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Effects of dielectric disorder on van der Waals interactions in slab geometries
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We analyze the effects of disorder on the thermal Casimir interaction for the case of two semi-infinite planar
slabs across an intervening homogeneous unstructured dielectric. The semi-infinite bounding layers are as-
sumed to be composed of plane-parallel layers of random dielectric materials. We show that the effective
thermal Casimir interaction at long distances is self-averaging and can be written in the same form as the one

between nonrandom media but with the effective dielectric tensor of the corresponding random media. On the
contrary, the behavior at short distances becomes random, and thus sample dependent, dominated by the local
values of the dielectric constants proximal to each other across the central homogeneous unstructured dielectric
layer. We extend these results to the regime of intermediate slab separations by using perturbation theory for
weak disorder as well as by extensive numerical simulations for a number of systems where the dielectric

function has a log-normal distribution. Numerical simulation completely corroborates all the main features of
the disorder dependent thermal Casimir interaction deduced analytically.
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I. INTRODUCTION

Among the different forces acting between macromolecu-
lar surfaces the Casimir (zero temperature and ideally polar-
izable surfaces) and van der Waals (finite temperature and
nonideally polarizable surfaces) interactions are certainly the
most ubiquitous and have thus been studied in exhaustive
detail [1]. The van der Waals forces are particularly impor-
tant in condensed soft and hard matter and present one of the
two fundamental interactions in colloid science [2]. In sys-
tems with spatially inhomogeneous dielectric properties the
van der Waals forces arise from the fluctuation—thermal as
well as quantum—driven interaction between transient
and/or fixed dipoles within the interacting media [3]. Within
the celebrated Lifshitz theory of van der Waals interactions
[4,5] the thermal contribution to these fluctuation interac-
tions is described by the zero frequency response of the di-
electric function whereas the quantum component to the
fluctuation interactions is given by the sum over the Matsub-
ara frequencies of the dielectric response functions of the
interacting media. Since the van der Waals interactions thus
depend on the full dielectric dispersion spectra of the media
involved they are also referred to as the dispersion interac-
tions. Though there are obviously clear physical differences
underlying the classical and the quantum contributions to the
full van der Waals force, the computation of the correspond-
ing interaction free energies is almost identical and can be
formulated in terms of an appropriate functional determinant
for the fluctuating electromagnetic field in a geometry par-
ticular to the interaction problem at hand. For the interaction

1539-3755/2010/81(5)/051117(13)

051117-1

PACS number(s): 05.40.—a, 03.70.+k, 03.50.De, 77.22.—d

between two homogeneous semi-infinite dielectric half-
spaces across a finite dielectric slab the full Lifshitz theory of
van der Waals—dispersion interactions [5] is thus based on
appropriate boundary conditions imposed on the electromag-
netic field at the bounding surfaces of the slab as well as the
fluctuation-dissipation theorem that converts the fluctuating
electromagnetic potential operators into corresponding di-
electric response functions. From the full Lifshitz formula-
tion one can derive the original Casimir interaction [6] by
taking the limit of zero temperature and ideally polarizable
bounding surfaces. In this respect the Lifshitz theory is then
nothing else but a proper finite temperature and realistic
boundary conditions generalization of the Casimir interac-
tion [4]. The Lifshitz—van der Waals interactions are thus just
the thermal Casimir effect.

Among the major mathematical problems in the compu-
tation of Casimir type interactions (setting aside the experi-
mental and theoretical challenges to determine the correct
dielectric behavior [1]) are the following:

(i) the application of the Lifshitz approach to nontrivial
geometries (i.e., beyond the cases of planar, spherical and
cylindrical geometries) and

(ii) taking into account local inhomogeneities in the di-
electric properties of the media, always present in realistic
systems and thus relevant for the comparison of theory with
experiment.

In this paper, we will address the second of these points in
detail and consider the effects of disorder in the composition
of the bounding semi-infinite layers on the van der Waals
interaction between them. To our knowledge we present the
first analysis of the effect of dielectric disorder on Lifshitz—
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FIG. 1. (Color online) A schematic presentation of the model.
Two finite slabs with disordered plane-parallel dielectric layers in-
teracting across a dielectrically homogeneous slab of thickness €. z
axis is perpendicular to the plane of the slabs.

van der Waals interactions (apart from a recent letter [7] by
the authors on this subject). Let us add that recently the
effect of charge disorder on interactions between planar slabs
has been analyzed in [8] where it was shown that, even if the
slabs are net neutral, the presence of frozen charge disorder
could drastically modify the long-range interslab interaction.

Specifically, we will consider the thermal (zero fre-
quency) Casimir interaction for the case where the local di-
electric constant in the bounding layers is a random variable
described within a certain model of the disorder. We will
evaluate the interaction between two semi-infinite planar di-
electric slabs with dielectric disorder, separated by a homo-
geneous dielectric medium, see Fig. 1. In the model descrip-
tion of the disorder in the dielectric response that we
consider here we will assume that the dielectric response
function is constant within the two slabs in the planes per-
pendicular to the slab normal, but varies in the direction of
the surface normal. It is well known that the simpler problem
without any disorder where the dielectric constants of the
slabs do not vary and are strictly homogeneous can be solved
explicitly [4]. One could in principle tentatively apply this
straightforward result of the Lifshitz theory to the case of
disordered dielectric constants via an effective medium
theory which consists of replacing the fluctuating dielectric
constant by an effective (spatially homogeneous within each
of the slabs) dielectric tensor. Naively one might try the ap-
proximation

e(x) — (e, (1)

where the angular brackets denote the spatial or ensemble
averaged dielectric constant within the slab in question.
However in the most commonly used approximation the lo-
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cal dielectric tensor is simply replaced by an effective dielec-
tric tensor [3,4], i.e.,
eij(x) - 65;), (2)

where the bulk dielectric tensor is defined via
(e) _
&; (Ej) =(&;E). 3)

The use of the effective dielectric tensor is not universal
and is not always easily justifiable mathematically as an ap-
proximation, although physically it clearly does capture the
bulk response to constant electric fields. We shall see in this
paper, for the random layered dielectric model studied here,
that the effective dielectric constant approximation of Eq. (2)
does in fact give the correct value of the thermal Casimir
interaction in the limit where the two slabs are separated by
a wide gap.

One can argue that this is to be expected on physical
grounds as the fluctuating electromagnetic field modes with
small wave vector (corresponding to variations on large
scales) dominate the Casimir interaction for large inter-
surface separations. The dielectric response of the material to
a constant electric field in that case is given by the effective
dielectric constant and if the wave vector dependent response
is suitably analytic near k=0 we expect that egj)(k)
~ E;)(O)zel(-;) for [k|<1.

It is much more difficult to come up with similar intu-
itively clear or at least plausible arguments as to what might
happen to thermal Casimir interactions between disordered
bounding layers in the opposite limit of small separations
and/or for the separations in between the two limits. As we
will demonstrate in what follows by applying a properly for-
mulated perturbation theory and numerically solved models
of disorder based on the random telegraph model and a log-
normal distribution of the dielectric function, the fluctuation
interaction in the limit of small separations becomes sample
specific and is dominated by the local values of the dielectric
constants of regions that are proximal to each other across
the central homogeneous dielectric slab.

II. MODEL AND GENERAL ANALYSIS
A. Formulation

The Hamiltonian associated with the thermal fluctuations
of the electrostatic field in a dielectric medium is given by
the classical electromagnetic field energy

H@) = | dxeorvaor, @

and the corresponding partition function is given by the func-
tional integral

Z= f d[ plexp(- BH[ $]). ©)

Differences in dielectric constants lead to the thermal Ca-
simir effect which arises from the full treatment of the ther-
mal (zero frequency) van de Waals forces in the system. Here
we will consider layered systems where the dielectric con-
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stant € only depends on the z direction e(x)=¢€(z). If we
express the field ¢ in terms of its Fourier modes in the plane
perpendicular to z, coordinates denoted by x; and which we
will take to be of area A, with wave vector k=(kx,ky) then
the Hamiltonian can be written as

H=> Hy, (6)
k

with

f dz ()(dd)(zz’k)dd)(z’ LY k2$(z,k)$(z,—k)>.
(7)

A direct consequence of this decomposition of the Hamil-
tonian is that the partition function can be expressed as a sum
over the partition function of the individual modes Z; as

In(2) = 2, In(zy,), (8)
k

2
= f d[X]exp(— %f dze(Z)[(Z_}Z() + kzxz} ) . )

where k=|k|. In the above we have taken into account that
the field ¢ is real and absorbed the common prefactor B into
the variable X.

where

B. Evaluation of the functional integral

The problem of computing the interaction between slabs
composed of layers of finite thickness can be studied using a
transfer-matrix method [9]. However we will use a method
based on the Feynman path integral instead, which is particu-
larly well suited to the study of systems where the dielectric
constant can vary continuously in only one direction [10]. If
we specify the starting and finishing points of the above path
integral to be x and y, respectively, at times 7' and z we see
that it has to be of harmonic oscillator form defined by

X(z)=y
K(x,y;z'.2) = d[X]
X(z")=x

z 2
Xexp(— %f dzM(z)[(i—f) +w2x2]>,
0

(10)

where the mass, which is z dependent, is given by M(z)
=€(z) and the frequency w is given by w=k. In the case
where M and w are constant, the propagator K is given by
the well known formula

K(x,y;2',2,M, w) - i
X, Y32 ,2,M,w) = 27T sinh[a)(z_z,)]

XCXP[_ %{(xz +y) Mo cothlw(z - z')]

—2xyMw cosech[ w(z — z')]}} (11)
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In the case where M (or indeed w) vary with z we can still
formally compute the path integral via the generalized Pauli—
van Vleck formula which tells us that K must have the gen-
eral form

’ b 12 1 ’ 2 1 ’ 2
K(x,y:z',2) = 2a) %P —Eai(z ,2)X -3 A2',2)y

+b(z',z)xy). (12)

We may now write down an evolution equation for the coef-
ficients a;, a;, and b using the Markov property of the path
integral (in fact this is how one can prove the generalized
Pauli—van Vleck formula [10])

Kx,y;z',z+ () = J dwK(x,w;z',2)K(w,y;z,2+ ).

(13)

Now if we take {=Az infinitesimal and assume that M
and w are constant over (z,z+Az) (but could have jumped at
z), then by looking at the coefficients of x%, y%, and xy in
K(x,y;z+Az), Calculated from Eq. (13) we find the follow-
ing evolution equations for a;, ar, and b:

dalz',2) _ bz(z’,z)’ (14)
Jz M
ab(z'z) b(Z’,Z)af(Z',Z)’ (15)
0z M
dafz',z) 20y azi(z’,z)
_f—&z =M(z)w*(z) MG (16)

Note that the evolution equation for b can also be obtained
by examining the change in the pre-factor term of the propa-
gator K. As the action is positive definite we expect that both
a; and ayare posmve (by con51der1ng paths starting or endlng
at 0). Also for
length of the disorder, we expect K to factorize in its x and y
dependence and thus the coefficient b should decay to zero
for sufficiently thick slabs. Note that if € is a stationary pro-
cess then the path integral should be the same run backward
in time, z, as when it is run forward. This means that a; and
ay should have the same steady state distribution.

Consider a system of two thick slabs of respective thick-
nesses L; and L, separated by a distance / and the region
between them occupied by a dielectric medium of dielectric
constant €y—vacuum or air, for example. From our discus-
sion above, for large L; and L, the partition function for the
mode Kk is thus proportional to

(1) Eok 1/2
2= [ dvay exp| -3 e || 52—

1
Xexp{— 5[(x2 +y?) €k coth(kz) — 2xy ek cosech(kz)]}

X exp{— —afz)(k)y ] (17)
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where a}l)(k) is the solution of Eq. (16) with some initial
conditions (which for an infinite slab do not have to be speci-
fied) %wen at z=z'=-L, to zero with w=k and M(z)=€(z)
and a; (k) is the correspondlng quantity for the slab 2 (with
1n1t1a1 conditions given at z=z'=L,+/ and evaluated at z=/).

We thus find that the /-dependent part of the free energy
of the mode k (up to a bulk term which can be subtracted off
to get the effective interaction.) is given by

ks T (k) - epk) (@ (k) - ek
Fk=Lln<1 UAURL OGO LU I
2 (a (k) + €5k) (a (k) + eok)
(18)
with the total / dependent free energy given by
F=> Fy. (19)
k

In order to evaluate the integrals of a}' ’2)(k), one first has
to solve equations of motion Egs. (16) to get the z depen-
dence of ay(k,z) and then proceed to the integrals that enter
Eq. (18). The evolution equation for a,(k) for either slab can
be read of from Eq. (16) and is given by

da -(k,z) 2 a2
i e(2)k o ) (20)

where we have dropped the explicit dependence on the initial
point z'=—L,. Though it does not look like it at first sight,
this equation is simply a rewriting of the underlying Poisson
equation for the original, charge free, dielectric system. This
can be seen as follows. Assume first of all that af(k,z) can be
parameterized with a function W(k,z) as

adk,z) = e(z)%ln W (k,z). (21)

In quantum mechanics problems with disorder the above
change of variables is often used since in the presence of
disorder the nonlinear first order equation is easier to analyze
then the second order linear equation [11]. Inserting now this
ansatz back into Eq. (20) we find that it implies

d{ av
—<e—> - k¥ =0 (22)
dz\ dz

for W(k,z), which is nothing but the Poisson equation for an
inhomogeneous dielectric, where the inhomogeneity is only
in the z direction and which has been Fourier transformed in
the directions perpendicular to z. The function ay(k,z) in Eq.
(21) is thus given by the solution of the Poisson equation in
the specified planar geometry. This is of course no surprise
since we are indeed dealing with an inhomogeneous electro-
static problem. On the other hand the derivation presented
above is completely equivalent to the transfer matrix method
[9] or to the density functional method [12] for evaluating
the van der Waals forces. One of the clear strengths of this
method is that it allows the of computation the van der Waals
interaction to be carried out using a local method where the
coefficients ap, ar, and b for any of the media involved can
be computed and then the interactions between any combi-
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nations of media can be worked out in terms of these coef-
ficients.

If we now write a(’)(k 7)=ka'?(k,z) and if the distribu-
tions of the a”(k,z)=y are given by p,(k,y) then we find
that, in three dimensions the average / dependent free-energy
is given by

ksTA
<F>=Z_w f dkk f dy, f dyp (k. y1)pa(k.y,)

Xln(l - Wexp(— 2k1)), (23)
(1 + €)(y2 + &)
where the angular brackets on the left-hand side indicate the
disorder average over the dielectric constant within the slabs
and we have assumed that the realizations of the disorder in
the two slabs are independent. This is why the joint disorder
probability distribution is multiplicative for the two layers.
In the case where the slab thickness is large, L — oo, it is
simple to derive a scaling formula from Eq. (20) for the
probability distribution. Let €(z) = €,f(z) where f(z) is an in-
stance drawn from an ensemble distributed according to a
given distribution. Then p(k,y;e€,) is the resulting distribu-
tion for y given the mode wave-vector k. We then find that

1
p(k,y;\e,) = Xp(k,y/)\;eg). (24)

Thus, we need to compute the probability distribution once
only, say, for €=1, and obtain those for other values of €,
using this scaling result.

C. Large [ limit

Let us first investigate the form of the van der Waals
interaction free energy in the limit of large separations be-
tween the two slabs. The equation obeyed by « is

dalk, ko?
dathd) ke (25)
dz €

which can be written as

datk0) o
TS

(26)

with {=zk. When k is small e({/k) varies very rapidly and
thus becomes de-correlated from the value of a. The Laplace
transform for the probability density function of « is defined
by
plk.s.0) = J dy exp(= sy)p(k.y,{) = (exp[- sa(k.0)]),
0
(27)

and, from the equation of motion Eq. (25), obeys
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ldp(k,s,0)  1d
_ ;—dé == dg(exp[— sa(k,0)])

= <e(§/k)exp[— sa(k,{)]

a,2

)

Assuming that k is small and thus a(k,{) and e({/k) are
decorrelated we can write

1dp(k,s,0) &

dé, :<€>ﬁ(k,s,§)—<1/6>Eﬁ(k,s,§). (29)

expl— sa(k, {)]> . (28)

This equation has the large { equilibrium solution (justified
as we are taking the limit L;,L,— )

lim p(k,s,l) =exp(- €'s), (30)
{—©
with
.| (e
“=\e (31)

Inverting the Laplace transform then gives the equilibrium
distribution

p(y’k): 5())_6*)9 (32)

at small k. When [ is large the integral in Eq. (23) is domi-
nated by the small k& behavior and we may use the analysis
presented above, especially Eq. (32) in Eq. (23), to give the
following asymptotic form for the interaction free energy

kTA . H'
(F)(l — ) ~ 12#] udu In[1 — ATAS exp(—u)] ~ - l_z
(33)
with
leza) (34)
(€ + €)

and where € are defined via Eq. (31). The subscript i on the
angled brackets signifies that we are averaging the dielectric
constant in the slab i. The term H* defines an effective
disorder-dependent Hamaker coefficient.

This rigorous result can be shown to coincide with that
obtained from a more physical argument. We assume that the
random layered material can be replaced by an effective an-
isotropic medium where the dielectric tensor is nonisotropic
and must from symmetry considerations have the form
€9=¢, (35)

Z

€Y = ei‘;) =€, (36)

XX

all other terms being zero by symmetry. In general the effec-
tive dielectric constant for random media is difficult to com-
pute, few exact results exist and one must often resort to
approximation schemes such as effective medium theories.
However as the underlying geometry of the disorder is one
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dimensional, the effective dielectric tensor can be evaluated
exactly. The term ¢ is the dielectric constant in the z direc-
tion is given by

1
(€) = —— 37
€ <1 /€> ’ ( )
and the perpendicular component is simply given by
€9 =(e). (38)

The forms of el(le) and e(f) follow simply from the fact that in
the perpendicular direction the dielectric constant is obtained
by analogy to capacitors in series and in the parallel direction
by analogy to capacitors in parallel arrangement [13]. These
results can also be understood in terms of effective diffusion
constants for diffusions where the local diffusivity is given
by e(x) [14].

It is a straightforward exercise to see that the effective
value of € for this system coincides with that of Eq. (31)
above. This correspondence makes physical sense since the
high wavelength or small k fluctuations of the electric field
are responsible for the behavior of the Casimir interaction at
large distances and the effective dielectric response at low
(but nonzero k) must be close to that of the response to a
constant field, i.e., described in terms of a dielectric constant.
An interesting consequence of this result is that for large
separations (where [ is much greater than the correlation
length of the dielectric disorder) the thermal Casimir inter-
action free energy is self averaging.

It is instructive to compare the result for the Casimir in-
teraction at large separations for the case of a fluctuating
dielectric constant with the case of a homogeneous medium,
whose dielectric constant is the average of that in the fluctu-
ating medium: €,=(e) (the subscript & signifying that the
medium is homogeneous). The homogeneous medium has a
Hamaker constant

kT
Hy=——2= | udu In[1 - A7 exp(-u)], (39)
167
with
Ah — <€>—_€0 , (40)
() + ¢

when medium (1) has the same composition as medium (2).
Jensen’s inequality tells us that

1
(/e)= —, (41)
(€)
since the function f(x)=1/x is convex. Thus
, (e)
= ={(e). 42
e=\i5 =0 2)

Clearly the effective Hamaker constant is a monotonic func-
tion of A% and the interaction is always attractive. The dif-
ference in A? for the two systems is

&€ — () (€(e) - &)

A2 —A2=4
" (e + 60)2(5* + 50)2

(43)
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Therefore, using Eq. (42), we find that if €(e)> 5(2) then
H,>H", and the interaction between the two homogeneous
media is stronger than that between the two fluctuating me-
dia. This condition can be written as

& _ 4
e > €, (44)

and is always satisfied if (1/€)~' > €,. However it is always
violated (the interaction between the homogeneous media is
weaker than that between the random media) if (€) < ¢,. We
thus see that, depending on the details of the distribution of
the fluctuating dielectric response in the two slabs and the
dielectric response of the medium in-\ between, the effective
interaction at large interslab separations can be stronger or
weaker than that for a uniform medium with a dielectric
constant equal to the average value of that of the media in
which it fluctuates.

D. Small / limit

When considering the small / limit we must bear in mind
that quantum effects (i.e., nonzero Matsubara frequencies)
will eventually dominate the interaction at very short dis-
tances. The cross over between the thermal and quantum
regimes occurs at /.~ hc3 and the crossover between the self
averaging regime for the n=0 Matsubara mode and that
where one sees the effects of disorder is given by the corre-
lation length of the disorder & Therefore the short distance
behavior discussed here is experimentally relevant in sys-
tems where £>1..

One would imagine that as the distance between the slabs
is reduced the result will be increasingly dominated by the
slab composition at the two opposite faces [4]. Indeed in the
small / limit Eq. (23) is dominated by the large k behavior.
The asymptotic behavior can be extracted if one assumes the
ansatz

a,(2)
alk,z) = 2 — (45)
0 k
Substituting this into Eq. (25) gives the following chain of
equations for a,(z)

I lda@) 1 < 6@,k
kng() K" dz = G(Z) - E(Z) HJ%O Pz . (46)

From here it is easy to see that to order O(1) the leading
asymptotic result of Eq. (51) is given by

ay(z) = €(2). (47)
The equation for the corrections (n=1) to this asymptotic
limit is
da,_(z 1 <
—1() =—-—3 E am(Z)an—m(Z)’ (48)
dz €(2) mmo

and the next two terms in the asymptotic expansion are given
by

1de(z)

"2 dz

a(z)= , (49)
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de(z))2

. 50

( dz (50)

It is straightforward to realize that these terms generate
O(1/1) corrections to the asymptotic result which are sub-
dominant when [ is large. Thus to the leading order

a(k,z) = ay(z) = €(2), (51)

and from here it follows straightforwardly that

pi(y), (52)

1d°€(z) 1
4 d7?  8e(z)

a(z) =

lim p;(y,k) =
k—o0

where p; is the probability density function of €(z) in me-
dium i. This result is easily understood from the physical
discussion above. The average of the thermal Casimir inter-
action free energy Eq. (23) in the small separation limit is
thus given by

T
(F)(1—0) ~ léB ZJ uduf dede,p(€;)p,(€;)
77l
XIn[1 - A A, exp(-u)], (53)
with
A= ﬂ' (54)
€~ €

The forms of the thermal Casimir interaction free energy
are thus given by Egs. (33) and (53) in the small and large
interslab separation limits, respectively. We have obtained
the limiting behavior of the thermal Casimir effect in the
limit of large separation between the slabs, where the free
energy is given by self-averaging and the distributions of
a(k,z) are strongly peaked, and in the limit of small separa-
tion, where the free energy is a random variable that has to
be averaged over the probability density function of the di-
electric constant in the media composing the two interacting
slabs.

III. SMALL DISORDER LIMIT—PERTURBATION
THEORY

The analysis presented above is valid for any type of dis-
order, irrespective of its properties. Here we also investigate
a different approach that takes into account the disorder ef-
fects on a perturbative level, i.e., another way of approaching
this problem analytically is to assume that the disorder is
small. We assume in this case that the dielectric response can
be written with an ansatz of the form

€(z) = €, exp[\y(2)], (55)

where N is a scalar parametrizing the strength of disorder
which will be used as the expansion parameter for perturba-
tion theory. When A=0 we have the disorder-free homoge-
neous system which is the starting point for the perturbation
expansion (zeroth order). If the mean of the field of ¢ is zero
then ¢, is the geometric mean of the dielectric constant. We
now assume that \ is small and write
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alk,z) = X2 N'a,(k,z). (56)
n=0

Substituting this into Eq. (25) and matching the powers of \,
we obtain the following equations for the first three terms in
the perturbation expansion when z is large:

Ay = €, (57)
da
d—z‘=k(— 2a, +2€,4)), (58)
d 2
ﬂ=k<—2a2—ﬂ+2al¢>. (59)
dz €

8

At large z we can solve the last two equations to obtain

@ = ZkngZ dz' expl-2k(z—z")](z’), (60)
0

Z z’
a,= 4k26gf dz' exp[—2k(z - Z')]',”(Z’)f d7"
0 0

Z

Xexp[—2k(z' = ") (") - 4k3egf dz
0

2! 2
Xexp[-2k(z — Z')]{ f~ dz" exp[—2k(z' - z")](ﬂ(z”)} )

0
(61)
We can now verify some of our previous results at the

level of perturbation theory. For k—o we have that
2k exp[—2k(z—z")]— 8(z—z'), and this gives

a; — €,2), (62)
&= ZP). (63)

This gives

2
a— eg(l + N+ %cﬁz) ~ €, exp(\y) = e(z),  (64)

in agreement with the large k result stated previously. Also in
the limit of small k£ we will have that

lim 2k f 42 expl= 2k(z= ) — () (65)

k—0 0

for large z and so we have

a; — 1), (66)
€02
ay — §g<¢> . (67)

Since ()=0, we find
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lim a(k,z) = €,, (68)
k—0
which is in agreement [to O(\?)] with the general result Eq.
(31).
Now let us consider the case where the field ¢ is Gaussian
of zero mean with correlation function

(W)Yz")) = exp(- 0|z =2]), (69)

where 1/w=¢ is the correlation length of the field (note that
as, in the second order perturbation theory carried out here,
the computation only involves the second moment of the
field i the assumption of Gaussian statistics can be relaxed).
This Gaussian field has the correlation function of an
Orstein-Uhlenbeck (OU) process and is Markovian. The mo-
ments relevant to the degree in perturbation theory we are
working to [O(\?)] are

(a)=0, (70)

2ke
(afy= =m, (71)

ke
(ar) = 2k_+g_w (72)

Using this we may write the corresponding free energy as a
random variable

kgT
F=—2 J udu In[1 — AJA} exp(—u)], (73)
1671
where
€ — €
Al=——2 (74)
Ei + E()
with

, u A ou
€ =€\ l+ AN\ ———o0;+ . (75)
' u+ w;l 2 u+ wl

The subscript i refers to the medium (1 or 2) and the o are
independent Gaussian random variables of zero mean and
unit variance. Note that to order N> we can replace the term
a, by its mean and have done so in the above. Also we
should expand the corresponding expression for the free en-
ergy to order N2, this will ensure that the resulting average
and moments will always be finite.

IV. RANDOM TELEGRAPH SLAB MODEL

Here we will consider a model of dielectric disorder
which we can solve exactly and which clearly demonstrates
the general results about long distance and short distance
behavior found in our previous analysis.

We consider a two composite model for the dielectric
slabs. In a given slab we generate the random dielectric func-
tion by choosing one of two values €, or ez. The material
keeps this same dielectric value for an exponentially distrib-
uted distance z of mean 1/w. This means that the dielectric
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constant switches between these two values with rate . The
probability of observing either dielectric constant is thus
equal and the distribution of the thickness of regions of the
same dielectric constant has an exponential distribution. The
random variable e is Markovian and this fact allows us to
write down an effective Fokker-Planck equation for the joint
distribution of € and the process «.

Let us denote by p(A/B,y,z,k)dy the joint probability
that the dielectric constant e=¢€4,5 and that a e[y,y+dy].
Note that the distribution function for y is then given by the
marginal distribution

p(y,z,k) = p(A,y,z,k) + p(B.y,z,k). (76)

Using the equation of motion for «, Eq. (25), the evolu-
tion equation for p(A,y,z,k) is derived by standard methods
[15] to give

J J
—p(A,y,2,k) =~ k——[ (e~ ¥/ €a)p(A,,2,k)] - wp(A,y,2,k)
Jz dy
+ wp(B,y,z,k), (77)
together with the corresponding equation for p(B,y,z,k).
The equilibrium (large z) distributions are given by
p(A/B,y,k) which obey
J 2
ka[(EA/B — Y/ €xp)p(A/B,y,2,k)] + wp(A/B,y,k)
— wp(BIA,y,k) =0 (78)
These probability density functions have a support over y
€[e4,€,] where €,<e€g as from Eq. (25) we see that the
process a;, if started between the two extremal values €, and

€p, stays between these two values. After some algebra we
find the solutions

_ C(k)€A<(y —€)(ep —y))s
Pari=n alamegrnl 7
3 C(k)63< (v —ex)(ep —y))s
p(Bsysk)_ 6%_)}2 (EA+y)(EB+y) ’ (80)

where the exponent s=w/2k. The constant C(k) is deter-
mined from the normalization conditions [dyp(A/B,y,k)
=1/2.

This exact solution nicely demonstrates a number of the
general features derived in Sec. II. For instance, we may
write

C(k) 15

PR = 5 2exp<— ﬁg(y)>, (81)
C(k 1)

p(B.y.k) = egfzéexp<— ﬁg(w), (82)

where
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g(y)=—1In(y - €,) = In(eg—y) +In(e4 +y) +In(eg +y).
(83)

We find that the minimum of g(y) occurs at y=e€*=\¢, €.
Thus as k—0 the distribution p(y,k) becomes peaked
around y=€". There also exists a critical value of k=k" with
k*=w/2 such that for k<k* we have limyHEA/B p(A/B,y,k)
=0, i.e., the density at the extremal values €, and € is zero.
However for k>k" we enter into a short distance regime
where the density at €, and €z diverges and the extremal
values are the most probable values. In the following section
we will verify these predictions for the telegraph model nu-
merically.

V. NUMERICAL SIMULATIONS

In this section, we present the results of numerical simu-
lations of the models presented in earlier sections. We verify
the general asymptotic behavior of the Casimir free energy
that we have deduced, and compute the Hamaker variable,
H(I) (it is now generally a function of slab separation /), for
various choices of parameters which determine the distribu-
tion of the local dielectric constant. We define H([) from the
definition of the free energy (F)(I) given in Eq. (23) by

=-"10 (54

To carry out the numerical study we first must construct
the joint probability distributions p;(k,y) discussed in Sec.
II B. This is done by choosing an instance of the field e(z)
from its defining distribution and then integrating Eq. (26)
for a given value of k to obtain the large-z value of «:
a(k,{=»). We average over the ensemble by repeating this
procedure many times and construct p(k,y) by binning the
results

n(y,Ay)

ky)Ay =
plk,y)Ay N

(85)
where n(y,Ay) is the number of values of a(k,%) lying in
[v,y+Ay] and N is the total number of evaluations. In our
simulations we used N=10°-108.

We first consider the telegraph model discussed in Sec.
IV. The advantage of this model is that the evolution equa-
tions, Egs. (26) and (77), can be solved exactly to give the
asymptotic distributions p(A/B,k,y) given in Eqgs. (81) and
(82). It was noted that there is a transition for k=w/2 where
the distributions change from being zero at the extreme val-
ues y=¢€,, y=¢€p for k<w/2, to diverging for for k> w/2.
To verify the results numerically we choose w=1, €4
=5, €3=10 and in Figs. 2 and 3 we show the results for
p(A,k,y) and p(B,k,y), respectively, for values of k below
and above the transition value. The continuous curves are the
predicted functions from Egs. (81) and (82), respectively.
The normalization factors C(k) was computed from a sepa-
rate numerical integration. We see good agreement for both
distributions p(A/B,k,y) which thus verifies the analytic re-
sult. There is a minor discrepancy for k=1.0 which is a
symptom of the discrete nature of the numerical procedure in
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p(Aky)

FIG. 2. Numerical and theoretical plots of the distribution
p(A,k,y) for the telegraph model defined in Sec. IV for €,=5.0,
e3=10.0, w=1.0, and for £=0.1,0.5,1.0. The agreement is good
and the minor discrepancy for k=1.0 is a symptom of the discrete
nature of the numerical procedure. The value k=0.5 corresponds to
the transition where p(A,k,y) becomes nonzero at y=¢,4. In general,
for k<1/2w we have p(A,k,y=€,)=0 and for k=1/2w p(A,k,y
=¢,)>0. This behavior has a strong effect on the Hamaker
coefficient.

this case. We can see that the mﬁdiction that p(A/B,k,y)
peaks at the geometrical mean (Y50~ 7.07 here) in the large
k limit is already evident.

To compute the Hamaker coefficient H(l) for the tele-
graph model we use Egs. (23) and (84) with the probability
distribution given in Sec. IV, Egs. (79) and (80). One diffi-
culty is that the normalization coefficient C(k) is not known
analytically and so, in performing the integral over (k,y,y,),
it must be computed as a subsidiary integral. The other prob-

T T T T T T T T T T

i o0 k=01 ol

0.6 o k=05 .
o k=10

05 -

204 -

'xr |- -

)

B 03 -
02k -
0.1 -

o | . | . | .
6 7 8 9 10

FIG. 3. Numerical and theoretical plots of the distribution
p(B,k,y) for the telegraph model defined in Sec. IV for €,=5.0,
ez=10.0, w=1.0, and for £=0.1,0.5,1.0. The agreement is good
and the minor discrepancy for k=1.0 is a symptom of the discrete
nature of the numerical procedure. The value k=0.5 corresponds to
the transition where p(B,k,y) becomes nonzero at y=eg. In general,
for k<1/2w we have p(B,k,y=€p)=0 and for k=1/2w p(B,k,y
=€) >0. This behavior has a strong effect on the Hamaker
coefficient.
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0.004 - —
0

Hamaker coefficient H(l)/kBT

0.0035 — —
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0.003
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separation 1

FIG. 4. The effective Hamaker coefficient H(/) defined in Egq.
(93) for the telegraph model defined in Sec. IV for €4,=1.0, €z
=10.0, w=1.0. The distribution function is p(k,y)=p(A,k,y)
+p(B,k,y) where p(A/B,k,y) are given in Egs. (81) and (82). Note
that the curve is strongly dependent on separation / for /~ 1.0 which
corresponds to the transition in the behavior of p(k,y) at k=0.5
=1/2w. We would expect in the general case that this strong de-
pendence occurs for /=1/2w. The error bars on the points are
within the symbol size. The asymptotic values for /—0 and /—
are also shown. In this case they are H(I)/kzT—3.688 1073 ]
—0, H()/kgT—5.666 1073 [— o,

lem is the dependence of the shape of p(A/B,y,k) on the
exponent s=w/2k

1
p(A,y.k) —
(y—ea)
] s—0,
p(B,y,k) —
(ep— y)l ’
p(AIB,y.k) ~ 8(y— €) s— 0, (86)

where e*=v’E. Depending on separation [ the integral
samples different regimes of k and hence of s, emphasizing
s—0() for [—0(). The probability distributions have
completely different singular properties in these two limits
and this causes difficulty with the numerical evaluation of
the normalization C(k) and of the three-dimensional integral
itself. However, using adaptive Monte Carlo integration and
a judicious choice of variable transformation, the value of
H(I) is accurately obtained for a wide range of values for /.
Using Eq. (86) the small and large / limits for H(/) can be
obtained. For [—0, H(l) tends to the average of the values
for  the four dielectric  combinations  (€),€)
=(€4,€4),(€p,€4),(€4,€p),(€p, €p); for I—o0, H(I) tends to
the value given by €,=€,=€". In these limits the values can
be easily computed by other means. To illustrate the effects
we chose €,=1, €;=10 which emphasizes the large varia-
tion between the small and large [ values. The results are
shown in Fig. 4 where the asymptotic values,
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VB ——T——— T

k=001

p(y.k)
T

FIG. 5. Probability density for a for k=1,0.1,0.01 for e(z)
=exp(¢(z)) where ¢ is the OU Gaussian process with correlation
function given by Eq. (69). The distribution p(y,k) becomes sharply

peaked around y=1 which is as predicted for small k, €* given by
Eq. (31)

H(l) 5 H(l) 5
— =368 X107 [—0, ——5.666X107]— o0,

(87)

are shown. As can be seen there is a strong variation in this
model in the region around /~ 1. Note that the length units
are set by the w parameter in the definition of the model; we
chose w=1 here.

We next study the case where €(z) is an instance drawn
from the log-normal distribution give by Eq. (55). In the
large slab separation (large [) the results are summarized by
Egs. (32) and (31), and in the small separation limit (small /)
we expect Eq. (52) to hold; our simulations do indeed show
that these equations are correct in the relevant limit.

A time-consuming part of the computation is the construc-
tion of an instance of the field e(z) from the log-normal
ensemble. We use the Fourier mode representation for an
instance of the Gaussian field ¢(z) which can be written as

N
(z) = ILVE cos(p,z+5,). (88)

n=1

We chose the number of terms N=64. The phases J, are
uncorrelated and chosen from a flat distribution &,
€ (0,27]. The wave vectors p, are also uncorrelated and

chosen from the distribution é(p) where the autocorrelation
or two-point function of the ¢ field is given by

(') = f j_zé(p)e""“‘z')EG(z—z’). (89)

A given choice for the set (p,,5,), n=1,...,N determines a
given instance of i(z) and hence of €(z). We took advantage
of the scaling symmetry in Eq. (24) to reduce the amount of
computation required. The simulations were done on 8-16
cores of a DELL T5400 with quadcore Xeon processors.
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p(y,10)/q(y)

FIG. 6. The filled circles are the probability density for a for
k=10 for e(z)=exp[¢(z)] here ¢ is the OU Gaussian process with
correlation function given by Eq. (69) with w=1. The solid line is
the probability density function g(y) given in Eq. (90) for the same
distribution of €. The two distributions are already very close for
k=10 in agreement with the prediction of Eq. (52).

We recall that for small k the values of «; and «, are
predicted to be self-averaging and thus their distributions
should be strongly peaked as k— 0. In Fig. 5 we have simu-
lated the system when € is given by Eq. (55) and ¢ is an OU
Gaussian process [with A=1 and €,=1 in Eq. (55) and o
=1 in Eq. (69)] for values of k=1 to 0.01. We see that as
predicted the distribution of a becomes increasingly peaked
about €'=1 [as given by Eq. (31)] as the value of k is de-
creased. For large k the prediction Eq. (52) can be verified.
Shown in Fig. 6 is the distribution for the same distribution
of €(z) but for k=10, we see that, as predicted, the probabil-
ity density function for « is already very close to that of €
which is given by

25

p(y.k)

FIG. 7. Probability density for a for k=1,0.1,0.01 for &(z)
=exp[¢(z)] where ¢ is the Gaussian process with correlation func-
tion given by Eq. (91). As for the OU process the distribution
p(y,k) becomes sharply peaked around y=1 which is as predicted
for small k, and € is given by Eq. (31)
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0.6 — |

p(y,100)/q(y)
o o )
w S wn
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| | |

e
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FIG. 8. The filled circles are the probability density for a for
k=100 for e(z)=exp[¢(z)] here ¢ is the Gaussian process with cor-
relation function given by Eq. (91) with w=1. The solid line is the
probability density function g(y) given in Eq. (90) for the same
distribution of e. The two distributions are already very close for
k=10 in agreement with the prediction of Eq. (52).

a9) = —=exp - 1)) (50)
N2y 2
Note that g(y) is independent of the correlation function of
the Gaussian field in the log-normal distribution.

One can also consider the case of non-Markovian log-
normal dielectric constants. For instance, one can take the

field ¢ in Eq. (55) to have correlation function

(H2)(z") = expl- 0*(z - 2)*2]. O1

In what follows we fix A=1 and w=1. For the small val-
ues of k shown in Fig. 7 we see again that as k— 0 that the
distribution becomes peaked about €*=1 as predicted. In Fig.
8, we show the comparison between the distribution of « and
€, again at this value of k the agreement between the two
distributions is already excellent.

We also compute the average effective Hamaker coeffi-
cient as a function of separation / using Eq. (23) to define

kT
<H(l)>=ﬁj uduf dydy,p, (u/21,y,)py(ur2l,y,)

XIn(1 = A(y))Ay)exp(-u)), (92)

with A(y)=(y—¢y)/(y+€). For €(z) distributed according to
the log-normal distribution in Eq. (55) and using the scaling
result in Eq. (24) we can write

kgT
(He)y =1~ f udu f dy dyap(u/21,y,)pa(w/2y,)

Xln[l - A(Eg)’I)A(ngZ)eXp(_ I/t)], (93)

where the p;(k,y) are computed for €,=1. The computation
is very time consuming since for each value of / a three-
dimensional integral must be performed over (k,y;,y,), and
for each value of k the probability distribution must be con-

structed, as described earlier, by integrating Eq. (26) over
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FIG. 9. The effective Hamaker coefficient H(/) defined in Egq.
(93) for the distribution defined by Eqs. (55) and (91) for ¢,
=1.0,1.414. In both cases the curves are asymptotic to the Hamaker
constant for a homogeneous system with dielectric constant €*
=\(€)/(1/€). Notably, €=1 for €,=1.0 and we see that H(l) is
asymptotic to zero from above showing that the force is attractive
for all / even in this case. As is also seen, the curves are asymptotic
either above or below depending on the value of €, and is not
necessarily monotonic.

many realizations of the log-normal field e(z). It might be
thought that it would be possible to compute p(k,y) once and
for all and store the result for later use. However, this turns
out to need a very large computer memory (RAM) size
which is prohibitive.

We show H(l;€,) versus [ in Figs. 9 and 10 for various
values of €,. As can be seen H([) is asymptotic to the Ha-
maker constant for a homogeneous system with dielectric
constant €'=\(€)/{1/€), and that for €,=1.0 that H(l) is
asymptotic to zero from above showing that the force is at-
tractive for all /. This need not have been the case since there
will be contributions from configurations were the dielectric
constants €|, €, in the slabs satisfy €, > 1> €, or vice versa;

0.02

0.015— -

° sg=2.0
= g,=100

0.005 — —

Hamaker coefficient H(l)/kBT
T
\

| | |
00 5 10 15 20

separation 1

FIG. 10. The effective Hamaker coefficient (H(/)) defined in Eq.
(93) for the distribution defined by Eqs. (55) and (91) for €,=2.0,
10.0. In both cases the curves are asymptotic to the Hamaker con-
stant for a homogeneous system with dielectric constant €*

=\We)/{1/€).
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FIG. 11. Examples of the Hamaker coefficient from the en-
semble generated by the distribution for e(z) for €,=2.0 plotted
versus separation /. The average curve of the ensemble is shown in
Fig. 10. Note that for small / the curvature of the ensemble curves
are not of definite sign

such configurations contribute a repulsive contribution to the
force. As is also observed, the curves are either asymptotic
from above or below and are not necessarily monotonic but
can have an initial decrease before rising to the asymptotic
value. These are significant features due to the random nature
of the system.

In Figs. 11 and 12 we show a sample of the Hamaker
coefficients for particular realizations of €(z) plotted against
separation / and for €,=2.0,10.0, respectively. The averages
over the ensembles from which these curves are taken are
given in Fig. 10. It is important to note that the curvatures of
the ensemble curves are not of definite sign and that for
small / there are both curves that decrease and curves that
increase with [. These properties are reflected in the shape of
the curve for the ensemble average.

0.02

0.018 — —

0.016 — —

0.014 —

0.012 — —

Hamaker coefficient H(1)/k,T
T
\

0.008 — —

| | | |
0 2 4 6 8 10

separation |

FIG. 12. Examples of the Hamaker coefficient from the en-
semble generated by the distribution for e(z) for €,=10.0 plotted
versus separation /. The average curve of the ensemble is shown in
Fig. 10. Note that the curvatures of the ensemble curves are not of
definite sign.
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VI. CONCLUSIONS

We have obtained the limiting behavior of the thermal
Casimir effect in the limit of large separation between the
slabs, where the free energy is given by self-averaging and
thus the distributions of a(k,z) are strongly peaked. We have
shown that the interaction between two homogeneous media
is stronger than that between the two fluctuating media if
(1/€)™' > ¢,. However it is always weaker if (€)<e, We
thus see that, depending on the details of the distribution of
the fluctuating dielectric response in the two slabs and the
dielectric response of the medium in between, the effective
interaction at large inter-slab separations can be stronger or
weaker than that for a uniform medium with a dielectric
function equal to the average value of that of the media in
which it fluctuates. In the limit of small separation, where the
interaction free energy is a random variable that has to be
averaged over the probability density function of the dielec-
tric functions in the media composing the two interacting
slabs.

The intermediate length scales were analyzed via pertur-
bation theory and models of disorder that can be treated nu-
merically. All numerical simulations completely corroborate
the analytical results for self-averaging at large separations.

We carried out numerical studies of two models charac-
terized by very different random distributions of dielectric
constant. The telegraph model is described in Sec. IV and
analytic solutions are given for the marginal probability dis-
tributions for the effective dielectric variable y, p(A/B,k,y),
where A/B label the two choices of slab dielectric constant
€43 and k is the modulus of the wave-vector for the trans-
verse mode; the distribution relevant to the computation of
the Hamaker coefficient H(l) is p(k,y)=p(A,k,y)
+p(B.,k,y). The frequency with which the dielectric constant
switches between €4, as a function of z is controlled by the
parameter w. We find a sharp transition in the shape of
p(k,y) depending on whether k<< w/2 ior k>1/2/w and this
has a strong effect on H(l) which varies strongly for [
=1/2w. These effects are clearly shown in Figs. 2—4.

The model where €(z) is given by a log-normal distribu-
tion Eq. (55) with auto-correlation function given in Eq. (91)
requires a numerical solution for p(k,y) each value of k in
the integral expression for H(I) in Eq. (92). This is compu-
tationally very time-consuming but is tractable. The resulting
distributions agree with the predicted shapes for large k as is
seen in Fig. 6. The behavior of H(/) for various choices of ¢,
are plotted and H(l) is shown to have a nonmonotonic be-
havior for intermediate values of €,.

The nonlinear formulation of the problem presented here
should be equally useful to treat the case of deterministically
varying dielectric functions and could open up a useful com-
putational framework for designing materials where the ef-
fective interaction can be tuned, to induce attractive or repul-
sive forces depending on the separation [16]. The
formulation also means that if one knows the coefficients
a/(k), afk) and b;(k) for any set of slab media, then one can
immediately compute the effective interaction between them
at any distance. This is a rather surprising result as if one
wanted to compute the effective interaction between two me-
dia (1) and (2) using the pair wise approximation, 1/ for
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the van der Waals interaction, it is clear that medium (1)
needs to know what is in medium (2) at each point in order
to compute the force. The decomposition in terms of Fourier
modes however means that the interaction between the two
media is effectively factorized. A number of further applica-
tions of our method would be to examine the role of disorder
for the nonzero frequencies corresponding to quantum fluc-
tuations and also for different geometries, such as cylindrical
and spherical, when the dielectric function varies only in the
radial direction. An interesting open problem concerns what
happens when the dielectric function varies in all directions,
it would be interesting to know if one can prove in this case
whether the long-distance interaction between two slabs is
also given by the same effective medium expression as de-
rived here.
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