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We explore the implications of the conservation law(s) and the corresponding so-called continuity equation(s),
resulting from the coupling between the positional and the orientational order in main-chain polymer nematics,
by showing that the vectorial and tensorial forms of these equations are in general not equivalent and cannot
be reduced to one another, but neither are they disjoint alternatives. We analyze the relation between them and
elucidate the fundamental role that the chain backfolding plays in the determination of their relative strength
and importance. Finally, we show that the correct penalty potential in the effective free energy, implementing
these conservation laws, should actually connect both the tensorial and the vectorial constraints. We show that
the consequences of the polymer chains’ connectivity for their consistent mesoscopic description are thus not
only highly nontrivial but that its proper implementation is absolutely crucial for a consistent coarse-grained
description of the main-chain polymer nematics.
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I. INTRODUCTION

Liquid-crystalline order is ubiquitous in biological materi-
als [1] and many properties of these systems can be analyzed
in terms of the standard Landau–de Gennes approach [2],
without particularly worrying about, e.g., the polymer nature
of the main-chain polymer nematogens. Nevertheless, it was
recognized a while ago that the Landau–de Gennes approach
needs to be modified specifically to take into account the
polymer nature, i.e., the microscopic connectivity of the
underlying mesogens [3,4]. This connectivity leads to a
coupling between the positional and orientational order of the
polymer molecules. The ensuing so-called continuity equation
derived to take into account this specificity of the polymer
mesophase materials was shown to matter fundamentally for
a consistent description of macroscopic properties of these
systems [5–8]. In addition, recently we showed that depending
on the nature and the symmetry of the mesophase order,
this continuity equation might not be the only condition that
the coarse-grained description of polymer nematics needs to
satisfy. In fact, its generalized form in terms of a vectorial
conservation law [9,10] suffices for polar nematic order, while
in the more usual quadrupolar nematic order case a different,
tensorial conservation law has to be included in the Landau–de
Gennes description [9,11].

Discovering another form of the conservation law, stem-
ming from the microscopic connectivity of the constitutive
nematogen molecules, naturally leads to questions, such as
which form of the conservation law is the correct one, how
are they related, when is the use of one preferred to the other
one, and how important is their implementation for the proper
description of polymer nematics. In this note we address and
resolve all these fundamental questions for future applications.
In fact, we show that the two conservation laws are not
equivalent, are irreducible, and in general lead to different
consequences specifically stemming from the presence of the
backfolding configurations of the polymer chains, or in an ex-
treme case, to the presence of localized hairpins and/or kinks,
which should be in particular relevant in the description of

confined DNA mesophases, where such local defects or elastic
energy nonlinearities have been implicated recently [12].

In what follows, extending our previous analysis [9,10], we
thus propose a generalized conservation law for the main-chain
polymer nematics that consistently incorporates both the vec-
torial as well as the tensorial conservation laws. Moreover, and
in particular, this includes also a well-grounded interpretation
of the recently derived tensorial conservation law that has been
so far elusive. We also indicate to what extent and in which
cases applying the vectorial constraint to nematic director
of the main-chain polymer is invalidated, even in the case
of perfectly rigid chains, and leads to fundamentally wrong
conclusions. In addition we show that the two constituent
conservation laws are manifest in the two extreme cases
of flexible and inflexible chains, respectively. The present
analysis is also relevant to ascertain the detectability of the
two constraints, whether to pinpoint the observable differences
between them or the features of their joint implementation, for
which a detailed simulation approach, on which we recently
embarked, seems at present to be our best guide [13].

II. VECTORIAL AND TENSORIAL CONSERVATION LAWS

On the macroscopic level, the microscopic connectivity of
monomers into the chain of a main-chain polymer nematic
shows up as a constraint linking director deformations and
density variations. Since its formulation, the accepted form of
this constraint has been [3–8]

∇ · (ρsn) = ρ+ − ρ−, (1)

where ρs(r) is the surface density of polymer chains perfo-
rating the plane perpendicular to the nematic director n(r),
while ρ+(r) and ρ−(r) are volume densities of the beginnings
and endings of chains, respectively. This constraint has been
used in connection with the nematic director, i.e., the principal
axis of the nematic order tensor Q, describing quadrupolar
orientational ordering [14].

Including the modulus of the orientational ordering, it be-
comes apparent that the constraint Eq. (1) naturally augments
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to a vectorial law, i.e., the conservation law for the polymer
current density j = ρℓ0a [9,10],

∇ · (ρℓ0a) = ρ+ − ρ−, (2)

where ρ(r) is the volume density of arbitrary polymer
segments (e.g., monomers) of length ℓ0 and a(r) = ⟨tα⟩ is
the mesoscopic average of monomer tangents tα . In passing,
by comparison of Eqs. (1) and (2) we see that ρs = ρℓ0a,
which can be also straightforwardly inferred from geometry.
A formal derivation [9] of Eq. (2) leaves no doubt that this is
indeed the exact conservation law for the polar orientational
order a of the chain tangents.

However, recently we derived a different, tensorial conser-
vation law [9,11] for main-chain polymer nematics of the form

∂i∂j J̃ij = ∂i∂j

[
ρℓ0

(
Qij + 1

2δij

)]
= 3

2∂i(g+
i − g−

i ), (3)

where g(r) ≡ g+(r) − g−(r) is the volume density of chain
head and tail tangents. Conforming to the quadrupolar sym-
metry, heads and tails are indistinguishable in g, with the
tangents always pointing away from the head and tail. This
purely geometric (kinematic) continuity condition, just like
the vectorial analog Eq. (2), is a consequence of the fact that in
a system of unbreakable chains the orientation and the position
of a monomer are not independent and must be satisfied by
any configuration Q(r).

For a configuration Q(r), the requirement Eq. (3) is,
however, not the complete story—it is a necessary but, in
general, not the only condition the tensorial configuration must
satisfy. Namely, since quadrupolar order is insensitive to chain
backfolding, the tensorial constraint Eq. (3) is not at all affected
by the flexibility of the chain. Therefore, in order to describe
the chain rigidity (semiflexibility), the tensorial constraint
requires the backup of the tighter vectorial constraint Eq. (2),
as we will propose in what follows. Indeed we will show that
inflexible chains (no chain backfolding) should follow closely
the vectorial conservation Eq. (2) for the nematic director
(which can be defined as a vector in this limit), and that flexible
chains with strong backfolding, and therefore necessarily with
a vanishing local mesoscopic polar order of chain tangents,
should satisfy the tensorial conservation Eq. (3). The aim here
is thus to shed light on the connection between the vectorial
and the tensorial conservation laws and to elaborate on the
correct application of both conservation laws to the general
case of semiflexible chains, which should include the limits of
inflexible and flexible chains as special cases.

III. VECTORIAL CONSERVATION LAW
FOR THE NEMATIC DIRECTOR

The vectorial conservation law has been standardly used
for the nematic director, and vice versa, the constraint linking
density variations and nematic director deformations has been
implemented exclusively in terms of the vectorial conservation
law. However, in principle, this is problematic. The vectorial
conservation law is the continuity equation for the polymer
current density, which is a vectorial quantity. As such, strictly
speaking it cannot be expressed in terms of a quantity with
quadrupolar symmetry like the nematic director. In this section
we present the underlying argument that nevertheless enables

the use of the vectorial conservation law also for the nonpolar
nematic director. The basis of this argument is the interpre-
tation of chain hairpins (pointlike U turns) as effective chain
ends. This viewpoint dates back to Odijk [15] and is also re-
flected in subsequent stat-mech results [16,17]. Here we artic-
ulate it for general backfoldings, in a way that rigorously con-
nects with the macroscopic vectorial conservation law Eq. (2).

In a system of chains that does not exhibit macroscopic
polar order (the chains themselves can be either apolar
or polar), one cannot define a vectorial order parameter. If
a polar orientational order is nevertheless defined in a local
mesoscopic volume by an arbitrary convention of the chain
directions (e.g., such as to maximize the so-defined local
polar order), it will decay away from this point with a finite
characteristic length (represented by the global persistence
length [15]), depending on the density of hairpins or the
extent of chain backfolding in general. This decay length is
not necessarily small and may be comparable to other length
scales in the system including the system size. It distinguishes
between ensembles of stiff vs flexible chains and is therefore a
physical reality—not in terms of orientational order (which
for apolar phases and, by definition, for apolar chains is
insensitive to the extent of backfolding), but in terms of the
chain backfolding configurational degrees of freedom.

Following the arguments presented by Odijk, the density
of top and bottom hairpins [15] should enter the vectorial
conservation law as a source term, similar to the density of
chain heads and tails in Eq. (2). But how can one consistently
apply the vectorial conservation law if the polar orientational
order cannot be defined?

One can circumvent the inherent destruction of polar
orientational order due to chain backfolding by introducing
virtual (imaginary) cuts in every chain as soon as and each
time it gets backfolded with respect to the nematic director
(Fig. 1). Let us assign, arbitrarily but globally, an arrow to the
director (in this context we are not worried by the resulting
branch cuts in the case when topological disclinations are
present) to get a nematic vector m [Fig. 1(a)]. The virtual
cut is made whenever t(s) · m changes sign [Fig. 1(b)], which
is also the definition of the chain backfolding (one should
not confuse it with the hairpin). Every cut generates a −1
chain sink and a +1 chain source that coincide and thus
add to zero. Such cuts are therefore purely imaginary and
have no observable effect. However, now one can, without
any physical change, reverse all the segments between those
virtual cuts that have t(s) · m < 0, thereby also swapping the
sources and sinks of these segments [Fig. 1(c)]. Instead of the
previous coinciding sources and sinks we now generated +2
sources and −2 sinks, separated in the directions upstream and
downstream with respect to m, respectively, and in particular,
we created a nonvanishing macroscopic polar order a = |a| of
chain tangents—the recovered polar order—for which a ∥ m
holds due to the head-tail symmetry of nematic ordering. Note
again that the system of chains was not modified physically in
any way by this purely formal process.

Let us introduce a general source field ρ±s(r) in the vectorial
conservation Eq. (2), now reading

∇ · j = ρ±s . (4)
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FIG. 1. The purely formal procedure of cutting the chains at points of backfoldings and reversing the segments that are backfolded with
respect to m. One such segment is shown in panel (a). The cuts in panel (b) introduce a coinciding source and a sink each and have no effect.
(c) By formally reversing the direction of the backfolded segment, a pair of separated +2 source and −2 sink is created, while the polar order
of the system is increased.

For a uniform distribution of backfoldings that is expected in
a nondeformed equilibrium configuration, the coarse-grained
density of the new ±2 sources ρ±s = 2ρ+2 − 2ρ−2 is still zero.
What is different, however, is the susceptibility G of the ρ±s

variations, given by the equilibrium densities of chain heads
ρ−2

0 and tails ρ+2
0 in the noninteracting ideal gas model [7],

G = kBT /(ρ+2
0 + ρ−2

0 ).
Crucially, the recovered polar order does not depend on the

density of backfoldings (for a given shape of the monomer ori-
entational distribution function, its value is rigidly connected
to the degree of nematic quadrupolar order), whereas the
densities ρ−2

0 and ρ+2
0 do—they are equal to the densities of the

corresponding backfoldings. This, however, has physical im-
plications described by the vectorial conservation law Eq. (4)
and the free energy of deviations of the source densities ρ+,
ρ−, ρ+2, ρ−2 from their equilibrium values ρ+

0 , ρ−
0 , ρ+2

0 , ρ−2
0 ,

f ±s
(
ρ+ − ρ+

0 ,ρ− − ρ−
0 ,ρ+2 − ρ+2

0 ,ρ−2 − ρ−2
0

)
. (5)

In other words, the introduction of the backfolding cuts ρ+2
0

and ρ−2
0 makes the ρ±s variations cheaper, thereby weakening

the vectorial constraint for the recovered polar order.
Let us reduce the unnecessary complexity of the sources

and their free energy cost Eq. (5) and show this explicitly. The
number of chain heads equals the number of chain tails and
therefore

ρ+
0 = ρ−

0 ≡ 1
2ρ±

0 ; (6)

the apolar symmetry of the nematic phase furthermore requires

ρ+2
0 = ρ−2

0 ≡ 1
2ρ±2

0 , (7)

ρ+ − ρ+
0 = −(ρ− − ρ−

0 ) ≡ 1
2&ρ±, (8)

ρ+2 − ρ+2
0 = −

(
ρ−2 − ρ−2

0

)
≡ 1

2&ρ±2. (9)

To simplify life further, in a model we may describe both
types of sources, i.e., chain ends &ρ± and chain backfoldings
&ρ±2, on an equal basis, writing ρ±2

0 = αρ±
0 and therefore

also &ρ±2 = α&ρ±, where α is a parameter of the system.
Hence, both types of sources can be expressed in terms of the
total strength of sources

ρ±s = &ρ± + 2&ρ±2 (10)

as

&ρ± = ρ±s

1 + 2α
and &ρ±2 = αρ±s

1 + 2α
, (11)

while the free energy cost of the sources Eq. (5),

f ±s = 1
2

kBT

ρ±
0

(&ρ±)2 + 1
2

kBT

ρ±2
0

(&ρ±2)2, (12)

is expressed as a single quadratic term,

f ±s = 1
2
G(ρ±s)2, with G = kBT

ρ±
0

1 + α

(1 + 2α)2
. (13)

In the absence of the backfolding cuts, α = 0 and Nelson’s
result [7] for the susceptibility G is recovered. As soon as the
density of backfoldings increases, however, G is lowered and
eventually vanishes in the strong backfolding limit α → ∞.

To recapitulate, the recovered polar order is insensitive to
the degree of chain backfolding and is thus a well-defined
quantity. The strength of the vectorial constraint for the
recovered polar order, however, decreases with increasing
degree of chain backfolding. Moreover, in the limit of strong
backfolding, this constraint vanishes completely. The strength
of the vectorial constraint for the recovered polar order thus
depends on the density of backfoldings (besides the density of
chain heads and tails), and vice versa, in the continuum de-
scription the semiflexibility of the polymer chain is controlled
exactly and exclusively by the strength of this constraint.

In the light of this section, the vectorial conservation
law can thus be, perfectly rigorously, applied also to apolar
nematic ordering. However, this is the conservation law for
the recovered polar order and not for the quadrupolar order.
Actually, this reasoning must have been more or less tacitly
assumed every time the vectorial constraint was applied on the
nematic director. At the end of Sec. IV A it will become evident
why and when this simplistic standard application is incorrect.

IV. CONNECTION BETWEEN TENSORIAL AND
VECTORIAL CONSERVATION LAWS

It is illuminating to study the tensorial conservation law in
its integral form. Being first order in gradients, the integrated
constraint can be conveniently compared with the vectorial
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constraint. Starting with the general tensorial conservation law
Eq. (3), we can integrate it once to obtain

∂j

[
ρℓ0

(
Qij + 1

2δij

)]
= 3

2 (g+
i − g−

i ) + 3
2ϵijk∂j(k, (14)

where the second term on the right-hand side is divergence
free.

To recognize the meaning of the divergence-free compo-
nent, along the lines of Ref. [9] we revert to the microscopic
fields, writing

∂j J̃
mic
ij (x) = 3

2

∫

x(s)
ds

dxi(s)
ds

dxj (s)
ds

∂

∂xj

δ[x − x(s)]

= − 3
2 {ti(L)δ[x − x(L)] − ti(0)δ[x − x(0)]}

+ 3
2

∫

x(s)
ds

d2xi(s)
ds2

δ[x − x(s)], (15)

where the chain curvature

d2xi(s)
ds2

≡ 2δ(s − sh)Nh
i + κns(s)Nns

i (s), (16)

besides nonsingular (κns) may have also singular contributions
(in general these may be singular kinks of any angle, but here
we restrict ourselves to hairpins only); a sum over all hairpins
is omitted for brevity. We thus have

∂j J̃
mic
ij (x) = 3

2

{
ti(0)δ[x − x(0)] − ti(L)δ[x − x(L)]

+ 2Nh
i δ[x − x(sh)]

+
∫

x(s)
dsκns(s)Nns

i (s)δ[x − x(s)]
}
. (17)

From here it is already clear that pointlike hairpins are
analogous to chain beginnings and endings. We can rewrite
Eq. (14) by coarse graining Eq. (17):

∂j J̃ij = ∂j

[
ρℓ0

(
Qij + 1

2δij

)]
= 3

2 (g+
i − g−

i + 2hi + ρℓ0ki),
(18)

where h is now the density of hairpin principal normals, while

ki = 1
L(x)

∫

x(s)∈V (x)
dsκns(s)Nns

i (s) (19)

is the average nonsingular chain curvature field; L(x) is the
total length of the polymer within the coarse-graining volume
V (x) centered at x. Hence, we learn that

ϵijk∂j(k = ρℓ0ki, (20)

while the contribution of the curvature singularities (pointlike
hairpins)—which is generally not divergence free—has been
exempt from k and added to the sources of the tensorial
conservation law Eq. (3), now reading 3

2∂i(g+
i − g−

i + 2hi).
We note that in the context of the tensorial conservation law

pointlike hairpins are only a formal abstraction—in reality
they need not exist, i.e., the chain tangent can be always
regarded continuous, no matter how large the curvature;
therefore h = 0, and Eq. (18) will serve merely to establish
a link with the vectorial conservation (see below). One might,
however, have a specific physical reason to bring in also
pointlike hairpins and/or kinks: In some polymers such as
DNA discrete kinks of the polymer chain might be present

as a chemical configurational entity alternative to large-scale
loops of distributed curvature [18]. In this case, Eq. (18) tells
us how to account for such kinks explicitly in the conservation
law (h is then an additional variable that enters also the
energy functional). The presence of thermalized kinks or
even better, their generation by the addition of certain DNA
binding proteins [19], might constitute an interesting way to
actually observe and control the role of the tensorial continuity
constraint.

A. Vectorial conservation as a special case

To establish the connection with the nematic director n
(which is a natural reduction towards the vectorial order
parameter), in Eq. (18) we use the uniaxial ansatz

Qij = 3
2 s

(
ninj − 1

3δij

)
(21)

to get

ℓ0
{ 3

2 [nj∂j (ρs)]ni + 3
2ρs[ni∂j nj + nj∂jni]

+ 1
2∂i[ρ(1 − s)]

}

= 3
2 (g+

i − g−
i + 2hi + ρℓ0ki). (22)

In the case of a perfect local orientational order, s = 1,
the chain end tangents g± ∥ n and the hairpin principal
normals h ∥ n are aligned with the director, whereas k ⊥ n
is perpendicular. In this case we have

ℓ0
{ 3

2 [nj∂jρ + ρ ∂j nj ]ni + 3
2ρ nj∂j ni

}

= 3
2 (g+

i − g−
i + 2hi + ρℓ0ki) (23)

and hence in the directions parallel and perpendicular to n,
respectively:

ℓ0{nj∂jρ + ρ ∂jnj } = g+ − g− + 2h (24)

nj∂jni = ki. (25)

Thus, in the limit s = 1 the vectorial conservation law is
recovered exactly, with the hairpins acting as ±2 sources or
sinks, while the macroscopic director bending field is equal
to the local chain curvature. We also see that in case chain
backfoldings are present (due to s = 1 these must be pointlike
hairpins), Eq. (24) is exactly the vectorial conservation law
Eqs. (4) and (10) for the recovered polar order in the limit
a = 1 (the statement holds also in the absence of hairpins,
obviously).

As soon as s < 1, on the other hand, the directions ∥ n and
⊥ n are not decoupled in the conservation law Eq. (22), since
∂i[ρ(1 − s)], g±

i , hi , and ki all point in general directions. In
this case the integrated conservation law Eq. (18) is not useful
and the original tensorial conservation law Eq. (3) must be
used. Since s < 1 in all real systems, the tensorial conservation
law Eq. (3) cannot be in general reduced to the vectorial one
and thus represents a distinct constraint. Only in the limit of
perfect orientational order, s = 1, the tensorial conservation
law and the vectorial conservation law for the recovered polar
order are indeed completely equivalent. Hence, it is only in
this limit that the use of the vectorial conservation law for the
nematic director (provided that the hairpins are included in the
sources, of course) is correct. As the deviation from perfect
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orientational order gets stronger, the vectorial conservation law
description becomes more inaccurate, invalidating the results
obtained from the assumption of its general validity.

B. Compatibility of the conservation laws for s < 1

In the context of no backfolding limit mentioned in Sec. I,
it is important to address the relation between the tensorial
and the vectorial conservation laws for the general case
s < 1. From what has been shown above, we understand that
for s < 1 the two conservation laws cannot be equivalent.
However, in the limit of weak chain backfolding, both tensorial
and vectorial (of the recovered polar order) constraints are
effective in principle (the latter due to the small density of
the backfolding cuts). Therefore the compatibility of the two
constraints must be inspected to ensure that they are not in
an incurable conflict, in particular for long chains without
backfoldings, when both constraints are rigid. This is certainly
crucial for a consistent definition of a combined, generalized
conservation law.

Retaining the uniaxial ansatz Eq. (21), for ρ = const.,
1 > s = const., and in the absence of sources the tensorial
constraint Eq. (3) reads

∂i(ni∂j nj + nj∂jni) = 0, (26)

which is incompatible with the no-splay requirement (∂j nj =
0) of the vectorial constraint, as in the second term it includes
also the director bend deformation. In the following we show
that this peculiarity of the bend deformation is connected with
the arbitrarily imposed uniaxiality of the Q tensor.

Let us now allow a general form of the Q tensor,

Qij = 3
2 s

(
ninj − 1

3δij

)
+ 1

2p
(
e1
i e

1
j − e2

i e
2
j

)
, (27)

where p is the biaxiality and (n,e1,e2) is an orthonormal triad.
With this ansatz, the tensorial constraint Eq. (3) in the absence
of sources reads

∂i

{
nj∂j

[
ρ
(
s + 1

2

)]
ni + 3

2ρs(∂j nj ) ni + 3
2ρs nj (∂jni)

+ 1
2δ⊥

ij ∂j [ρ(1 − s)] (28)

+ 1
2e1

j∂j (ρp) e1
i − 1

2e2
j∂j (ρp) e2

i + 1
2ρp ∂j

(
e1
i e

1
j − e2

i e
2
j

)}

= 0, (29)

where the gradients of ρ and s were split into longitudinal and
transverse parts with respect to n; δ⊥

ij = δij − ninj .
Consider a uniaxial configuration that undergoes a bend

deformation at constant ρ and s, while at the same time the
vectorial constraint rigidly requires ∇ · m = 0 and thus also
∇ · n = 0. By inspecting the directions of the terms in Eq. (28)
and (29) inside the ∂i{} bracket, one can verify that the bend
term (⊥ n) can be canceled by the first or second term in
the line Eq. (29), provided that the gradient of the biaxiality
becomes nonzero and the biaxial director e1 or e2 is parallel
to the principal normal defined by the bend deformation.
That the bend deformation is connected with the biaxiality is
not surprising—already in low-molecular-weight nematics the
bend deformation, by asymmetry, induces a slight biaxiality.
If the configuration is already biaxial, then also the last term
of Eq. (29) is nonzero. In general, all three directions are

involved, also ρ and s are varying, of course, and only ∂i{}
must vanish rather than the expression inside the bracket, such
that all degrees of freedom take their share in accommodating
the tensorial constraint.

It is thus indeed possible to satisfy both constraints simulta-
neously, even if they are rigid. Moreover, it is possible that the
no-splay requirement does not affect the bend deformation, as
in the case of the vectorial constraint alone. To what extent the
tensorial constraint will be accommodated by variations of n,
s, p, e1, and ρ is controlled by the relative free energy cost
of these variations. The same holds for variations of a and ρ
connected by the vectorial constraint.

Finally, it is important to recognize the following point.
Consider the case where the biaxiality is initially zero and
the terms in the transverse directions vanish inside the
∂i{} bracket of Eqs. (28) and (29) as before. The tensorial
condition Eqs. (28) and (29) is met if the longitudinal terms
inside the bracket satisfy nj∂j [ρ(s + 1

2 )] + 3
2ρs(∂j nj ) = 0.

This requirement is very similar to the vectorial constraint
mj∂j (ρa) + ρa(∂jmj ) = 0, where a = am, but not identical.
Even for ρ = const., unless s = 1, the connection between
splay and variations of the moduli is slightly different. This
cannot be lifted—it is due to the inherent difference between
polar and quadrupolar moments of orientational order.

The reduction from the full Q tensor to the frequently
used uniaxial director description is, in the context of the
conservation laws, not an automatism as we have just seen.
One can make various assumptions and models of how the
omitted degrees of freedom entering the tensorial conservation
behave when the reduction is made. For example, just using the
uniaxial ansatz in Eq. (3) forbids any biaxiality and necessarily
introduces the direct connection between splay and bend
in Eq. (28) that is not present in the case of the vectorial
conservation law.

V. FORMULATION OF A GENERALIZED
CONSERVATION LAW

The quadrupolar order can be described as usual by the
Q tensor and a corresponding Landau–de Gennes nematic
free energy functional fnρ(Q,ρ), which includes also the
part that penalizes density variations. The conservation law
is independent of the particular form of this functional, and
we will hence not specify it further. The implementation of
the full theory of the quadrupolar ordering thus assumes a
concrete, nonuniversal form of this free energy functional and
a universal implementation of the conservation law.

We first write the tensorial conservation law Eq. (3) in terms
of the Q tensor as

∂i∂j

[
ρℓ0

(
Qij + 1

2δij

)]
= 3

2∂igi, (30)

where g(r) is the density of chain end tangents pointing away
from the end towards the chain. In general, g(r) is an additional
variable of the system (=1 vector variable, since chain heads
and tails are indistinguishable). Moreover, at the same time
the vectorial conservation law Eq. (4) holds for the recovered
polar order a,

∂i(ρℓ0ai) = ρ±s , (31)
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where ρ±s is the total density of sources (chain ends and
backfoldings) given in Eq. (10). As discussed in Sec. III,
the recovered polar order a is assumed to be parallel to
the nematic vector m, while its magnitude a = ⟨cos θ⟩ is
connected with the modulus of the quadrupolar nematic order
s = (3⟨cos2 θ⟩ − 1)/2,

a2 = 2s + 1
3

A, ⟨cos θ⟩2 = A⟨cos2 θ⟩, (32)

where A depends only on the orientational distribution
function of the monomers and is assumed to be fixed.

Thus, the vectorial conservation Eq. (31) for the recovered
polar order is in fact an additional constraint for the director
principal axis of the Q tensor. In the case when the density
of chain backfoldings ρ±2

0 of Eq. (7) is high (small global
persistence length), the free energy cost Eq. (13) of the
variation ρ±s is small. In this limit the vectorial constraint
Eq. (31) becomes ineffective and we are left with the tensorial
conservation Eq. (30) only. If, on the other hand, the density
of the backfoldings is low, the additional constraint Eq. (31)
is strong and in this way implements the increased stiffness
of the chains, which cannot be controlled by the tensorial
conservation.

In general, the source fields ∇ · g(r), &ρ±(r), and &ρ±2(r)
are additional variables of the apolar polymer nematic system
besides the Q(r) tensor and the polymer density ρ(r), for
which one should write down additional couplings in the free
energy functional. In a first approach, they can be, however,
treated in a minimal spirit, that is, as a result of nonuniform
distributions of the ideal gasses of chain ends and backfoldings
with equilibrium densities ρ±

0 and ρ±2
0 , respectively. In this

model, the free energy cost of the sources is purely entropic
and is expressed in a form of Eq. (13) or similar. A similar
free energy contribution can be set up also for ∇ · g. Within
this simple model of the sources, the source densities do not
appear explicitly as additional variables, since their quadratic
free-energy contributions can be expressed directly via the
conservation laws Eqs. (30) and (31), which now take the
form of penalty potentials,

f = fnρ(Q,ρ) + 1
2G[∂i(ρℓ0ai)]2

+ 1
2H

{
∂i∂j

[
ρℓ0(Qij + 1

2δij )
]}2

. (33)

In this case the only additional parameters of the system are the
equilibrium densities of chain ends ρ±

0 and chain backfoldings
ρ±2

0 , which define the strengths G and H of the penalty
potentials.

Finally, the system of equations is closed with two
additional conditions and corresponding Lagrange-multiplier
terms added to Eq. (33), keeping a parallel to the director
principal axis of Q and its magnitude a connected with the
nematic modulus s according to Eq. (32). Such conditions
can be cumbersome if expressed analytically (in particular
the former) but can be treated quite naturally in numerical
approaches.

VI. CONCLUSION

The vectorial and tensorial conservation laws for main-
chain polymer nematogens are not in general equivalent nor are

they interchangeable. In fact, using the vectorial conservation
law for the usual quadrupolar nematic order as described in
Sec. III is incomplete and generally inaccurate, except in the
limit of perfect orientational ordering. There exist in general
two major reasons why the tensorial conservation law must
be taken into account in addition to the vectorial conservation
law for the recovered polar order:

(i) In the strong backfolding limit, the vectorial con-
straint for the recovered polar order vanishes as we have
seen, thereby completely decoupling density variations and
director deformations. Due to the tensorial conservation
law, however, another although looser (second order in the
gradient) constraint remains also in the strong backfolding
limit (vanishing global persistence length) of ideally flexible
chains.

(ii) Quadrupolar nematic order is described by the nematic
Q tensor; i.e., it is captured by averaging a tensorial quantity,
not a vectorial one as in the case of the recovered polar order.
The tensorial description comprises more degrees of freedom,
which is reflected among others also in the fact that the sources
of the tensorial conservation law [the right-hand side of Eq. (3)]
besides the volume density of chain ends comprise also the
direction of their tangents. As we have shown, only in the limit
of perfect orientational order (where the chains are perfectly
aligned, all backfoldings are hairpins, and no other directions
involved) both conservation laws are equivalent.

We propose that the generalized conservation law for semi-
flexible main-chain polymer nematics with usual quadrupolar
(tensorial) nematic ordering should build on both the vectorial
as well as the tensorial conservation laws, implemented in
the effective free energy via the penalty potentials. If the
ordered phase is also polar, then the vectorial conservation law
directly holds for its polar order. If, however, the quadrupolar
order of this polar phase is included in the modeling (e.g.,
if a measurement probes the quadrupolar order of the polar
phase rather than its polar order), the generalized conservation
law for the quadrupolar order applies to it in principle,
notwithstanding the concurrent existence of the polar order.
Since in this case the backfolding is weak, there is little
difference whether the actual or the recovered polar order
enters the generalized conservation law for the quadrupolar
order, but in principle it should be the recovered polar order.

The present analysis of the two continuity constraints,
identifying the extent of polymer chain backfolding as the
determinant of their relative importance, also suggests a
possible method to detect and/or manipulate their strength.
Namely, in the case of DNA, where sharp local kinks can
be induced by the addition of certain DNA binding proteins,
an interesting way to actually observe and control the role
of the tensorial continuity constraint might be accessible by
following the ordering of the chains in the solution and/or
by monitoring the observable defects on adsorption of DNA
kinking proteins. This path is feasible and worth pursuing on
the level of simulations as well as experiments.
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