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Charge-Fluctuation Forces between Rodlike Polyelectrolytes:
Pairwise Summability Reexamined
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We formulate low-frequency charge-fluctuation forces between charged cylinders, parallel or skewed,
in salt solution. At high-salt concentrations, forces are exponentially screened. In low-salt solutions,
dipolar fluctuation energies go asR25 or R24; monopolar energies vary asR21 or lnR, whereR is
the minimal separation between cylinder axes. The most important result is not the derivation of long-
sought pair potentials but rather the demonstration that pairwise summability of rod-rod ion-fluctuation
forces is easily violated under low-salt conditions. [S0031-9007(97)05263-0]

PACS numbers: 87.15.Kg, 61.20.Qg, 61.25.Hq, 87.15.Da

Models of assembly by rodlike particles such as DNA,
tobacco mosaic virus, microtubules, or filamentous bac-
terial viruses often require closed-form expressions for
molecular interaction. In addition to brute steric forces,
hydration forces, and electrostatic double layer interac-
tions [1] between charged rods, there are interactions of
correlated charge fluctuations [2]. Most generally, these
fluctuations can be either the dipolar events of traditional
van der Waals forces [3] or monopolar charge fluctuations
from transient changes in the density of mobile ions around
a charged particle. The study of monopolar charge fluc-
tuations in molecular interactions has a venerable history
[4] with approximate but explicit formulation of fluctua-
tion forces between two parallel polyelectrolyte rods [5],
as well as more sophisticated and versatile analyses [6].

Between like particles, these correlated-fluctuation
forces are attractive. There is always a question, though,
whether one is allowed to compute these attractive forces
in molecular arrays as though they were the sum of
individual rod-rod interactions. The purpose of this
paper is to assess the limits of validity of the pairwise
additivity assumption in rod-rod fluctuation attraction
with or without the added salt, as well as to derive the
form of the effective fluctuation pair potential in parallel
and skewed geometries, basing the theory of correlation
attraction on the Lifshitz-Pitaevskii approach [3]. The
perspective of this approach lets one speak of ion density
fluctuations that extend simultaneously over many rodlike
particles. The nonadditivity of rod-rod interactions in
arrays, as addressed in this paper, is different and distinct
from the nonadditivity of interactions between segments
of rods in a two-rod theoretical framework [2].

We find that the conditions for the validity of pairwise
additivity in an array can be quite restrictive. The ranges
of validity of different theories [2,5] that formalize rod-rod
counterion correlation forces are thus practically limited if
the interacting polyelectrolytes are part of an ordered array
or in a solution. We stress that the nonadditivities studied
here are of a nature different from those encountered in
analyses of electrostatic forces between charged surfaces

either via the solution of Poisson-Boltzmann equation or
through more sophisticated statistical mechanical approxi-
mations [7,8]; nonadditivity in the present case does not
depend on the amount of charge or magnitude of the
mean electrostatic potential on the interacting particles.
The interactions we are studying here are due to long
wavelength mobile charge density fluctuations—similar to
those discussed in qualitative terms in [9]—that can extend
over many individual polyelectrolyte molecules.

The Lifshitz-Pitaevskii approach [3,10] begins with an
artificial but easily formulated interaction between arrays
of cylindrical rodlike molecules. Specifically, we exam-
ine the van der Waals (vdw) attraction between two like
anisotropic media,L andD , containing parallel cylindri-
cal particles embedded in a mediumm (Fig. 1). L andD
are separated by an isotropic region of salt solution devoid
of cylinders. Pair potentials between individual particles
in L andD are extracted in a dilute rod limit.

The anisotropic regions are composites of parallel
cylindrical rods of effective dielectric cross sectionpa2

at volume fractiony ­ Npa2; N is the cross-sectional
number density ofN rods per unit area. The cylinders of
dielectric materialc have anisotropic intrinsic susceptibil-
ities e

c
' ande

c
k , perpendicular and parallel to the rod axis.

For each regionr ­ L , m, D the effective dielectric and
ionic properties of the composites can be written in terms
of their local values. In this construction the axis parallel
to the rod in regionD is rotated about axisz to create an
angleu with respect to the rodx axis inL .

Because ionic fluctuations are slow [3], we consider
only “zero-frequency” van der Waals interactions, de-
scribing thermal as opposed to quantum fluctuations. The
wave equations in mediar ­ L , m, andD follow

=fe=fsrdg ­
4pnre2

kT
fsrd , (1)

where fsrd is the electrostatic potential, withnr ­P
Z Z2nr sZd; and nr sZd is the average number density

of ions of valenceZ taken over each regionr. The av-
erage can be computed from an appropriate microscopic
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FIG. 1. Array-interaction geometry. RegionL is confined to
z , 0, region D to z . l; isotropic regionm is the slab in
between. The cylindrical array inD is rotated about thez
axis by an angleu with respect toL . Not only the dielectric
constants of the composite mediaD and L but also the
dielectric constants of the cylindrical rods (bottom) themselves
are anisotropic;ec

k , ec
', nc refer to the cylinder material.

model of mean ion distributions or taken from measured
ion content of polyelectrolyte suspensions. For regions
L and D , we distinguish the densities of mobile ions
nc associated with cylinders andnm in the interven-
ing space, respectively. For univalent counterionsncpa2

equals the linear density of fixed charges per unit length
of the cylinder. The volume averagenL andnD over the
whole composite isnL ­ nD ­ ncy 1 nms1 2 yd ­
nm 1 ysnc 2 nmd. The dielectric susceptibility tensorer

is taken only in the limit of zero frequency. For the
composite regionsr ­ L and D er has diagonal ele-
mentser

x , er
y , er

z , with the axesx and y of D rotated
by an angleu. For small enough volume fractionsy,
the components of the unrotated tensors for the com-
posite media are [11]eL and eD , where ek ­ eL

x ­
eD

x ­ ems1 2 yd 1 ye
c
k ­ ems1 1 yDkd, e' ­ eL

y ­

eD
y ­ eL

z ­ eD
z ­ ems 11yD'

12yD'
d with Dk ­

´
c
k2´m

´m
, D' ­

´
c
'2´m

´
c
'1´m

, andG ­ Dk 2 2D'. em is the isotropic suscepti-
bility in region m and in between cylinders inL andD ;
superscriptc refers to the response of the cylinder mate-
rial. Because solutions of the wave equation require con-
tinuity of e=f perpendicular to the interfaces atz ­ 0
and l, it is the perpendicular response ofeL and eD

that determines the ionic screening lengths in both semi-

infinite regions. For small enough volume fractionsy the
inverse squared screening lengths inL andD are

4pnL e2

e'kT
­

4pnD e2

e'kT

ø k2

∑
1 1 y

µ
nc 2 nm

nm
2 2D'

∂∏
,

where k2 ­ k2
m ­

4pnme2

´mkT is the square of the standard
inverse Debye screening length in the regionm.

The zero-frequency vdw interaction free energy per unit
area between the two anisotropic semi-infinite regionsL
andD across a slabm of thicknessl is [3]

F sl, ud ­
kT

8p2

Z 2p

0
dc

3
Z `

0
lnf1 2 D2su, cde22

p
Q21k2lgQ dQ , (2)

where D2su, cd ­ DL mscdDD msu 2 cd. To take ac-
count of anisotropy,c is for angular integration over
all directions in radial wave vectorsQ. The functions
DL mscd and DDmsu 2 cd can be obtained in the stan-
dard way [3]. For small enough values ofy, they can
usually be expanded to terms linear in cylinder volume
fractiony. To lowest order in density, the interaction en-
ergy goes asN2. In this dilute limit, rods in the two media
interact pairwise across the gapl.

Extraction of the pairwise interaction potential follows
one of two procedures, depending whether the rods inL

andD are parallelsu ­ 0d or skewed. We connect the
per-unit-area interactionF sl, ud between planar regions
of embedded cylinders with the pair interaction potential
G sl, ud between skewed cylinders or the pair interaction
energy per unit lengthgsld between parallel cylinders.
Note thatG andg have different units and are not always
simply related (see below).

A sufficient condition for connecting the forces be-
tween two semi-infinite dilute macromolecular arrays
and the corresponding pair potentials between macro-
molecules is thatF sl, ud can be accurately expressed by
the first, quadratic term in a series expansion in densityN
or volume fractiony. The Pitaevskiiansatzcan be ap-
plied in two forms [10]. Forskewedcylinders at a mutual
angleu, the connection is

lim
N!0

d2F sl, ud
dl2

Ç
l­R

­ N2 sinuG sR, ud , (3)

while for parallel cylinders the connection is an Abel
transform

lim
N!0

d2F sl, u ­ 0d
dl2

Ç
l­R

­ N2
Z 1`

2`
gs

q
R2 1 y2d dy .

(4)

In both casesR is the minimal separation between the
cylinder axes.
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ExpandingF sl, ud in Eq. (2) to the second order iny one obtains from Eq. (3) forskewedcylinders the relation

G sR, ud ­ 2
kT

2p2

k4spa2d2

sinu

Z `

1
p3 dp e22kRp

Z 2p

0
D02su, cd dc , (5)

with D02su, cd ­
≠DLmscd

≠y

≠DDmsu2cd
≠y , while for parallel cylinders with the inverse Abel transform Eq. (4) gives

gsRd ­ 2
kT
p3 k5spa2d2

Z `

1
p4 dp K0s2kRpd

Z 2p

0
D02su, cd dc , (6)

whereK0sxd is the modified Bessel cylindrical function of order 0. There is no simple limit relating Eqs. (5) and (6),
i.e., the skewed interaction energy and the parallel interaction energy per unit length for the case of infinitely long
cylinders cannot be obtained from a continuous limiting process. Both skewed and parallel cases reflect three types of
charge fluctuations, written as separate lines in Eqs. (7),(8): dipole-dipole, dipole-monopole, and monopole-monopole.

In the limit of vanishing salt concentration in the medium,kR ! 0 and withFsud ­ s2 cos2 u 1 1dy27

GsR, ud > 2
3kT
8p

spa2d2

∑
D2

' 1
1
4

D'G 1 G2Fsud
∏

1
sinuR4

1
kT
4p

spa2d2

µ
4pnce2

´mkT

∂ ∑
D' 1

1
8

G

∏
1

sinuR2

1
kT
4p

spa2d2

µ
4pnce2

´mkT

∂2 lns2kRd
sinu

gsRd > 2
9kT
32p

spa2d2

∑
D2

' 1
1
4

D'G 1 G2 3
27

∏
1

R5 1
kT
8p

spa2d2

µ
4pnce2

´mkT

∂ ∑
D' 1

1
8

G

∏
1

R3

(7)

2
kT
8p

spa2d2

µ
4pnce2

´mkT

∂2 1
R

.

When all salt concentrations equal zero, interactions come only from differences in dielectric susceptibility. All
monopolar terms vanish to leave only dipolar terms [10]. Equation (7) has already been derived and discussed [3].

In the opposite case ofstrong ionic screening,kR ¿ 1, the only terms surviving are those of longest range that
nevertheless decay exponentially.

GsR, ud > 2
8kT
p

kspa2d2G2Fsud
e22kR

sinus2Rd3 2
kT
2p

k2spa2d2G

µ
nc 2 nm

2nm

∂
e22kR

sinus2Rd2

2
kT
p

k3spa2d2

sinu

e22kR

s2Rd

µ
nc 2 nm

2nm

∂2 e22kR

sinus2Rd

gsRd > 2
16

p
2 kT

p5y2 k5spa2d2

∑
D2

' 1
1
4

D'G 1 G2 3
27

∏
e22kR

s2kRd7y2 (8)

1
8
p

2 kT
p5y2 k5spa2d2

µ
D' 1

G

16

∂ µ
nc 2 nm

2nm

∂
e22kR

s2kRd5y2

2
2
p

2 kT
p5y2 k5spa2d2

µ
nc 2 nm

2nm

∂2 e22kR

s2kRd3y2 .

When all e’s are equal but when there are differences
in ionic densitiesnc and nm, only monopolar terms
endure. For this case in 0.1 M uni-univalent salt and with
monovalent counterions the interaction between two rods
at right angle would amount to at the most a fraction
of kT at a surface to surface separation of one Debye
length or to,kT per persistence length if parallel. This
is at least about an order of magnitude smaller than other
interactions (hydration and electrostatic) [12]. Higher
valency counterions, however, would give much larger
interactions, proportional toZ4.

There is a curious further limit—unscreened
monopole-monopole correlated fluctuations—where
nm ! 0 but cylinders still carry counterionsnc,

GsR, ud >
kT
4p

spa2d2

µ
4pnce2

´mkT

∂2 lnsRd
sinu

(9)

(to within additive constants) and

gsRd > 2
kT
8p

spa2d2

µ
4pnce2

´mkT

∂2 1
R

. (10)

In the case of DNA even for monovalent counterions
these forces would be quite large, amounting to,500kT
per persistence length at near contact, overshadowing all
other interactions [12]. We now show why this particular
limit is in fact unattainable and why Eqs. (9) and (10) give
severe overestimates for the correlation interactions.

The nm ! 0 form for parallel rods has been obtained
analytically [5] before and is also closely related to recent
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results [2,13], provided the counterion liquid structure fac-
tor introduced in [2] is a constant. This correspondence
is quite along the line of our present understanding of the
state of condensed counterions [14], as well as completely
consistent with recent direct measurements of the coun-
terion structure function in DNA arrays [15].

When can one assume pairwise additivity? The central
requirement of the Pitaevskii construction is to create
composite media whose dielectric properties are linear in
N . The interaction between composites then goes asN2.
With salt solutions, requisite dependence on the square of
densities requires [Eq. (2)]

y

Ç
snc 2 nmd

nm
2 2D'

Ç
ø 1 . (11)

What kind of restriction does this inequality impose for
pairwise summability of ionic fluctuation forces in an
array? We can read condition Eq. (11) (for simplicity we
set D' ­ 0) as saying that there is only a small relative
difference in the total density of ions in the regions with
and without polyelectrolytes. Settingncpa2 , b21 and
takingy , s a

R d2 we have

nm ¿ nc
y

1 1 y
¿

1
bpsR2 1 a2d

(12)

with b the length per unit fixed charge along the rod
surface (b ­ 1.7 Å for DNA). We can thus estimate
the salt concentration at which for different values of
R pairwise additivity seriously breaks down. ForR
in the range where spontaneous DNA aggregation is
observed [16], we find that pairwise additivity of rod-
rod interactions will break down below 1 M uni-univalent
salt for R , 50 Å, below 0.1 M salt forR , 100 Å, and
below 0.01 M salt forR , 300 Å. For polyelectrolyte
densities away from close packingsy ø 1d and ionic
concentrations above,1 M, the additivity condition is
trivially satisfied. If pairwise summability of interactions
were nevertheless assumed for conditions wherey

nc

nm
,

1, the pair interaction energy Eqs. (9) and (10) would be
very large, on the order of,kT per10 Å length, and thus
qualitatively misleading.

On the other hand in the limit of vanishing salt with
only counterions present in the system the condition
Eq. (11) would never be satisfied. Strictly speaking the
term pair potential in a polyelectrolyte array or a solution
thus applies only to screened interactions, Eq. (8), and
should not be used in connection with Eqs. (9) or (10)
or with counterion-only two-rod formulations [2].

Traditional van der Waals forces, due to differences in
dielectric susceptibility, may also not be pairwise additive.
For low-frequency fluctuations even in the absence of
counterions, the dielectric part of the inequality Eq. (11)
can easily be violated [10]. Finite values of the medium
salt concentration always create an exponentially damped
contribution whenkR ¿ 1. Though screening severely
weakens forces, it does act to make pairwise summation
more accurate.

If many-body effects cannot be neglected, how can one
formulate the ion fluctuation free energies of aggregated
arrays? In its ability to speak of electromagnetic fluctua-
tions that encompass the entire macromolecular aggregate,
the Lifshitz approach appears to be most appropriate. In
its language, the free energy connected with electromag-
netic field fluctuations can be seen to vary with macro-
scopic dimensions and even shape of the aggregate [17].
In an anisotropic polyelectrolyte array the energy of for-
mation will also depend on the orientation of macroscopic
facets with respect to anisotropic molecular axes. The dif-
ferent macroscopic shapes of the DNA aggregates might
already be indicating such shape dependence [18].

We thank Andrea Liu and Bill Gelbart of UCLA for
discussions and correspondence regarding the correlation
forces in polyelectrolytes. We also thank Per Lyngs
Hansen for many suggestions regarding the presentation
of our results.

*On leave from Department of Physics, Faculty of
Mathematics and Physics, University of Ljubljana and
Department of Theoretical Physics, “J. Stefan” Institute,
Ljubljana, Slovenia.

[1] V. A. Parsegian and E. A. Evans, Curr. Opin. Colloid
Interface Sci.1, 53 (1996).

[2] N. Grønbech-Jensen, R. J. Mashl, R. F. Bruinsma, and
W. M. Gelbart, Phys. Rev. Lett.78, 2477 (1997); B.-Y.
Ha and A. J. Liu, Phys. Rev. Lett.79, 1289 (1997).

[3] J. Mahanty and B. W. Ninham,Dispersion Forces(Aca-
demic Press, London, 1976), and references therein; V. A.
Parsegian and G. H. Weiss, J. Adhes.3, 259 (1972).

[4] J. G. Kirkwood and J. B. Schumaker, Proc. Natl. Acad. Sci.
U.S.A. 38, 243 (1952).

[5] F. Oosawa,Polyelectrolytes(Marcel Dekker, New York,
1971).

[6] K. S. Schmitz, Macroions in Solution and Colloidal
Suspension(VCH Publishers, New York, 1993).

[7] M. Lozada-Cassou and E. Diaz-Herrera, inOrdering and
Organization in Ionic Solutions,edited by N. Ise and
I. Sogami (World Scientific, Singapore, 1988), p. 555.

[8] J. Ray and G. S. Manning, Langmuir10, 2450 (1994).
[9] K. S. Schmitz, M. Lu, and J. Gauntt, J. Chem. Phys.78,

5059 (1983).
[10] V. A. Parsegian, J. Chem. Phys.56, 4393 (1972).
[11] Lord Rayleigh (J. W. Strutt), Philos. Mag.42, 481 (1892).
[12] R. Podgornik, H. H. Strey, K. Gawrisch, D. C. Rau,

A. Rupprecht, and V. A. Parsegian, Proc. Natl. Acad. Sci.
U.S.A. 93, 4261 (1996).

[13] J.-L. Barrat and J.-F. Joanny, Adv. Chem. Phys.94, 1
(1995).

[14] G. S. Manning, Ber. Bunsen-Ges. Phys. Chem.100, 909
(1996).

[15] H. H. Strey and R. Podgornik (to be published).
[16] L. Wang and V. A. Bloomfield, Macromolecules24, 5791

(1991); P. Wissenburg, T. Odijk, P. Cirkel, and M.
Mandel, Macromolecules28, 2315 (1995).

[17] V. M. Mostepanenko and N. N. Trunov,The Casimir
Effect and Its Applications(Clarendon Press, Oxford,
1997).

[18] V. A. Bloomfield, Curr. Opin. Struct. Biol.6, 334 (1996).

1563


