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Isotropic-nematic transition of surface embedded polymers and the associated tubulization
transition of the embedding surface
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A self-interacting polymer can undergo an orientational ordering transition, depending on the magnitude of
the nematic interaction. The effect of embedding such a polymer into a flexible surface on this transition is
studied on the mean-field level. Renormalized values of the elastic constants of the “dressed” surface are
derived as functions of the orientational order parameter of the polymer chain. In the disordered state the
surface tension and curvature modulus remain scalars, but depend on the surface coverage of the embedded
polymer. In the nematic state there is a symmetry-breaking transition leading to anisotropic elastic constants.
At a sufficiently large nematic order parameter the effective surface tension in the direction perpendicular to
the nematic axis can become negative, leading to tubulization of the embedding surface.
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[. INTRODUCTION established that there can be no effective decoupling of the
tight adsorption problentembedding into a separate poly-
Usually the adsorption of polymers onto surfaces is dis-mer and surface parts. The influence of the surface degrees
cussed in terms of more or less diffuse adsorption layerspf freedom on the polymer ordering transition, as well as of
composed of trains, loops, and dangling ends. There ighe polymer degrees of freedom on the effective elastic con-
enough corroborating evidence that in many cases this sinftants of the “dressed{meaning surface plus polymesur-
plified picture correctly captures the salient features of thdace, will be derived and discussed. The renormalized form
polymer adsorption phenomefa. of th_e Sl_Jrface elg_stlc constants will _be shown to lead to a
However, some recent results on adsorption of higm);ubullzatlon transition of the embedding surface.
charged polyelectrolyes onto oppositely charged molecular
surfaces give evidence to much stronger bonding of the ad- Il. OVERVIEW
sorbing polymer to the surfade,3]. It seems that the poly-

mer adsorbs flat onto the surface without any observable | first_ present a skgtchy overview of the main result§ and
(}onclusmns reached in the paper. Starting from an orienta-

Ioops_, dangling ends, and even a very restricted number %onally (nematically interacting polymer chain embedded

; lectrostatic attracti { id |ﬁtoasoft(membranksurface, conditions for a second-order
strong electrostatic attraction can apparently overriae any e symmetry-breaking orientational ordering transition are de-

tropy driven tendency for less tightly bound configurations. jy.eq The presence of surface shape fluctuations only mar-

In this respect one can envision the adsorption procesginaly influences the critical point of the transition. The
more as an embedding of polymer chains if@o ontd the  pematic orientational order parameter, defined in a standard
adsorbing(supporting surface. The theoretical significance \yay [4] as S=1(3(co€®)—1), where® is the angle be-

of this observation would be that an analysis of the adsorpyyeen the local direction and the nematic axis, is obtained as
tion phenomenon could be carried out without taking intog solution of

consideration the extremely improbable configurations with
local desorption of the polymer$oops and dangling engls

In a certain sense this simplifies the analysis because the \/ 1

chains can be treated as embedded into the supporting ma- S= 1- \/ Pp— 1)
trix. However, the embedding also signifies that there is a 2(Bep)Bu,

strong coupling between the polymer and the surface con-

figurations and thus the pertaining degrees of freedom cannetheree is the elastic modulus of the polymer chajnis the
be decoupled and treated separately. polymer surface densitysurface coverageandu, is pro-

In this contribution we shall address the interplay of theportional to the excluded volume of the nematic interaction

polymer and surface degrees of freedom in connection witly_ , renormalized due to the presence of the embedding sur-
the nematic ordering transition of a polymer chain embeddeg¢ace shape fluctuations
(i.e., tightly adsorbedonto a flexible, fluid surface. It will be
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whereci is the embedding surface curvature in the direction B. Theory and formalism
, with i=x,y. The average in the above equation is with

respect to the bare surface, i.e., with no embedded polymer
Tied o this transition are also changes in the overal which is a continuous, differentiable function of arc length

(dressedl elastic constants of the membrane. A closed exV 9

pression is derived for the renormalized elastic constants)’ V\.’h”e the total Iength of the polymer 8. II|m_|t m_yself to
surface tension ) and the elastic modulusK(), of the d S'.”g"? polymer c;haln case, but a general|z§1t|on to many
dressed membrane ' chains is quite straightforward. Let the embedding surface be

represented in the Monge parametrization a5
=¢(x,y)=(p), wherep is the two-dimensional radius vec-

The position of thenth bead along the polymer contour is
escribed by a position vectorr(n) (x(n),y(n),z(n)),

y— v+ 2£a+fc—a' tor. In this notation the partition function of a flexible, but
B otherwise noninteracting, polymer chain embedded into the
surface(p) can be written a§6]
€___
Kc—Ke+=0,05, 3 s - -
e =g = [ [ DT s - o)

where the indexx describes the components of the indexed 5
guantities in the reference frame of their eigencoordinate sys- X 1;[ ar(n
tem. Thuse can be eithen, signifying a component parallel
to the nematic axis, o, signifying a component perpen- \\here
dicular to the nematic axisr, is the mean-field orientational
tensor of the embedded polymer amg its mean-field 1 N[ d2F(n) 2
squared curvature tensov.is a scalar depending on the ori- BHo(F(n))= —Bff <_2)
entational order parameter. 2 o\ dn

Following from the above expression for the renormalized N
values of the elastic constants, we show that the renormal- :EBEJ [.F.(n)]zdn (5)
ized surface tension can change sign in the direction perpen- 2 '
dicular to the nematic axis for a sufficiently large nematic
order parameter. Basing our analysis on the recent genergle is the energy associated with polymer bending and can be
investigation of the tubulization transition of polymerized related to the persistence lend#i. By integrating out the

membranes by Radzihovsky and Toigf, we show, in the  z(n) variable and enforcing the continuity condition
framework of Landau theory, that the preferred conformatior.

of the surface is a tubule with the long axis perpendicular td(n)zzl only globally[7], i.e.,
the nematic direction of the embedded polymers. The tubu-
lization transition of the membrane does not coincide with
the isotropic-nematic transition of the embedded polymers.

one is led to the following form of the corresponding parti-

_ 1)6*/37'(0("(”)), (4)

(F(MZ)=(p(m2+ L(p(n)D) =1, ©®)

I1l. ANALYSIS tion function:
A. Outline ) ) i
The formalities of the derivation are a bit convoluted so | E¢(p)= f S f Dp(n)exd — BHo(p(n))],  (7)

will give a short guided tour before actually developing
them. The point of departure is the usual flexible chainwhere some irrelevant constant terms have been omitted. The

Hamiltonian together with the “embedding ansatz,” con- oftective HamﬂtomaﬁHo(p(n)) has been obtaine®] as
straining the chain to lie on the supporting surface. The ex-

pression for the partition function following from these pre- 1 N
mises is developed in Sec. IlIB. A closed form of the BH o(P(n))— ,Bff
partition function can be obtained by introducing collective

variables of the polymer chain: density, orientational tensor, .

and tensor of the squared curvature. This is developed in +¢(n)?]dn
Sec. Il C together with the final form of the partition func-

- . N -
p(n)>+ §(n)2dn+>\fo [p(n)?

tion in collective coordinates in Sec. Ill D. This partition :EBGJN B(n)2+ 3?(1’)3(”)

function has a simple closed-form solution if the collective 2 0 ap, !

variables are treated in a mean-field manner, ignoring local

fluctuations in their values along the surface. This is done in 2{(p) 2 Nl
Sec. lll E, leading to the final derivation of effective elastic Pl(”)l’k(”) d”“‘fo p(n)
constants of the dressed membrane in Sec. Ill F. Once these PP

are derived the tubulization transition can be described by ag(p) ag(p) )

means of the formalism set forth by Radzihovsky and Toner = ———pi(n )pk(n) dn, (8
[5], as is done in Sec. Il G. aip Ip
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where the constamnt is the Lagrange multiplier, ensuring the where the interaction has been split into an isotropic part and
global condition Eq(6), to be determined later. The validity an anisotropic part, of a general nematic fdrrj. After in-
of the above Hamiltonian is restricted to the case of a globalegrating out the variable(n) and taking into account the

continuity constraint Eq(6) (for details of this transforma- fact that the chain is embedded into the Surfg(;pf) one

tion see(6] and[8]). _ . _ obtains for the interaction part
In the case of a self-interacting polymer chain the Hamil-

tonian has two additional terms corresponding to the mteracl
tions between different segments dndiso(P(n) p(m))

2 2 1 (N[N . .
i) e Tinans 58 [ Janamaion +§ﬁf0 | anam ) o m)Vandin - pm)

> 1 (N[N 5 5
—r(m)]+§,8fo fo dndnir(n)xr(m)]? (10
where | used the shorthand V(p(n)—p(m))
X VanisdT (M) —1(m)), (9 =V(p(n)—p(m);Z(p(n))—¢(p(m))) and defined
|
F(p(n),p(m)=[p(n)2+ L2(p(n)]LHm) 2+ L2(p(m))]— [p(M)p(m) + L (p(n)Z (p(m))]?
— B2(M) BR(M) — o (1) o (M) Byl ) () + [ 52(M) (M) py ()
d
+p.(n)pk(m)p|(m) 2p|(n)p|(m)pk(n)p|(m)] ;f—j+ (11)
k |

In the definition ofj:(p(n) p(m)) | limited myself only to  tions the surface energy and the curvature modulus tensors
terms up to and including second order in the derivatives oft'e introduced, which for a bare isotropic membrane assume

Z(p), in order to be consistent with the harmonic approxima- the straightforward formy;c=ydix and Kixm=Kedixdim-
tion assumed later for the bare surface Hamiltonian. By gathering all the terms in B({(p)) that contribute to
The final integration in the partition function has to be quadratic order if(p) one will be in position to evaluate the

over the surface degrees of freed@m}’)_ Assuming that in  rescaled values of the elastic modulus and the surface ten-
the absence of the embedded polymer the surface energy $§n, which is the aim of this computation.

given byV(g(ﬁ)), the partition function can be cast into the ,AJso conveniently for later develqpements we introduce
form So(Q) through Fourier decomposédp)

2(N)= f f DUAECP)exd - BVEN]. (12 VE©)=3 SO D)2, (14
Q

In what follows | start from the assumption thé&Z(p)) isa  ith
guadratic functional of the form

.1 o1 . So(Q)=37Q*+3 KQ*" (19
Ve =57 | [V aorape sk, [ (V2%

SO(Q) is of course connected with the structure function of

f aL(p) ag(p) the bare membrane.
Yik T > P
"2 I ‘?Pl &Pk
C. Collective variables
PL(p) PLp) - - - . ,
+_f Kiim ——= d2p, (13) One proceeds by defining collective variables in terms of
2 PPy PP which the partition function Eq(7) assumes the form that

allows an explicit introduction of mean fields. The three col-
where y is the bare surface tension aKd is the bare cur- lective variables introduced to this effect are density, orien-
vature elastic modulus. In order to facilitate later computatational tensor, and the tensor of the squared curvature
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- N - = substituting the collective variables inﬂdo(ﬁ). Assuming,
p(p)= fo dné(p—p(n)), furthermore(for the sake of conveniengehat both the iso-
tropic as well as the anisotropic parts of the interaction po-
tential have the form of contact interaction

- N 5 - -
oi(p)= fo dne (Mp(n) op=p(n)). Visop.6') =i 82(p—p') and Var isd(p,5') = Ua8(p—p'),
one remains with the following form of the interaction
. N o .. Hamiltonian:
Cik(p)= JO dnp;(n)p(n) 8(p—p(n)). (16)

BH(p(n),p(p),oik(p).Cik(p))

It should be noted here that since all the above collective N N
variables are defined on a two-dimensional surface, they do :—ﬁff dnf,(n)2+)\f dnp(n)?
not share the same properties with their three-dimensional 2 0 0

counterparts. For instance, the orientational tensor does not
1 -9L(p) I{(p)

satisfy the equality T (p) = p(p) [7]. Later on an analo- +ZBe| d? A Ci(p)
gous relation valid in two dimensions will be derived in de- 2 ap; pk

tail. Furthermore, the squared curvature tensor is not con-

nected with the torsion of the polymer chain, but can be “ ,-0L(p) <9§(P)U 3
simplified by means of the Frenet equation for a planar curve d’p P. e k(P
into

PL(p) L(p)
+5 Bef “Hp )&p.&pk &p|c9pm0k(p)al (p)

> N > > - >
cik(p)=fo dnx?(n)n;(n)n(n) 8(p— p(n))

> > N R R N Jd
= (k2(MNi(N)N(N)) chain, 17 +ﬁuaf d?pl aii(p) ora(p) — oik(p) il p)] f_f
Ipx Ip,
wherex(n) is the(planay curvature andh;(n) is the normal 1 1
vector of the chain. + u-J'dZ* 20V += Bu J'dz* 2,2
With collective variables the partition function Eg) can 2 AU PP7(p) 5 Bua | dploii(p)
be cast into the form o
—Trlow(p)]7}- (19)
:(g(p))zf j Dp(n)Dp(p)Doik(p) Deix(p) Here only terms up to and including second order ()
N and its derivatives have been retamed A higher-order term
X6 P(I;)—JO dn6(ﬁ—ﬁ(n))) can be derived from th@ (n)pk(n)p|(n) term in Eq.(8)

after thep(n) integration and has been consequently omitted.

X
D. Partition function

- N 5 - -
o Uik(p)_fo dnpi(n)pk(n)é(p—p(n)))

. N . The next step is to introduce functional Fourier transform
Cik(p)_f ani(”)Pk(n)5(P—P(n))) representations fop functions appearing in Eq18). For
0 each§ function we thus obtain an auxiliary field, the inte-
> . e - tion over which ensures that the definitions in @) are
xexi — BH(p(N),p(p), ouc(p).Ca(p))]. (18 I . e el
Nk satisfied. Calling the auxiliary fieldg(p) for p(p), ¥i(p)

The HamiltoniarH (p(n), p(p), oik(p),Ci(p)) is obtained by  for oy, (p), andt;(p) for ci(p), we obtain the relation

E((p)= f f Dp(p) Do (p) DCix(p) Db(p) D (p) Dtisc(p) X E(H(p), s (p)  ti(p))
X exd — BHL(P); d(P), ¥i(P) ti(P); p(P), Tik(P) Circ(P)], (20

where

E(p(p), dik(p) ti(p)= f f Dp(n)exd — BHo(p(n); d(p), Yi(P) ti(p))]. (21)

The definitions employed in the above two formulas were
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- - - -1 N N N (N R
ﬂHo(P(n);(l’(l))’¢ik(p):tik(p)):§ﬁffo dnp(n)2+)\f0 dnp(n)z—)\fo dn+|fo dne(p(n))

N STRRCAPR (N ST
£ dnun G+ | dn @) mim, 22

while

BHL(P); #(p), (), ti(P);p(P), oik(P) , Cir(p) = Zﬂff d2pcik(p) ——

=B, | Pou(PITuP) - TP P f—»

+5 Bef d2pp~H(p)oi(p) Tim(p) ——

al(p) 9L(p)
0"P| pk

al(p) 9L(p)
U')pl é’pk

x| dpoun S

PLp) PL(p)
07P| ﬁpk ﬁpl 3Pm

¢

apy Iy

1 R o1 R R -
- f & p2()+ 5 U f Pp(o2(p) - T ow(PI2

—iJ dzﬁp(ﬁ)ﬂﬁ)—if dzﬁaik(ﬁ)wik(ﬁ)_if d2pci(p)ti(p).

The partition function of the membrane with an embedded
flexible polymer chain can now be obtained in several
straightforward steps. Let us first of all introduce the renor-

malized potentiaﬁ(g(ﬁ)) which, is of the same form as Eq.

(13) but with renormalized values of;, andK;ym ,
- - N - - -
Yik(p)— ySik+ eCin(p) + ZE aik(p)+2uz oy (p)oik(p)

—ai(paw(p)],

Kiklm(ﬁ)_)Kc‘sik‘slm"_i-»a'ik(l;)o'lm(l;)- (24)
p(p)

The renormalized values af, andK;y, thus depend on the
The corresponding Fourier

set p(p)r Otik(P): and Cik(p)'
representation would ensue as

~ . 1 N o
V(E(Q)=52 [7i(Q)QiQu+ Kikim(Q) QiQuQiQnn]
2 Q

X|£(Q)]2. (25)

Now we construct a generatlng functionélnctional

Fourier transform of exp—BV(Z(p),p(p), a.k(p) Ci(p)) at

some quenched value of the membrane shgpe. By defi-
nition one has

extd — BVL(p), d(p), Y P) ti(P))]
=Z,5(#(p), ¥i(P) tik(p))

(23)
[
- f f Dp(p)Dos(P)Dew(P)
x exp(— BV(L(P),p(P),ow(P).Ci(P))
—i f d2pp(p)(p)—i f d2p i (p) Yi(p)
—i f dzﬁcik@)tik(ﬁ)), (26)

where the left-hand side should be read symbolically as a
shorthand for the functional Fourier transform.

Finally, the partition function can be expressed as an av-
erage of the product of the generating functional with vari-

ables ¢(p), i (p),ti(p) and the partition function of a
single polymer chain in the orienting field of external sources

d)(ﬁ), zpik(ﬁ), andtik(ﬁ), averaged over all the conforma-
tions of the membrane, i.e.,

E(N)= f DL(p) Z(L(p)), (27)
with

20(5)= f f Dé(5)Diin §) Dt p)

xex — BVL(p), (p), ti(P) ti(P))]
XE(S(p), Yi(p),ti(p))- (28)
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Obviously the general form of the partition function is un- be repeated as it has been already detailgdjnThe final
tractable and additional approximations have to be considresult valid in the limitN>1 can be obtained as
ered to get a closed-form solution. -

—KTINE (¢, i, tik)

E. Mean-field approximation
1/2 yau

It was recently showii6] that a similar partition function B NE (M) N XE inl 1 a
can be evaluated explicitly by introducing a mean-field de- — 24 Be t 5, 0ma = nji+ Be
scription of the polymer collective coordinates 7+ta

p(p),oi(p).cu(p) as well as their auxiliary fields _
&(p). vi(p).ti(p) by suppressing theip dependence and —NA+N¢, (29
treating them as constants. Thus, by introducing L
p(P)—p, oi(p)— oy, and cy(p)—Cy as well as where the index: refers to the eigenvalues so tha,t, are
id(p)— b, 1i(p)— ik, andity(p)—ty one can first of the indexed eigenvalues gf, andt;,. The next step now is
all explicitly evaluate the partition function of a single chain to evaluateZ, ;) (¢, ik tix) on the mean-field level. In com-
with external sourceg (¢, ¢, ,ti). This calculation will not  plete analogy with the calculations 6] | obtain

- 2 - - -,
— 1 __r .[dp) -\’ [ ,-9%Lp) PLp)
_kTInZ§(5)(¢,¢ik,tik):EBGCQJ’ dzp( > +)\0'af d2p > ﬁép 10' O'E dzp—_,z—_,z
&pa apa apﬁ
- 2 - -
- N - ) J 1
+Bua(Tra-a)a-Bj dzP( g(*p) _ﬁUaO'aO'ﬁ dzp@ é/(»p) +§ﬁuis?
pg P, IPg
1 _ _ —
+ EIBUaS[(TrO'a)Z_ Tr( Ua)z] - Sp¢_ So-alzba_ Scata : (30)
T
What remains now is the final integration over the membrane E Q202
- . 3 ) —_— a~g
modes{(p) or equivalently over their Fourier components +:E 0,0 (31
p @B BSH(Q)

2(Q). It is performed in such a way that all the terms de-
scribing the bare membrane and thus depending only on
SO(@) are discarded as they do not enter the mean-fiel
evaluation of collective variables or their auxiliary fields.
The final expression obtained in this way far(N) thus
assumes the form

qn the above equation | have limited myself to the lowest
orders inc, ando,, meaning to first order iQ? terms and

to second order inr, for Q* terms, all the higher orders
have been discarded. This essentially limits the validity of

1/2

_ N ()\+E) conclusion derived from E31) to the regime of low sur-
KTIn=(N)= 52 TBe | face coverage of the membrane, i.e., to srpall
7+ta Introducing now

~NA+N¢

N
+ Eqmaxé In

ot
1 Be BS(Q)=BSy Q)+ BeD, TaQ2+2N Y, 7.Q2

~Spp— SE Totha— SECt . %_EEB TR @)

1 1 _ _
+§BUiSEZ+§BUaS[(TrO'Q,)2_Tr(O’a)z]
| obtain the set of mean-field equatioftise leftmost quantity

Q2 stands for the minimizing variable
=2, Inl 1+ Co
E Ped e o)
‘aS s, % T Q:
@ “BSH(Q) Tt 258 BsQ)’
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. N/S[ (N+ ) Be — higher-order expansion terms J&’(Q), omitted here, as they
t,: C,=———| ——— — +t i . :
ar “a 4 Be — 2 o would only rescale the already existing transition point but
7+ta not its qualitative characteristics.
o The mean-field equations can now be solved by means of
N/S qmax( 2ta) -1 the ansatz
T Be 1 Be|
Tt o= (Trr) — 0, ]+1 3 % ?a=—2(lp+F) (1=8), (35
a a o a é ﬁS(Q)
2A2
+B—_E ‘T_BE Qan , where S is the orientational order parameteS
p A Q BS(Q) =3(3(cog0)—1) [4] with O being the angle between the
local direction and the nematic axis. It thus follows that in
— _ NIis 1 this case To,=p/(1+F) and as announced, thus differs
Vo' Oa= 4 ’ from the three-dimensional equivalentoy=p. The differ-
\/ Ny EH— ence is due to the projection of the continuity condition Eq.
(A 4) 2 (8) onto a fluctuating surfacks].

Putting this ansatz into the minimization conditions, we
are left with the results

_— B — Q05
PP g2 2 Ty
_ 1
¢: p=NIS, S| (1-5%)2— =0,

2(Bep)

Bua_IB_—E(FH_FL)
p

A —2

4 q L
\/(xwa)

o @
=(N/S)— o —. (33
272 558 _ o
— P (1=9S) +2_P Omax
€= T 3(B2(1+F) (1-S) ' Be 2m(1+F)

Be __
—+1,
2

1 21+8Y) ra
N 2B (1-597 (1+F)?

Bua+%—€(l:||+ Fl)

The appearance of the wave vecdtpy,y is a consequence of . (36)

the limit of the continuous description of a polymer chain
and should be inversely proportional to the Kuhn length.
At this point a perturbation expansion in terms of theclearly the solution of the above equations describes a

surface coverage of the polymegsis introduced and only gecond-order surface orientational transition characterized by
the lowest order is taken into account, essentially making the_ g s3nds0. The critical point of the transition is given as

approximationS(Q)HSO(Q). SinceSy(Q) is by assumption g solution of
isotropic, one has

> Q? .y Q? “m,<az<5)az<5')> . 1
o 0

3 BSQ T A%Q .\ . ap, 2Bep= -

Bua—ﬁ——e(FH—Fﬁ
p

s Qg QuQp _ [Pl P
5 BSQ G BS(Q) LS\ gk ap'h |, _
’ The transition involves only the variablgls €, andp and

=F|10apt F (1= 8,p). (34 can thus be achieved by either a variation in temperature,

polymer stiffness, or polymer surface coverage.
The index 0 signifies that the averages are taken with respect

to a bare membrane. Obvioudlyis the strength of the sur-
face normal fluctuations arfé| andF, are the strengths of F. Effective elastic constants
the surface curvature fluctuations.

At this point the calculation performed here substantially The corresponding renormalization of the effective mem-
deviates fron{6]. Since in that case the polymer was ideal, brane elastic constants can be obtained on this level of ap-
i.e., noninteracting, the orientational ordering was due tgroximations from
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R . . It is clear from Eq.(40) that, depending on the orientational
BS(Q)—BSy(Q)+Be>, C,Q5+20> 7,Q2 order parameter in the nematic phase, the elastic energy will
¢ “ be destabilized it —%, S<0. This destabilization of the
Bees surface energy is due to the existence of an easy axis, in the
+ :E o’aaﬁQin direction perpendicular to the nematic axis, characterized by
p ap a much smaller surface energy than in the direction parallel
to the nematic axis. This effect follows directly from the

1 1 1 _ . . . .
= Eﬁ'}’Q2+§BKcQ4+§,8€E c.Q2 anisotropic packing of the polymer on the embedding sur-
a face.
— o 1B —— , L "
+)\2 0. Q5t 5 :E 0,05Q,Q5. (38 G. Tubulization transition
a P a,B

Renormalized elastic constants are now taken as a point
The renormalized values of the elastic constants can be re& departure for the general analysis of the effective elastic
off as energy. The recent quite general formalism developed by
Radzihovsky and Tond5] is taken as a lead.
Instead of choosing the Monge parametrization for the

y—y+ec,t ZEU—H. surfacer (x,y) = (x,y,£(X,y)) one can write down the elastic
energy Eq.(40) directly in terms ofr(x;) with x;=x, and
X,=Y. Also in order to ensure stability, in view of the dis-
e . : . . .
K Kot e . 39 cussion preceding this section, appropriate fourth-order
¢ e FU“UB (39 terms[9] have to be added to the expansion Ef). In the

spirit of the Landau theory, we assume that the fourth-order
One observes first of all that the elastic modulus of thedisplacement terms do not change sign as a function of the
dressed membrane changes because of the elasticity of thematic order parameter and thus assume them as constant.
embedded polymer, while the surface tension changes be- The total elastic energy, meaning the sum of &) and
cause of two distinct contributions: one stemming from thethe fourth-order terms, can now be written in terms of the
fact that polymer is embedded into the surface and thugradients of local displacements [&g
scales linearly with\, the other one stemming from the cou-

. 1
Fri?gertr)]%t;/\(/j%ir:j tgﬁa?:rllj.rvature of the surface and curvature O.fi-‘(r(xi))z EJ dxidxn‘ K L [021 (%) 12+ K[ 921 (%) ]2

1 now write Ko [P () L2 () ]+t [0, 1 (%) ]
1 2 2 1 2 2 1
ASQ=321(QF Q)+ 32 SQQ)) Lt ) P 5 U, [T (03,100 T2
1 1 Be 1
+EPRAQur Q5 T (Qet Q) S 90t ()01 () P Un, [0 (%), () 1
+0,S(QF— Q)% (40) 1
. . +§UJ_J_[‘9Lr(Xi)‘9Lr(Xi)]2
thus defining the quantities; and o, as well asX and
S, | obtain
+UnL[ﬁnr(Xi)]2[01r(Xi)]2 ) (43

p
E=,8y+2ﬁec+2(2)\+ﬁua(1+—|:)) ol

where we have chosen the nematic direction ta be order

for the system to be stable the fourth-order constants have to

2)\+,3UaL o, (41)  be positiveu,u>0. The second-order constants can be ob-
(1+F) tained by comparison with Eq40). The effective elastic

moduli are obtained as

3, =2Bec, +2

while
— €
P KLLZKC-FIB—(O'ﬁ—O'nU'lS—FO'iSZ),
Um0 T2 F) P
€
oo | 2P Omax Kpn=Kc+ B—(aﬁ+anais+af§),
I\ Be 2m(1+F) ) p

p
T 2(Be)2(1+F)(1-9%)°

€
c, (42) Ky =2K .+ 2%(051— 0?S?), (44)
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and, as can be easily deduced from the definitions(&2), sorption where the adsorption phenomenon results from a
are all positive. The effective surface tension can be cast intoompetition between adsorption energy and entropically
the form driven tendency for less tightly bound configurations. Recent
experimental worK2,3] shows that in the strong adsorption
th=2n+2.S, case the polymer chains are basically confined to lie on the
t =S —%.S (45) ad§orbing su'rface, Without any danglin'g end or Frain configu-
Lo e rations. In this case, with polymer chains effectively embed-
wheret, can be either positive or negative. The zeratof ~ded (onto) into the supporting surface, the main source of

does not coincide with the isotropic-nematic transition of theentropy is limited to either polymer conformational degrees
polymers, i.e., withS=0. of freedom along the embedding surface or to thermally

This free energy is now treated in analogy with the usualriven fluctuations of the supporting surface.
¢* theories of the critical phenomena, identifying the tangent gecause of this tight coupling of the polymer with the
vectorst,=d,r(x;) as order parametef$]. In what follows supporting surface, polymer statistics is strongly influenced
we will delimit the analysis to the mean-field approximation ,y, |oca| surface configurations. Furthermore, if the polymer
where we take the ansateye=({,X,fny), where the o nonigeal ie., self-interacting, the supporting surface fluc-
symmetry-breaking nematic axis has been oriented inythe y,a1ions renormalize the interactions between polymer seg-

(paralle) direction. The prefactors, ,¢, are order param- ments as has been amply demonstrated in a slightly different

eters that measure the shrinkage of the membrane due : :
undulations[10]. With this ansatz one obtains for the free (t,%ntext by Gouliaret al. [1.1]' Th|§ effect depends on the
nature of the polymer self-interactions as well as on the mag-

ner . . ; .
energy nitude of the supporting surface fluctuations. We have inves-
1 , , 1 , 1 . tigated the properties and phenomena connected with an ori-
F=biba tada t &0 H S (U 0, ) 0+ S Unndn entational ordering transition of surface-embedded polymers
exhibiting an orientationalnemati¢ interaction potential
and have shown explicitly the nature of the renormalization
+on (ol (46) i i i
nLSnSL |- of the polymer self-interaction due to the supporting surface

fluctuations. The conclusion reached in this connection is
Following Radzihovsky and Tondi5], by minimizing the  that for a sufficiently stiff membrane this effect tends to be
above free energy one obtains the following phase diagrarsmall since it depends on the equilibrium fluctuations of the
topology for U, , +v, ,)unn>v}, - There exists a crumpled bare surface curvature.
phase with,=¢, =0 for t,,,t, >0. Ast, changes sign a

) . . It is, however, not only true that thermally driven undu-
tubular phase sets in with, = |t |[/u,, and {,=0. This 4 Y

¢ tion i d order At ton to the flat ph lations of the supporting surface affect the polymer ordering
ransition 15 second orcer. ransition 1o the Hat PRaseyansition, but this transition in its turn manifestly modifies

which can be expecteq on general groufiils never sgts N the properties of the compouridare membrane plus embed-
ast, cannot change sign due solely to the orientational O 4ed Dol mers membrane. The reverse effect. of polymer
dering of the polymers. We shall refrain from discussing poly ' ' poly

other mechanisms, not connected with polymer ordering, thdp()d'f'ed membrane _pro_pertles, appears _to be much more im-
might nevertheless lead to a change of sign,of portant both in qualitative and quantitative terms. Polymer
Thatt, is indeed bound to change sign somewhere withirerientational ordering spawns an associated symmetry-

the polymer surface nematic phase is evident from the fadgré@king transition in the mean shape of the compound mem-
that lims_ot, =3 ,~const-0, while in the opposite limit Prane that prefers membrane configurations with most of the

limg 1t, =S ,—3, ~—(1—S?)"1<0. The exact position surface area in the direction of the edkyw energy axis of

of the change of sign does not coincide with the isotropic-the surface energy. This is achieved through a tubulization

nematic transition of the embedded polymer chain, i.e., wittfransition[5] where the long axis of the tubule is perpendicu-

S=0. Thus a sufficient ordering of the polymer chain has tolar to the nematic axis of the polymer ordering.

be present before the tubulization transition of the whole Though it is understandable that nematic ordering of a

embedding membrane can take place. surface embedded polymer should have some consequences
A second-order orientational transition of the embeddedn the properties of the dressed surface, the drastic change in

polymer chain thus drives an associated shape transition dfie mean shape of the compound membrane does come as a

the membrane, corresponding to a tubulization of the memsurprise.

brane in the direction perpendicular to the nematic axis or

el to th is of th ¢ h One can foresee several effects that are beyond the pres-
parallel to the easy axis of the surface energy. The two tranéntly formulated mean-field solution to the tight adsorption
sitions(i.e., the nematic to isotropic transition of the polymer

. " model. First of all, the coupling between local curvatures and
and the symmetry-breaking shape transition of the dresseg] : N ;
the nematic order parameter of the polyrgds missing. It is

membrangdo not, however, happen at the same value of th(?nt itively plausible and indeed probable that local curvatur
temperaturdsurface coverage or polymer stiffngss uitively plausile a eed probable that local curvature

should affect local ordering of the polymer segments tending
to concentrate aligned polymers in regions with large local
curvature. This effect could also introduce additional ordered
Strong adsorption of polymers onto soft supporting surphase$12] into the phase diagram of the dressed membrane.
faces has different characteristics from ordinary polymer adAs is clear from a comparison with the general analy5is

IV. DISCUSSION
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the phase diagram of the polymer embedding surface covemurfaces, would be of particular importance for understand-
only one part of the phase diagram expected on generahg the DNA-cationic lipid aggregatiof2,3], where the col-
grounds. The tubulization transition, if indeed present in thdoidal state of the aggregate is crucial for transfection of the
systems with strong adsorption of polymers to soft flexibleDNA-lipid complex across the cellular membrane.
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