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We analyze the elastic energy of an intercalated smectic where orientationally ordered polymers w
an average orientation varying from layer to layer are intercalated between smectic planes. The low
order terms in the coupling between polymer director and smectic layer curvature are added to
smectic elastic energy. Integration over the smectic degrees of freedom leaves an effective poly
twist energy that has to be included into the total polymer elastic energy leading to a fluctuation
renormalization of the intercalated polymer twist modulus. If the polymers are chiral, this, in its tur
leads to a renormalization of the cholesteric pitch. [S0031-9007(97)04961-2]
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Recent elucidation of the structure of DNA–cation
lipid (CL) complexes [1,2] has brought forth quite a few
unsuspected features of this macromolecular aggregate
appears that cationic lipids in the complex retain their pr
ferred packing characterized by a multilamellar 3D smec
order, while the oppositely charged DNA gets intercalat
in between the lipid bilayer smectic planes. The interc
lated DNA appears to be packed with a 2D smectic order
relatively large domain sizes that are probably coupled
the order in the neighboring intercalated DNA layers [2
The careful x-ray diffraction studies leave no ambiguity
to the fact that both components of the complex-cation
lipids as well as DNA are ordered.

The ordering tendencies giving rise to this comple
aggregate structure are due partly to the fairly we
understood interactions between lipid bilayers in aqueo
solutions, where van der Waals attraction competes w
electrostatic and hydration forces, augmented by entro
repulsion forces originating in elastic fluctuations of th
lipid bilayers constrained to a multilamellar stack [3
Similarly, interactions between DNA molecules in th
bulk that have only recently come under closer expe
mental as well as theoretical scrutiny appear to be dom
nated by repulsive forces of electrostatic as well
hydration origin, this time also augmented through a
entropic mechanism very similar to the one operating
multilamellar lipid systems [4]. The interaction betwee
the two constituents of the complex are probably dom
nated by the electrostatic attraction between DNA a
cationic lipids, possibly modified by elastic shape fluctu
tions of the DNAs intercalated between positively charg
layers of lipids and possibly by the forces mediated by t
lipid bilayer elasticity due to local deformations induce
by the close proximity of intercalated DNA. More work
is certainly needed to assess the relative importance o
of these mechanisms in bringing about the stability of t
DNA-CL complex.

Compared to the phases existing in the bulk, the lip
subphase does not appear to be substantially modified
0031-9007y98y80(2)y305(4)$15.00
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has the same structural geometry as the one found w
other lipids in the bulk. DNA is in this respect very muc
modified. At effective interhelical spacings found in th
DNA-CL complex [2], DNA in the bulk would be either
in the line hexatic phase or within the cholesteric pha
[5]. Very little of this bulk order persists in intercalated
DNA that is forced effectively into 2D layers intercalate
between lipid bilayers. The positional order does n
change qualitatively if we consider only DNA intercalate
within a single layer. They are both short ranged [2]. Th
orientational order is changed more drastically if the sta
of affairs in the bulk and in the DNA-CL complex are
compared. It is nevertheless the apparent total abse
of the cholesteric order in the complex that has motivat
our study. Apart from very tentative statements [6] th
cholesteric structures of extremely large pitchs,mmd can
sometimes be detected in the complex, the chiral nature
the DNA molecule makes no imprint on the structure
this macromolecular aggregate.

It is our goal in this contribution to investigate the in
teraction between the orientational order of intercalat
polymers and the smectic degrees of freedom of inter
lating lipid bilayers. We propose a simple theory on th
effect that the coupling between polymer (i.e., DNA) or
entational ordering within the intercalated layers and t
smectic order of these layers can have on the effect
twist elastic constant of the polymer layers. If, in add
tion, the intercalated polymers are chiral, this theory, f
the first time, introduces a comprehensive mechanism
coupling between smectic and twist degrees of freed
leading eventually to a fluctuational renormalization of th
cholesteric pitch of the polymer subsystem.

We will consider a simplified model of an intercalate
smectic phase, where long polymers within asingle layer
are supposed to be completely orientationally ordered (
Fig. 1). This is not unrealistic as the domains of order
this and a similar system, where only a single layer of DN
is adsorbed to a cationic lipid bilayer, are quite large [7
We will presume that the director of the polymersnsm; rd
© 1998 The American Physical Society 305
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FIG. 1. A schematic representation of a part of a polym
intercalated smectic system. The smectic layers are not sho
explicitly. The direction of the intercalated polymers chang
from layer to layer. It has been arbitrarily assumed
change bypy4 between two neighboring layers. The smect
interactions tend to orient the neighboring polymer layers in
parallel direction.

within an intercalated layer is a constant. We introduc
m as the height index of the layer (layers are assum
to have the average positions atzm ­ m 3 d, wheredis
s
h
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the average layer-layer separation), whiler ­ sx, yd is the
transverse radius vector. We have, thus, effectively limit
ourselves to a mean-field approximation within a sing
layer.

We will construct an elastic free energy of this system
assuming a general dependence of the polymer director
the position, i.e., height indexm, of the layer. Since the
polymer orientational order can interact with the curvatu
energy of each layer, we first have to construct all of th
scalar invariants that can be composed withn and the
second fundamental form of a single smectic layer.

If one defines the second fundamental form of Gauss
themth layer with local displacement described within th
Monge parametrizationsssx, y, zmsx, ydddd as

Kiksm; rd ­
≠2zmsrd
≠xi≠xk

, (1)

where the indicesi, k can have valuesi, k ­ 1, 2, with
x1 ­ x and x2 ­ y, then the lowest order scalar invari
ants which can be built from the directorn and the ten-
sor [Eq. (1)] of that layer are three [8]:KiiKiknink ,
KliKiknlnk , andKikKlmninknlnm. Only two of these in-
variants are linearly independent if we ignore the term
containing Gaussian curvature. These terms could
come important only if, instead of long polymers, th
intercalated molecules would be short, anisotropic pa
ticles [9] or if the intercalated layers or the lipid bilayer
themselves would show crystalline (or hexatic) order [10
The curvature elastic energy ofnth surface, assuming tha
within each layer the director of the polymers is a consta
nsm; rd ­ nsmd, can be written as
energy
ssibility
er
HmsKik; nd ­
1
2 Kc

Z
fTr Kiksm; rdg2 d2r 1

1
2 a

Z
Klism; rdKiksm; rdnlsmdnksmd d2r

1
1
2 b

Z
Kiksm; rdKlrsm; rdnismdnksmdnlsmdnrsmd d2r . (2)

In a stack of layers, the total elastic energy is composed of curvature elastic energy [Eq. (2)] and the deformation
due to smectic dilations/compressions of the layers in the transverse direction, characterized by a smectic compre
modulusB [11]. The formal limits of thisansatzare well known and will not be discussed here. Introducing Fouri
transform of the local displacement in the directionsr with wave vectorQ, we thus obtain, for the total smectic elastic
energy, the expression

H ­
1
2

X
Q

Z
dm

∑
sKcQ4 1 aQ2fQnsmdg2 1 bfQnsmdg4d jzmsQdj2 1 B

µ
≠zmsQd

≠m

∂2∏
­

1
2

X
Q

Z
dm zmsQdH sm, m0; Qdzms2Qd , (3)
e
where we have defined the operatorH sm, m0; Qd and used
the shorthand

P
Q ­ fSys2pd2g

R
d2Q, with S being the

area of the layer. If the intercalated polymers are chir
we have to add to Eq. (3) the standard cholesteric ela
energy which depends in the lowest order only on t
derivatives of the polymer director with respect to the sta
index [11].

Free energy of smectic fluctuations.—We now proceed
by integrating the smectic fluctuations from the fre
energy defined through the elastic Hamiltonian [Eq. (
al,
tic
e

ck

e
)]

and, thus, obtaining an effective intercalated polymer fre
energy that will depend only on the director field of the
polymers. We start by setting

fsm; Qd ­ aQ2fQnsmdg2 1 bfQnsmdg4 (4)
and writing the operator explicitly that we introduced
above Eq. (3):

H sm, m0; Qd ­

µ
2B

≠2

≠m2
1 KcQ4 1 fsm; Qd

∂
3 dsm 2 m0d , (5)
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which allows us to express the part of the free energy that depends explicitly on the polymer director field as

F sssnsmdddd ­ 2kT ln J ­ 2kT ln

µ
PQ

Z
· · ·

Z
D zmsQd exps2bHd

∂
­

kT
2

X
Q

ln DetH sm, m0; Qd ­ F0 1
1
2

X
Q

Tr fsm; Qd
Z 1

0
dmGmsm, m0; Qd , (6)

whereF0 is the part of the free energy that does not explicitly containnsmd. The Green functionGmsm, m0; Qd entering
the above equation can be obtained as a solution of [12]µ

2B
≠2

≠n2
1 KcQ4 1 mfsm; Qd

∂
Gmsm, m0; Qd ­ dsm 2 m0d . (7)

Introducing, now, G0sm, m0; Qd ­ G0sjm 2 m0j; Qd ­ Gm­0sm, m0; Qd in the form G0sm 2 m0; Qd ­
1
2 B21

p
2ByKc Q22 exps2

p
KcyB Q2jm 2 m0jd, we can expandGmsm, m0; Qd perturbatively up to the first order in

fsm; Qd, thus obtaining the free energy to the second order in this quantity:

F sssnsmdddd ­ F0 1
kT
2

X
Q

Z 1

0
dm

3

∑Z
dmfsm; QdG0sm, m; Qd 2 m

ZZ
dm dm0fsm; QdG 2

0 sm, m0; Qdfsm0; Qd 1 . . .

∏
. (8)

Since the zero order Green function is obviously of short range, we can expand the expression for the free
[Eq. (8)] for a slowly varyingfsm; Qd field in a standard fashion, obtaining the following approximate form of the f
energy:

F sssnsmdddd ­ F0 1
kT
2

X
Q

∑
G0s0; Qd

Z
dm fsm; Qd 2

kT
4

µZ
dtG2

0 st; Qd
∂ Z

dm f2sm; Qd

1
kT
8

µZ
dt t2G 2

0 st; Qd
∂ Z

dm

µ
≠fsm; Qd

≠m

∂2∏
. (9)
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The summation over the Fourier space also intends
tegration over the different directions of theQ vector.
Denoting this orientational integration withk· · ·lv , it is
easy to see thatkfsm; Qdlv, as well askf2sm; Qdlv,
do not depend on the orientational angles at all and
thus, independent of the director fieldnsmd. The depen-
dence on the director field remains only in the derivati
terms, i.e., terms of the forms ≠fsm;Qd

≠m d2. These terms con-
tain dfQnsmdg

dm ­ Q dnsmd
dm ­ Q Ùnsmd ­ Qfnsmd 3 Vsmdg,

where Vsmd is the vector of the “angular velocity” of
rotation of the director from layer to layer. If the av
erage normal to the layers is in thez direction then
Vsmd ­ sss0, 0, Vzsmdddd; also Ùnsmd is within each layer
and in direction perpendicular tonsmd with magnitude
j Ùnsmdj ­ Vzsmd. As can be easily seen, the only term
that survive the integrationk· · ·lv and still depend on the
director field are those depending quadratically onj Ùnsmdj.
From the free energy [Eq. (9)], these terms can be
tained in the form

F sssnsmdddd ­ F0sa, bd 1
kT
8

S
2p

Z `

0
Q9 dQ

3

µZ
dt t2G2

0 st; Qd
∂ ∑

sa 1 bd2 1

µ
b
2

∂2∏
3

Z
j Ùnsmdj2 dm , (10)

where F0sa, bd is the part of the free energy that afte
the k· · ·lv integration does not depend explicitly on th
in-
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director anymore. Evaluating the last integral overQ and
taking into account the fact that the minimal value ofQ is
set by the domain size, assumed to be a square of sidl,
while the maximal value is set by the molecular dimensio
a, we obtain finally

F sssnsmdddd ­ F0sa, bd 1
kTS
256

1
B2

µ
B

Kc

∂5y2

3

∑
sa 1 bd2 1

µ
b
2

∂2∏
3 ln

l
a

Z
j Ùnsmdj2 dm . (11)

Thus, we see that, in an intercalated smectic, the sm
tic interactions between layers of orientationally ordere
polymer molecules tend to renormalize the twist ela
tic modulus of intercalated oriented polymers toK2 !

K2 1
kT
128

1
B2 s B

Kc
d5y2fsa 1 bd2 1 s b

2 d2g ln l
a , where K2 is

the “bare” polymer twist modulus, i.e., the twist elasti
modulus of the polymer subphase if the smectic intera
tions are not taken into account. This renormalization
of purely fluctuational origin. If the polymers are, in ad
dition, chiral, the renormalization of the twist modulu
obviously leads to unwinding of the cholesteric pitch o
the intercalated polymers to a new equilibrium value
P ! Ps1 1

kT
128K2

1
B2 s B

Kc
d5y2fsa 1 bd2 1 sb

2 d2g ln l
a d.

The mean-field model introduced above led in a ve
straightforward way to a renormalization of the twis
307
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modulus of intercalated polymers. The effect itself i
a very intuitive one. If there exists a deformationa
“easy axis” within each smectic layer, which according t
Eq. (3) represents a deformational wave whose directi
is perpendicular tonsmd within a single layer, the smectic
compressibility term would tend to twist the directors o
the neighboring layers towards a colinear position. Th
would introduce a coupling termfnsmd 2 nsm 1 1dg2 in
the free energy of two neighboring layers. The continuu
version of this effect would lead exactly to Eq. (11).

The coupling constantsa and b, cf. Eq. (2), between
the orientational ordering of intercalated polymers and e
fective elastic properties of the layers depend, in gener
on the orientational order parameter of the polymer cha
S , the elastic modulus of the chains defined askTLp,
whereLp is the persistence length and the polymer su
face densityr. The orientational order parameter of th
polymer chains is defined through the 2D orientation
tensorsik of the intercalated chains assa ­

r

2 s1 6 S d,
where a is the index of the two eigenvalues [13]. Fo
S close to 1, i.e., close to complete orientational ord
where all of the chains point in the same direction, th
scaling form fora andb should bea, b , kTS sLpy,'d,
where ,' is the separation between the chains perpe
dicular to their long axis. This is the form appropriat
for our assumption of complete ordering of chains withi
each smectic layer.

We can now assess the magnitude of the contribution
smectic modes to the twist elastic modulus of the smec
layers. Assuming the above scaling form for constantsa
and b, we obtain for the ratio between the renormalize
fluctuation and the bare value of the twist modulus

,
skTd

K2B2

µ
B

Kc

∂5y2µ
kTS

Lp

,'

∂2

ln
,

a
. (12)

Since the dominant interactions determiningB are elec-
trostatic attractions between DNA and cationic lipid head
groups, the smectic modulus has to be quite large, wh
Lpy,' is on the order of 10. Assuming that the bar
DNA twist modulus can be estimated by invoking only
steric interactions [11], we obtain the values between
and 100 for the ratio [Eq. (12)], depending on the ex
act value ofB . If the intercalated polymers are chi-
ral, it would, thus, come as no surprise if the effectiv
cholesteric pitch surviving in this system would be orde
of magnitude larger than in the pure polymer system [6]

We have not included the possible direct modificatio
of the chiral interactions (the details of which in con
densed DNA arrays are not yet fully understood [14]) b
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smectic fluctuations in this analysis, an effect that wou
act in the direction opposite to the smectic fluctuatio
renormalization of the polymer twist modulus. As this e
fect would tend to make the effective pitch smaller, whic
apparently has never been observed in this system, we
sume that it is small.

In conclusion, we have shown how the smectic degre
of freedom couple to orientational modes of orientatio
ally ordered polymers intercalated between smectic lay
leading to fluctuation renormalization of the polymer twis
modulus. We propose this as one of the possible reas
why no cholesteric structures have been observed in
DNA-CL system.
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Strey of DCRT/NIH on different features of the DNA-
CL intercalated smectic phases.
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