to the expansion Eq.~40!. In the
spirit of the Landau theory, we assume that the fourth-order
displacement terms do not change sign as a function of the
nematic order parameter and thus assume them as constant.

The total elastic energy, meaning the sum of Eq.~40! and
the fourth-order terms, can now be written in terms of the
gradients of local displacements as@5#

F„r ~xi !…5
1

2E dx'dxnHK''@]'
2 r ~xi !#

21Knn@]n
2r ~xi !#

2

1Kn'@]'
2 r ~xi !#@]n

2r ~xi !#1t'@]'r ~xi !#
2

1tn@]nr ~xi !#
21

1

2
u''@]'r ~xi !]'r ~xi !#

2

1
1

2
unn@]nr ~xi !]nr ~xi !#

21un'@]nr ~xi !]'r ~xi !#
2

1
1

2
v''@]'r ~xi !]'r ~xi !#

2

1vn'@]nr ~xi !#
2@]'r ~xi !#

2J , ~43!

where we have chosen the nematic direction to ben. In order
for the system to be stable the fourth-order constants have to
be positiveu,v.0. The second-order constants can be ob-
tained by comparison with Eq.~40!. The effective elastic
moduli are obtained as

K''5Kc1
be

r
~sn

22sns'S1s'
2S2!,

Knn5Kc1
be

r
~sn

21sns'S1s'
2S2!,

Kn'52Kc12
be

r
~sn

22s'
2S2!, ~44!
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and, as can be easily deduced from the definitions Eq.~42!,
are all positive. The effective surface tension can be cast into
the form

tn5Sn1S'S,

t'5Sn2S'S, ~45!

where t' can be either positive or negative. The zero oft'
does not coincide with the isotropic-nematic transition of the
polymers, i.e., withS50.

This free energy is now treated in analogy with the usual
f4 theories of the critical phenomena, identifying the tangent
vectorsta5]ar (xi) as order parameters@9#. In what follows
we will delimit the analysis to the mean-field approximation
where we take the ansatzrMF5(z'x,zny), where the
symmetry-breaking nematic axis has been oriented in they
~parallel! direction. The prefactorsz' ,zn are order param-
eters that measure the shrinkage of the membrane due to
undulations@10#. With this ansatz one obtains for the free
energy

F5
1

2
L'LnF tnzn21t'z'

21
1

2
~u''1v''!z'

41
1

2
unnzn

4

1vn'zn
2z'

2 G . ~46!

Following Radzihovsky and Toner@5#, by minimizing the
above free energy one obtains the following phase diagram
topology for (u''1v'')unn.vn'

2 . There exists a crumpled
phase withzn5z'50 for tn ,t'.0. As t' changes sign a
tubular phase sets in withz'5Aut'u/u'' and zn50. This
transition is second order. A transition to the flat phase,
which can be expected on general grounds@5#, never sets in
as tn cannot change sign due solely to the orientational or-
dering of the polymers. We shall refrain from discussing
other mechanisms, not connected with polymer ordering, that
might nevertheless lead to a change of sign oftn .

That t' is indeed bound to change sign somewhere within
the polymer surface nematic phase is evident from the fact
that limS→0t'5Sn;const.0, while in the opposite limit
limS→1t'5Sn2S';2(12S2)21,0. The exact position
of the change of sign does not coincide with the isotropic-
nematic transition of the embedded polymer chain, i.e., with
S50. Thus a sufficient ordering of the polymer chain has to
be present before the tubulization transition of the whole
embedding membrane can take place.

A second-order orientational transition of the embedded
polymer chain thus drives an associated shape transition of
the membrane, corresponding to a tubulization of the mem-
brane in the direction perpendicular to the nematic axis or
parallel to the easy axis of the surface energy. The two tran-
sitions~i.e., the nematic to isotropic transition of the polymer
and the symmetry-breaking shape transition of the dressed
membrane! do not, however, happen at the same value of the
temperature~surface coverage or polymer stiffness!.

IV. DISCUSSION

Strong adsorption of polymers onto soft supporting sur-
faces has different characteristics from ordinary polymer ad-

sorption where the adsorption phenomenon results from a
competition between adsorption energy and entropically
driven tendency for less tightly bound configurations. Recent
experimental work@2,3# shows that in the strong adsorption
case the polymer chains are basically confined to lie on the
adsorbing surface, without any dangling end or train configu-
rations. In this case, with polymer chains effectively embed-
ded ~onto! into the supporting surface, the main source of
entropy is limited to either polymer conformational degrees
of freedom along the embedding surface or to thermally
driven fluctuations of the supporting surface.

Because of this tight coupling of the polymer with the
supporting surface, polymer statistics is strongly influenced
by local surface configurations. Furthermore, if the polymer
is nonideal, i.e., self-interacting, the supporting surface fluc-
tuations renormalize the interactions between polymer seg-
ments as has been amply demonstrated in a slightly different
context by Goulianet al. @11#. This effect depends on the
nature of the polymer self-interactions as well as on the mag-
nitude of the supporting surface fluctuations. We have inves-
tigated the properties and phenomena connected with an ori-
entational ordering transition of surface-embedded polymers
exhibiting an orientational~nematic! interaction potential
and have shown explicitly the nature of the renormalization
of the polymer self-interaction due to the supporting surface
fluctuations. The conclusion reached in this connection is
that for a sufficiently stiff membrane this effect tends to be
small since it depends on the equilibrium fluctuations of the
bare surface curvature.

It is, however, not only true that thermally driven undu-
lations of the supporting surface affect the polymer ordering
transition, but this transition in its turn manifestly modifies
the properties of the compound~bare membrane plus embed-
ded polymers! membrane. The reverse effect, of polymer
modified membrane properties, appears to be much more im-
portant both in qualitative and quantitative terms. Polymer
orientational ordering spawns an associated symmetry-
breaking transition in the mean shape of the compound mem-
brane that prefers membrane configurations with most of the
surface area in the direction of the easy~low energy! axis of
the surface energy. This is achieved through a tubulization
transition@5# where the long axis of the tubule is perpendicu-
lar to the nematic axis of the polymer ordering.

Though it is understandable that nematic ordering of a
surface embedded polymer should have some consequences
on the properties of the dressed surface, the drastic change in
the mean shape of the compound membrane does come as a
surprise.

One can foresee several effects that are beyond the pres-
ently formulated mean-field solution to the tight adsorption
model. First of all, the coupling between local curvatures and
the nematic order parameter of the polymerS is missing. It is
intuitively plausible and indeed probable that local curvature
should affect local ordering of the polymer segments tending
to concentrate aligned polymers in regions with large local
curvature. This effect could also introduce additional ordered
phases@12# into the phase diagram of the dressed membrane.
As is clear from a comparison with the general analysis@5#,
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the phase diagram of the polymer embedding surface covers
only one part of the phase diagram expected on general
grounds. The tubulization transition, if indeed present in the
systems with strong adsorption of polymers to soft flexible

surfaces, would be of particular importance for understand-
ing the DNA-cationic lipid aggregation@2,3#, where the col-
loidal state of the aggregate is crucial for transfection of the
DNA-lipid complex across the cellular membrane.
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