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Recognition of spatially varying optical properties is a necessity when studying the van der Waals—
London dispersion (vdW-Ld) interactions of carbon nanotubes (CNTs) that have surfactant coatings,
tubes within tubes, and/or substantial core sizes. The ideal way to address these radially dependent
optical properties would be to have an analytical add-a-layer solution in cylindrical coordinates
similar to the one readily available for the plane-plane geometry. However, such a formulation does
not exist nor does it appear trivial to be obtained exactly. The best and most pragmatic alternative
for end-users is to take the optical spectra of the many components and to use a spectral mixing
formulation so as to create effective solid-cylinder spectra for use in the far-limit regime. The
near-limit regime at “contact” is dominated by the optical properties of the outermost layer, and thus
no spectral mixing is required. Specifically we use a combination of a parallel capacitor in the axial
direction and the Bruggeman effective medium in the radial direction. We then analyze the impact
of using this mixing formulation upon the effective vdW-Ld spectra and the resulting Hamaker
coefficients for small and large diameter single walled CNTs (SWCNTs) in both the near- and
far-limit regions. We also test the spectra of a [16,0,s+7,0,s] multiwalled CNT (MWCNT) with
an effective MWCNT spectrum created by mixing its [16,0,s] and [7,0,s] SWCNT components to
demonstrate nonlinear coupling effects that exist between neighboring layers. Although this paper is
primarily on nanotubes, the strategies, implementation, and analysis presented are applicable and
likely necessary to any system where one needs to resolve spatially varying optical properties in a
particular Lifshitz formulation. © 2008 American Institute of Physics. [DOI: 10.1063/1.2975207]

I. INTRODUCTION

Single walled carbon nanotubes (SWCNTSs) are a unique
class of materials with chirality-dependent electronic
properties, = optical properties, > and van der Waals—
London dispersion (vdW-Ld) energles/forces ? Numerous
experimental procedures have exploited the differences
among these properties in order to separate SWCNTs by
chirality,lo_14 which is a necessary step to create workable
nanodevices that need a particular band gap or set of elec-
tronic conduction properties. The ultimate goal is to be able
to reliably separate this mixed “pasta” of SWCNTs in solu-
tion into monodisperse populations of one chirality for
commercial/industrial use. To achieve this goal, new strate-
gies and a more rigorous understanding of the fundamental
forces are needed.

Il. BACKGROUND

The study of vdW-Ld forces for SWCNT systems was
primarily motivated by the 2003 experiments of Zheng et
al.,'" where consistent and significant progress was made in
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separating metallic and semiconducting CNTs using ion ex-
change chromatography (IEC) with a time-varying salt con-
centration. In short, SWCNTSs produced by the high-pressure
CO (HiPCO) method were wrapped with single-stranded
DNA (ssDNA) of a specific length and base pair sequence
(50 base pairs of alternating guanine thymine) as a surfactant
to isolate single tubes in an aqueous solution. These collec-
tions of ssDNA/SWCNT hybrids, which contained a mixture
of many different chiralities, were then injected into the an-
ion IEC column in order to trap them onto the highly charged
beads. Next, the concentration of sodium thiocynate salt was
slowly increased to screen out the strong electrostatic forces
that bind the hybrids to the charged beads inside the column.
This systematic increase in the charge screening caused the
SWCNTs to be released as a function of their initial binding
strength, which were then carried out and collected into a
series of vials.

The experiments of Zheng et al."” were consistently re-
peatable. The initial samples that eluted were always pre-
dominantly enriched in the metallic chiralities. However, the
exact mechanism or collection of mechanisms/interactions
responsible for this separation has still not been conclusively
settled. There are at least three possibilities for the selectiv-
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ity: (A) Each SWCNT chirality has a preferred ssDNA wrap-
ping configuration that presumably maximizes the interac-
tion between the ssDNA base pairs and the underlying sp?
carbon bonds. This results in a chirality-dependent surface
charge density because the wrapping configuration deter-
mines the number of the negatively charged phosphates per
unit area of SWCNT surface. (B) Image charge effects due to
the chirality-dependent dielectric properties of the SWCNT
core mitigate or enhance the effective electrostatic charge on
each of the negatively charged phosphates along the ssDNA
backbone. (C) vdW-Ld energy differences result from
chirality-dependent optical properties.

All three of these options are equally plausible. They
would, in fact, occur simultaneously because they are all
coupled to geometry. Geometry determines the locations of
the carbon atoms and how their bond angles twist, which
influences option (A). Options (B) and (C) both depend on
the optical properties and/or full electronic structure: both
have a well known dependence on chirality/geometry. De-
spite the fact that options (A)—(C) are inherently coupled and
cannot be isolated to study independently, it should be pos-
sible to determine which options have the greatest impact
and whether they agree with the experimental results.

Manohar e al." studied option (A) by using classical
force field computer simulations. They concluded that there
is, in fact, a distinct energy dependence of a nucleotide as a
function of position along the sp? lattice of the [10,10,m]
SWCNT. For a single nucleotide allowed to sample/slide
along the entire SWCNT geometrical landscape, the maxi-
mum difference was found to be approximately 2 kT. This is
a significant result, but it remains to be seen how much this
per nucleotide energy changes when using multiple nucle-
otides in the same simulation. The latter will likely reduce
this energy because it is impossible to have perfect coher-
ence between the neighboring nucleotides to reside equally
in the neighboring 2 kT energy wells. Bond stretching, bond
twisting, and other effects would also have to occur and
would result in additional energy penalties. More simulations
are needed before a final determination can be made.

Option (B) was explored by Lustig et al.'* The resulting
Manning condensation model for ssDNA/SWCNT hybrids
agreed exactly with the experimental outcome of Zheng et
al.”” for the metallic versus semiconducting separation.
However this extension to the Manning model was created
when the separation was believed to be predominantly be-
tween metals and semiconducting tubes, which have a large
theoretical difference in their direct current (DC), zero fre-
quency electrostatic term (metals have a theoretical infinite
polarizability at near 0 eV frequencies).12 Later experiments
by Zheng and Semke'' have shown an ability to separate
semiconducting tubes consistently and robustly. Of particular
significance was the ability to separate the [6,5,s] and
[9.1,s], which have theoretically identical band gaps and
tube diameters. So while the effect of image charging [option
(B)] is undoubtedly still present, it is probably less likely to
explain the separation between semiconducting species. (The
large differences in the dielectric constants are no longer
present.) It is possible that option (A) (chirality-dependent
surface charging) and option (B) (image charging) are work-
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ing together. Option (B) could have an impact in the separa-
tion between the larger classes (metallic versus semiconduct-
ing); while option (A) allows for a more graded separation
within a class (i.e., the [6,5,s] versus [9,1,s]). These are
still speculations that need to be tested/addressed and are
well beyond the scope of this paper.

Lastly, option (C) (chirality-dependent vdW-Ld interac-
tions) is what this paper and its predecessors explore. The
two barriers to achieve this were the lack of full spectral
optical properties for each SWCNT chirality and the lack of
a Lifshitz formulation that could handle both the geometry
and optical anisotropy of a SWCNT. Without optical proper-
ties for each SWCNT, it would be impossible to determine
the relative differences among the various chiralities because
all vdW-Ld interaction energies would be derived from the
same approximated input (i.e., graphite or graphene). Ab ini-
tio calculations were used to obtain the optical information
and clear differences were observed between SWCNT
chiralities (i.e., the [6,5,s] semiconductor and the [9,3,m]
metal) as well as between the independent directions of a
single SWCNT (i.e., radial versus axial direction of a single
tube). Initial Hamaker coefficients were crude comparisons
between the axial-axial, axial-radial, and radial-radial inter-
actions, but they made a strong case for orientation and
chirality-dependent vdW-Ld properties.5 This was the cata-
lyst for the derivation of the optically anisotropic solid-
cylinder Lifshitz formulations that gave more realistic results
as a function of the separation distance and orientation.®

The next step to explore option (C) further is to include
spatially varying optical property effects in the analysis. This
would allow one to calculate Hamaker coefficients and
vdW-Ld interactions for systems and/or experiments that em-
ploy surfactants and large and small diameter SWCNTs and
multiwalled carbon nanotubes (MWCNTSs). The objective of
this article is to create effective solid-cylinder spectra of
from realistic, multi-component SWCNT materials in order
to achieve this end.

lll. THEORY

Calculating Hamaker coefficients and total vdW-Ld en-
ergies is typically done by the Lifshitz formulation, which is
a first principles quantum electrodynamic (QED) approach
that takes into account all the multibody interactions and
boundary conditions. The original derivation was for two
semi-infinite half-spaces separated by an isotropic medium, '
but many different extensions have been added to allow for
the inclusion of different geometries and optical
anisotropies.17 We recently extended the vdW-Ld formula-
tions to calculate Hamaker coefficients and total vdW-Ld
energy interactions for two systems relevant for SWCNTs.®

(a) Two optically anisotropic solid cylinders interacting
with each other.

(b) An optically anisotropic solid cylinder interacting with
an optically anisotropic substrate.

For those wanting to understand the physical origins and
many nuances of the Hamaker coefficients presented in this
paper, we cannot emphasize enough the benefit of having the
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FIG. 1. (Color online) The many levels of interactions with a substrate. (a)
A solid cylinder, (b) a hollow cylinder, (c) a hollow cylinder coated with a
surfactant, and (d) a hollow cylinder within a cylinder.

two previous references at hand. Lifshitz formulations are
often poorly understood and implemented for many histori-
cal reasons (many different notations used, lack of spectral
data, inclusion of pairwise additivity, etc). However we also
realize that these two references are quite involved and can
be too much for casual readers interested in just knowing
qualitative information. Therefore in order to strike a bal-
ance, we have included what we consider the most critical
features of the original and anisotropic solid-cylinder formu-
lations in Appendix A for a quick reference.

Figure 1 shows several systems of interest for experi-
mentalists, ranging from a single solid cylinder to coated
SWCNTs and MWCNTs. The systems can be made even
more complex by using nonuniform surfactant coverage or
nonconcentric MWCNTs, but we shall stick to the simpler
cases in order to clearly illustrate a proper strategy. The ma-
jor difference between these systems from a vdW-Ld stand-
point is that the optical properties vary spatially as a function
of radius. Understanding the radial dependence of the optical
properties at the far-limit (surface-to-surface separation
greater than two cylinder diameters) is necessary to calculate
the total energy and the Hamaker coefficients, which respec-
tively depend on the interacting volume size and optical
properties contained within that volume. Ideally one would
do this via an add-a-layer approach like the one used in
plane-plane geometries, which can include an arbitrary quan-
tity of layers of arbitrary thicknesses for each material.'” !
Unfortunately, analytically tractable add-a-layer solutions do
not appear to be achievable within the cylindrical geometry
systems at the moment.

Fortunately, there is the sensible alternative of using ef-
fective spectra in each limiting case (near/far limits) such
that we can still use the solid-cylinder formulations without
loss of realism, which is, of course, our chief concern when
using any approximation. To be able to use the solid-cylinder
formulations while not sacrificing accuracy, one essentially
needs two primary inputs:

(a) The optical properties of all the constituent materials
present (medium+SWCNT+outer surfactant
+core material).

(b) A sensible spectral mixing formulation that can give us
effective averaged optical spectra of the entire object.

Therefore we use spectral mixing at the far limit to de-
termine the effective optical properties for the axial and ra-
dial directions.”>* For all geometrical arrangements at the
near limit (i.e., less than 0.5 nm surface-to-surface separa-
tion), the vdW-Ld properties of the surfaces on each material
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() (b) (c)
d {<<d {>>d
Original System At Contact Far-limit

FIG. 2. The behavior of the overall effective optical properties on the Ha-
maker coefficient as a function of separation distance €. (A) Original layered
system with a thickness of 2a=d. (B) At near contact (£ <a) it is the optical
properties near the respective surfaces that dominate the interaction. (C) At
large separations (£ >4a), the optical properties are a weighted average of
the various components and usually dominated by the materials with the
larger volume fraction.

tend to dominate the interaction (Fig. 2) because of the di-
vergent behavior of the total energy scaling. This is well
known for plane-plane geometries.17 However, it is worth
illustrating this point further because it is critical to our as-
sertion that spectral mixing is viable and (if no analytical
formulations exist) necessary at the far limit and not an ac-
ceptable practice at the near limit. This is also included in
Appendix A.

A. Mixing rules for far-limit behavior

The study of vdW-Ld interactions for SWCNTs at the far
limit is particularly exciting from an optical anisotropy
standpoint because the Aj=(¢,—¢,,)/ €, term within the Ha-
maker coefficient summation can go over unity when ¢
> ¢, Without this restriction, each Matsubara frequency in
the Lifshitz summation can contribute to the overall
direction-dependent vdW-Ld properties in a very significant
way.g’17 In terms of spectral mixing considerations, we are no
longer dealing with distances approaching contact and there-
fore must average the optical properties to get an effective
solid cylinder. Typically, the spectral mixing of optical prop-
erties is done via an effective medium approximation
(EMA), such as Bruggeman EMA.** The basic form is as
follows:

S 5 =0, (1)

T €+ 2e

where ¢; is the volume fraction of each component. From a
physical standpoint, the unmodified Bruggeman EMA lacks
any predominant geometrical arrangement of material con-
nectivity in a particular direction. One can make a case that
the radial direction of a SWCNT also lacks a predominant
geometrical arrangement. If we slice a cross section and dis-
cretize it into small units, some parts would behave like a
series capacitor and others (e.g., the circumferential portions
within the cylindrical shell) would behave more like capaci-
tors in parallel. Therefore using either of the end points (e.g.,
series or capacitor mixing) would not be a valid approach
and the Bruggeman EMA appears to be the best balance.

In the axial direction, the polarization can easily be split
into well defined regions of continuous connectivity. There-
fore a cross sectional area weighing (i.e., a parallel capacitor
averaging) is valid. This is particularly important for the me-
tallic SWCNTs, which tend to have a very large (100+)
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TABLE I. A comparison of the effects of the different mixing formulations
on a 50-50 mixture of the [25,0,s] radial direction and vacuum.
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FIG. 3. (Color online) Comparison of the parallel capacitor, Bruggeman
EMA, and series capacitor spectral mixing approximations. (a) Bottom 3
curves: When the magnitude of one spectrum is many times larger than the
other (which is typical in the DC or 0 eV limit of metallic SWCNTs), the
different models exhibit more variation as the connectivity becomes impor-
tant. (b) Top 3 curves: When the optical spectra are similar in magnitude, all
three models converge to similar values for any volume fraction, and there-
fore, the choice of which particular mixing formulation to use is less of an
issue.

vdW-Ld spectra peak at 0 eV. If we used the EMA mixing
rule, the axial direction spectra at 0 eV would be artificially
lowered and the A, terms would not contribute as strongly to
the overall total energy.

Figure 3 shows a comparison of the parallel capacitor,
Bruggeman EMA, and series capacitor mixing formulations
for two materials with varying volume fractions. When the
optical properties of two materials at a given frequency are
very close in magnitude, the variation among the three mod-
els is quite small. However, in the situations where there is a
large difference, the parallel capacitor model evenly weights
the two spectra by volume fraction, while the Bruggeman
EMA is considerably damped by the weakest of the two or
more spectra magnitudes. The series and parallel capacitor
methods represent the limiting cases of connectivity, while
the Bruggeman and other EMASs can be thought of as inter-
mediate arrangements of the material connectivity in three
dimensional space.

It should be noted that there are many other mixing for-
mulations available, such as Lorentz—Lorenz, Maxwell—
Garnett, and Rayleigh. However, the Lorentz—Lorenz as-
sumes a vacuum host instead of any arbitrary medium or
additional materials. This would be insufficient to create a
MWCNT out of two or more SWCNT components. The
Maxwell-Garnett assumes a dilute volume fraction within
the host material. While the SWCNTSs can certainly be di-
luted in the water medium, the mixing formulation itself is
done within the confines of the other shell layer of the
SWCNT. Therefore it really cannot be considered dilute from
that perspective. The Rayleigh mixing tends to give far too
much weight to the weaker of the two spectra, closely rep-
resenting the effects of the series capacitor. Therefore it is
also not an ideal candidate for SWCNTs.

The Bruggeman EMA mixing formulation tends to be
the most appropriate for our SWCNT systems because it
does not assume which material is the host (i.e., dominant or
majority material) or assume a predominant connectivity. If
such a situation did arise where one needed additional con-

nectivity in the radial direction, but not quite reaching the
parallel limit, straightforward interpolations are available to
achieve every gradation in between.” In short, the Brugge-
man EMA can be interpolated to all of the other models with
a simple ¢ factor varying from O (zero screening parallel
capacitor) to 1 (series capacitor). We use the traditional
Bruggeman EMA for the purposes of this paper, but leave the
door open for further refinements on this ¢ factor if it is
needed in certain situations.

To quantify the impact of the mixing formulations, Table
I compares the effects of six different mixing rules on a
50-50 mixture of the [25,0,s] radial direction with vacuum.
This particular SWCNT was chosen because it does not have
a metallic 0 eV behavior and its core void space is exactly
50% of the total volume of the entire SWCNT+core. The
parallel and series capacitor methods are still the end points,
resulting in the largest and smallest possible magnitudes, re-
spectively. The Maxwell-Garnett model resides between the
EMA and parallel capacitor and the Lorentz—Lorenz and Ra-
leigh models are much closer to the series capacitor model.
The variation between these different models is quite large.
Both the Hamaker coefficients and the effective vdW-Ld
spectra can vary by a factor of 3. Therefore, it is important to
choose the model carefully for a given geometrical system,
particularly for complex and multicomponent systems.

B. Obtaining optical properties

We use an orthogonal linear combination of atomic or-
bital ab initio optical property method®™ ™’ to obtain the
imaginary part of the dielectric spectrum over real frequen-
cies €'(w) for each SWCNT. This involves taking a single
unit cell of SWCNT along the axial direction and placing it
into an infinite periodic array. The resulting €’(w) from 0 to
45 eV is a raw “bulk” spectrum averaged over the entire
super cell volume. However, our SWCNTs are unlike most
bulk crystal calculations in that they only occupy a fraction
of this total volume. Therefore we need to scale the raw
optical properties by a factor of the total super cell volume/
SWCNT volume. If we use half of the graphite interlayer
spacing as the excluded volume (i.e., dy/2~1.65 A in out-
ward and inward directions), this scale factor for the
“hollow-cylinder” SWCNT spectra would be

Xy
(r+ do)2 —(r- d0)2 .

(2)

Here x and y are the original dimensions of the ab initio
super cell (ranging anywhere from 12 to 45 A, depending on
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the SWCNT/MWCNT radius). The radius r here is the one
typically defined as the distance from the center of the
SWCNT cylinder to distance of the carbon atom centers. We
call the spectra that result from Eq. (2) as the hollow-
cylinder spectra because we have scaled out the core volume
in addition to the void space around the outer wall of the
SWCNT. In short, we have confined the optical properties
just to the SWCNT shell volume and nothing more (i.e., the
properties of the core and/or surfactant are independent). If
we did not scale out the center core, we would have the
“solid-cylinder” spectra, which would obviously be smaller
in magnitude because the optical properties are spread or
averaged out over a larger volume. The clear advantage in
working with hollow-cylinder spectra is that we can easily
use the spectral mixing rules to add a vacuum or water layer
within the core and go back to the solid-cylinder spectra
quite easily. We are therefore unlimited in our ability to vary
what we can calculate.

One last important point needs to be addressed before
going through the results and discussion. The use of ab initio
optical properties tends to draw a certain level of apprehen-
sion from many who only want to use experimental data for
the purposes of optical properties. However, many of the
fears are unfounded as the resulting spectra have compared
very favorably to experimental systems. A good example is
Al,O3, in which the difference between the ab initio results
and an experimentalists’ optical properties are on the order of
that typically observed between the results of two different
experimental setups.30 However, ab initio codes do more
than just agree with experimental results (although that in
itself is very useful). The additional benefits and advantages
of such a tool are as follows:

(a) The ability to calculate full spectral optical properties
for nanoscale materials with complex geometries (dif-
ficult to do with reflectance/transmission experiments
requiring smooth/flat surfaces);

(b) the ability to resolve optically anisotropic directions;

(c) the ability to calculate full spectral optical properties of
liquids;

(d) the ability to calculate full spectral optical properties in
a native environment (e.g., DNA in water) in order to
capture the effects of relevant secondary bonding on
the optical properties (experimental methods to obtain
deep UV spectra typically need dry, mounted samples
that results in distorted bond angles and removal of
adsorbed species).

(e) the ability to resolve the optical spectra as a function of
the spatial coordinates in three dimensions (important
for proteins and other nonuniform entities);

(f)  the ability to quickly catalog large quantities of mate-
rials (lack of optical spectra continues to plague those
interested in calculating vdW-Ld properties); and

(g) increased accuracy for a larger frequency range only
requires additional computational power (experimental
equipment necessary to obtain a large enough fre-
quency range of optical properties is somewhat inac-
cessible to a large population).

J. Appl. Phys. 104, 053513 (2008)
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FIG. 4. (Color online) Here we see the hollow-cylinder and the hollow-
cylinder spectra mixed w/H,O for the [9,3,m] and [29,0,s] SWCNTs in
the axial direction. Note that the [9,3,m] spectra only shift a little while the
effect on the [29,0,s] is much more dramatic because of its substantially
larger core volume.

This is not to discount the value and desire for experi-
mental data, which has proved to be tremendously useful in a
variety of systems, particularly glasses and intergranular
films. Rather the use of ab initio spectra simply opens the
door to explore materials and systems that were previously
unobtainable by means that are currently available. It should
be seen as a useful and complimentary method and not as a
replacement.

IV. RESULTS

Figure 4 shows the [9,3,m] and [29,0,s] SWCNT
hollow-cylinder spectra and the resulting mixed w/H,O
spectra in the axial direction using isotropic water uniformly
distributed and filling 100% of each SWCNTs respective
core. Of course, the core can be filled with any percentage of
water from 0% to 100%. In this study, we assume a 100% of
filling of isotropic order to have a standard benchmark across
all tubes. If we were using the smallest of constructible nano-
tubes (e.g., the [5,0,s]), any water filling would not be pos-
sible as there is not enough void space to fit them within. A
slightly larger diameter would allow for some water mol-
ecules but they would not have all rotational degrees of free-
dom and the assumption of the isotropic spectra would not
hold. The tubes presented in this study are large enough that
these issues should not arise.

Although there are many alternative water spectra by
which to choose from,31734 we use the index of refraction
oscillator model by Parsegian17 because it accurately cap-
tures the zero frequency, matches index of refraction along
the visible frequencies, and is easily recreated using simple
damped oscillators. The other available models do make cer-
tain improvements (such as fulfilling the requirements of the
Jf-sum rule,” etc.) and are equally valid for use. In general,
the water spectrum is smaller in magnitude than the all
SWCNT spectra for all frequencies. This has the effect of
decreasing the overall magnitude of the effective, mixed
w/H,0 spectra in comparison to the hollow-cylinder spectra.
The effect is clearly strong for the [29,0,s], which is 55%
hollow and therefore experiences a considerably shifting (the
[9,3,m], by comparison, is only 18% hollow). The implica-
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FIG. 5. (Color online) Here we see the hollow-cylinder spectra for the
[6,5,5s] and [9,1,s] SWCNTs in the axial and radial directions. The differ-
ences that exist are enough to cause a 5% change in the relative Hamaker
coefficient strengths.

tions of this dampening show up clearly in the Hamaker
coefficient calculations between the various chiralities (Table
I1T). However, effects such as alignment and torque forces
may increase or decrease depending on the relative position-
ing on the initial and final vdW-Ld spectra with that of the
medium. In the particular examples found in this paper, they
all diminish as well.

Figure 5 shows the comparison of the [6,5,s] and
[9,1,s] axial spectra in both the hollow and mixed with wa-
ter forms. Although the [9,1,s] has a larger low energy
wing, the [6,5,s] has spectra that are larger in magnitude for
the remainder of energy range. It is important not to neglect
this small but important difference because the spectral mis-
match terms contained in the Lifshitz formulation can still
contribute to a very large energy range (e.g., 50+ eV).
Moreover, even if an individual contribution at a given Mat-
subara frequency is not large all by itself, a lot of these terms
put together can and do have noticeable effects. Table II lists
the resulting energies for these two SWCNTs interacting
with a polystyrene substrate across water. The polystyrene
spectrum was obtained experimentally35 and is publicly
available.”' In each limit, the [6,5,s] has the stronger Ha-
maker coefficient and thus has a stronger attraction. This
result agrees with the experimental results of Zheng and
Semke.'" This agreement is encouraging because it suggests
that the vdW-Ld terms agree with the overall effect. It re-
mains to be seen how well additional results will compare to
the elution experiments as well as the separation experiments
by dielectrophoresis. B

TABLE II. The Hamaker coefficients for the optically anisotropic cylinder-
water-polystyrene substrate system for the [9,1,s] and [6,5,s] SWCNTSs in
the near (hollow-cylinder spectra) and far (mixed w/H,O spectra) limits.
Values of A®? are all 0 because bulk amorphous polystyrene is isotropic and
therefore there is no angular dependancy.

SWCNT Limit Spectra type AO (z1)
[6,5,5] Near Hollow 294
[6,5,s] Far Mixed w/H,0 29.0
[9,1,s] Near Hollow 27.4
[9,1,s] Far Mixed w/H,0 27.2
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In Appendix B, we illustrate an example using fictitiuos
spectra created from using simple damped oscillators to
show how the mixed and unmixed cases converge to nearly
the same total energy in the far limit. This demonstration
using a fictitious system is convincing in and of itself. It
would be even more convincing to use an actual system that
contains both the component and total target vdW-Ld spec-
tra. In particular, we would like to check two assumptions:
(A) that the neighboring materials exhibit little or no cou-
pling and/or alteration of each other’s optical properties and
(B) that the mixing formulations we chose for the radial and
axial directions can, in fact, take constituent vdW-Ld spectra
and accurately recreate a total vdW-Ld spectra.

Fortunately, a comparison of MWCNT and SWCNT
spectra affords just such an opportunity to check both as-
sumptions. Figure 6 shows the raw unscaled €’ data for the
[16,0,5+7,0,s] MWCNT in comparison to the raw un-
scaled spectra of the constituent [16,0,s] and [7,0,s]
SWCNTs. Clearly, the major trends are exactly additive. In
the radial direction, the predominant discrepancies arise
within the 10-20 eV range and are most likely the result of
the out-of plane stacking effects between the two graphene-
like layers. In the axial direction, there are small but relevant
shifts in the first van Hove singularities occurring between 0
and 5 eV. The distance between the radii of the [16,0,s] and
[7,0,s] SWCNT shells for a symmetrically arranged
MWCNT is theoretically 3.523 A and is thus only 0.2 A
larger than the equilibrium layer spacing in graphite. So we
are reasonably confident that there is some coupling of the
neighboring layers, but that this effect will not get much
stronger than what is presently observed. It remains to be
seen whether or not the electronic conduction properties in
the axial direction can be switched from semiconducting to
metallic or vice versa because of this interaction. We do not
expect this to be the case, although some reported theoretical
examples in which large transverse electric fields can shift
the electronic bands and turn metallic CNTs into
semiconducting.‘%f'w

The next assumption to test is the accuracy of the mixing
rules, keeping in mind the effects of the nonlinear coupling.
Figure 7 shows the vdW-Ld spectra for a [16,0,s+7,0,s]
MWCNT, a MWCNT created by mixing the [16,0,s] and
[7,0,s] SWCNTs and the two SWCNT spectra. In both the
axial and radial directions, the optical properties of the
SWCNT constituents are quite different from those of the
MWCNT. However, we obtain a very good approximation
when we mix them via the combined parallel capacitor and
Bruggeman mixing formulation described earlier. Note the
excellent agreement in the axial direction with only a slight
discrepancy of 8% at the 0 frequency term (which quickly
drops to 2% difference for frequencies beyond 1 eV). The
discrepancy in the radial direction is approximately 5%—6%
over most of the frequency range.

Determining the physical origin of any resulting discrep-
ancies is important so we do not compensate in such a way
that might be improper or more problematic in the future for
other systems. There are essentially three possibilities to ad-
dress: (1) we chose the wrong mixing formulation, (2) im-
proper scaling of the raw spectra into the hollow-cylinder
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FIG. 6. (Color online) Compared the unscaled [16,0,5+7,0,s] MWCNT €” data with the raw unscaled [16,0,s] and [7,0,s] SWCNT data for the radial and

axial directions.

spectra for either the SWCNT or the MWCNT, and/or (3)
nonlinear coupling effects existing between the neighboring
layers. If our choice of mixing formulation was the problem,
then simply going from a Bruggeman EMA mixing in the
radial direction to a parallel capacitor method would give us
the needed boost to match the stronger vdW-Ld of the cal-
culated MWCNT. However, if we look closely at the 0-1 eV
range in the radial direction spectra in Fig. 7, the magnitudes
of both constituent SWCNT spectra are below that of the
MWCNT. Resolving this difference by changing the mixing
rule is therefore impossible because the output values of all
three mixing formulations are bound within the magnitude
range of their pure constituents.

Perhaps the choice of scale factors is incorrect. If we
were to increase the thickness of our SWCNT cylinder

boundary layers such that the inner and outer shells of our
MWCNT overlapped, then we could easily make the case for
reducing the MWCNTSs overall scale factor by approximately
3%. As it is, we specifically chose the [16,0,5+7,0,s]
MWCNT because its equilibrium spacing between the shells
is 0.2 A greater than the equilibrium spacing for graphite. So
while this certainly gives us the change we would want, it
really depends on whether picking or assuming this larger
thickness is in reality a physically appropriate change.

The third and most likely reason for this difference is
some of the coupling that occurs between the neighboring
layers that affects the underlying optical properties of each
layer present. Observing Fig. 6, we can see that for the ma-
jority of the spectra the MWCNT behaves very much like a
simple addition of the two SWCNT spectra. There are, how-

a b
14 ( T ) 14 ( ‘)
12- [16,0,5+7,0,s] radial * 121 [16,0,5+7,0,s] axial N
— ——— [16,0,5]+[7,0,s] radial N — ——— [16,0,5]+[7,0,s] axial
[7,0,s] radial N [7,0,s] axial
o == [16,0,s] radial B 10 SN\ 0 == [16,0,s] axial 1

ev

ev

FIG. 7. (Color online) Compared the hollow-core MWCNT [16,0,5+7,0,s] vdW-Ld spectra vs the effective MWCNT spectra created by mixing the [16,0,s]

and [7,0,s] hollow-cylinder spectrum constituents.
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TABLE III. Calculated cylinder-cylinder Hamaker coefficients (A®, A®) for the [6,5,s] and [9,3,m]
SWCNTs using the raw optical properties scaled to a solid cylinder, scaled to a hollow cylinder, and a hollow
cylinder mixed with a water core. The solid and mixed w/H,O spectra are equally valid at the far limit
depending on whether the core is filled with vacuum or water.

Near-limit A©, A® (z])

Far-limit A©, A® (2J)

n m Solid Hollow Mixed w/H,O Solid Hollow Mixed w/H,O
9 3 62.3, 0.5 91.7, 0.6 66.7, 0.5 107.0, 36.2 163.3, 56.6 113.3, 36.8
6 5 85.0, 0.1 111.8, 0.1 88.0, 0.1 105.6, 1.9 144.2,3.3 110.5, 2.2
9 1 72.3,04 95.6, 0.4 753,03 92.8,3.0 126.9, 4.9 974,33
29 0 14.3, 0.0 71.8, 0.1 20.1, 0.1 18.5, 0.8 108.6, 8.6 262,13
Valid N Y N Y N Y

ever, small areas where the calculated MWCNT has stronger
transitions. These significantly add to the overall vdW-Ld
spectra and give it its increased magnitude over spectra cre-
ated from SWCNT.

In light of these minor discrepancies, a valid question to
ask is why one would ever use SWCNT spectra to create
MWCNT spectra instead of just obtaining the MWCNT
properties directly. Their are a couple of key answers. First, it
eliminates much of the sheer computational difficulty that it
would take to obtain the properties of certain MWCNTs and
other multicomponent systems. For example, suppose we
want to create a MWCNT that has almost an exact graphite
interlayer spacing separation between the two rings, an ideal
choice with this separation distance would be the [10,10,m]
and [6,4,s]. However, the ratio of their cell heights for the
ab initio calculation is not commensurate and would require
11 repeat units of the [6,4,s] and 83 of the [10,10,m] in
order to come close to synchronizing up. This would require
4992 atoms—not an impossible number but certainly one to
two orders of magnitude larger than most SWCNTs. More-
over, this is the low end, as it is possible to mix two
SWCNTs together that might require even more atoms than
this or require some form of stretching/distortion along the
backbone in order to minimize this effect. Going to three-
ring or four-ring MWCNTs would exacerbate this problem
even further.

There is a second and equally important reason to use
SWCNT components even if obtaining a particular MWCNT
spectrum was feasible. As explained in the analysis of Eq.
(B6) for the cases C1/C2/C3 in Fig. 9 (see Appendix B), it is
the optical properties of the two closest interfaces across the
separation medium that dominate the total vdW-Ld interac-
tion energy at distances near contact. The total MWCNT
spectrum is, in fact, an averaged set of optical properties in
the radial and axial directions and would not be valid at the
near limit. By using the SWCNT pieces, we now can spa-
tially resolve the optical properties in the way necessary to
get the proper near-limit interaction. This effect would be the
most important and influential when the different layers in a
MWCNT contained both metallic and semiconducting spe-
cies. Driving the point further, two MWCNTs might have
very similar total vdW-Ld spectra but differ greatly in their
outer shell properties.

So far we have described the importance of using the
properly scaled and mixed spectra at the proper surface-to-

surface separation limit. However, now we want to demon-
strate quantitatively the effects of each combination of scal-
ing and mixing (solid, hollow, and hollow mixed w/H,0) at
each limit to show that the differences are very noticeable.
Table I1I lists the calculated values of A, A® in zJ for the
[9,3,m],[6,5,5],[9,1,s], and [29,0,s] using all three spec-
tra varieties in the near and far limits of the optically aniso-
tropic cylinder-cylinder systems.

Our initial values for the [6,5,s] and [9,3,m] across
water are identical to the values we calculated and reported
using the solid-cylinder optical properties.8 When we scale
the optical properties to that of the hollow-cylinder spectra,
the magnitudes become much larger. It should be noted
though that this enlargement at the near limit is not unrea-
sonable. In fact, it brings the Hamaker coefficient magni-
tudes into closer agreement with those previously published
for the anisotropic graphite vdW-Ld spectra in water.”*" This
is a direct result of the hollow-cylinder scaling in which the
optical properties are properly confined into the SWCNT
shell, which dominates the interaction.

Conversely, the Hamaker coefficients calculated from
the hollow-cylinder spectra would be incorrect to be used for
a total energy calculation in the far limit. They ignore the
interactions of the SWCNT cores, which would likely be
different and possibly repulsive depending on the nature of
the other materials present. However, we can obtain an ac-
curate total Hamaker coefficient and total interaction energy
if we mix the hollow-cylinder spectra with whatever material
that makes sense for the particular experimental system. In
this analysis, we chose a 100% fill of isotropic water. The
resulting mixed Hamaker coefficients in the far limit are
smaller than the hollow-cylinder spectra and slightly larger
than that of the original solid-cylinder properties. These rela-
tive rankings are completely logical and expected as the
hollow-cylinder scaling assumes a core material optically
equivalent to the outer shell, the solid-cylinder scaling as-
sumes a zero or vacuum core, and the mixed with water
spectra uses a core material that has an optical spectra that is
closer in magnitude to vacuum than the SWCNT.

With respect to all the coefficients listed in Table III, we
cannot stress enough that only certain combinations are ac-
tually realistic despite the ease of which we can calculate
these values for any combination of system, distance limit,
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and spectra scaling/mixing. To avoid any confusion, we spe-
cifically note in the final row which are valid combinations
to be used.

V. DISCUSSION

Although scaling and mixing seem fairly simple, they
are clearly important to keep in mind at different distance
limits and for different SWCNT sizes. At the near limit, we
can clearly see that changing from the solid to hollow-
cylinder spectra can result in a substantial boost in the mag-
nitude of the Hamaker coefficient by 20%—50%, for even the
small diameter SWCNTs. This effect is even stronger as the
tube diameter increases and the difference between the hol-
low and solid-cylinder spectra widens. For example, the
[29,0,s] Hamaker coefficients vary by a factor of five to ten
times when changing between the hollow and solid-cylinder
scaling behavior. Therefore, it is critical to use hollow-
cylinder spectra at near contact separations where the closest
materials dominate.

The opposite is true in the far limit. Here the optical
properties must be averaged over the entire cylindrical con-
tainer because the overall vdW-Ld interaction is a result of
the potentially competing interactions of all the constituents.
Large diameter SWCNTs (e.g., [29,0,s]) will then have an
optical response that is highly damped by either the vacuum
or water core. One might expect that the overall vdW-Ld
total energy would be weaker because of a smaller Hamaker
coefficient. However, the total energy for the SWCNT
+water core system can still strengthen because of the radius
to the fourth power dependence on the vdW-Ld interaction
energy in the farlimit [see Eq. (A12) in Appendix A).

As the size of the interacting objects increases, the total
vdW-Ld energy at a given surface-to-surface separation
should also grow because there is more volume interacting.
The Hamaker coefficient is primarily determined by the op-
tical properties and essentially gives the per unit volume
component of the total vdW-Ld energy interaction. Mixing
of a SWCNT spectrum with water clearly dampens the mag-
nitude of the overall Hamaker coefficients due to reduction
in optical contrast. However, the volume of interacting sub-
stance can more than make up for this effect. For example, if
we take far-limit hollow mixed w/H,O values from Table
III, the Hamaker coefficient or vdW-Ld interaction energy
density of the [6,5,s] is four times greater than the [29,0,s].
However, when we multiply by a*, the total interaction en-
ergy of two [29,0,s] interacting across a surface-to-surface
separation ¢ is 20 times stronger. Therefore these contrary
tendencies are important to keep in mind when making final
determinations of what should happen in a given experimen-
tal procedure.

What then are the effects of surfactants? Although we
did not specifically include surfactant coated SWCNTs in
this paper, there is no additional conceptual difficulty from a
computation or from a calculation standpoint. For example, a
MWCNT with a water core and a uniform layer of sodium
dodecyl sulfate (SDS, a typical SWCNT surfactant) would
simply behave as a cross sectional area weighted mixing of
the constituent spectra in the far limit and of pure SDS at the
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near limit. One could then use the interpolation style sug-
gested previously to obtain a vdW-Ld energy at all
distances.®

The biggest limiting step preventing us from including
surfactant effects is, as described earlier, the lack of optical
spectra for all potential surfactant candidates over an energy
range sufficient for the Lifshitz formulations. We are actively
working to alleviate this after we finish publications on ad-
ditional SWCNT spectra classifications. However, until ro-
bust spectral data are available, we are unable to carry this
analysis any further other than describing qualitative trends
that can occur. At the near limit, the ability to spatially re-
solve the SDS layer from the SWCNT or MWCNT is impor-
tant for the same reason as described above when spatially
resolving the SWCNT constituents from the bulk MWCNT
optical property.

Experimental methods that determine bulk spectral prop-
erties of ssDNA/SWCNT hybrids and similar nanostructures
would be pertinent for the far limit only. The near limit re-
quires a spatial resolution and possibly directionally depen-
dent properties, both of which are either impossible or ex-
tremely difficult to obtain experimentally for these types of
systems. This further underscores the utility of ab initio
methods as a viable and powerful alternative to obtain this
information. Additionally, it underscores the need to catalog
even the most basic of materials. Currently the only organic
materials we have publicly available (outside of the carbon
based SWCNTSs) are polystyrene, tetradecane, and possibly a
few others.”*' With a larger database of SWCNTs and sur-
factant spectra, one can start data mining to find combina-
tions favorable for one type of interaction over another.

Although the focus of this paper is SWCNTs, the solid-
cylinder formulations can be used for any liquid crystal, pro-
tein, collagen, or any material in which the overall shape can
be described as cylindrical. As long as one has the optical
properties, one can obtain the per unit length or total energy
of interaction for any of these systems. One can use the
mixing rule analysis of Sec. IV for other geometries. For
example, the vdW-Ld interactions of surfactant coated col-
loids could also be optically mixed with the Bruggeman
EMA for the far limit. The overall themes described here for
SWCNTs would be equally applicable to other systems.

VI. CONCLUSIONS

We have introduced spectral mixing rules to consider
interactions composed of multiple layers varying in the ra-
dial direction. We create an effective set of homogeneous,
anisotropic solid-cylinder optical properties from the original
hollow-cylinder constituents. Our results show that the spec-
tral mixing via a combination of a parallel capacitor rule in
the axial direction and the Bruggeman EMA in the radial
direction can result in reasonable vdW-Ld spectra, Hamaker
coefficients, and total vdW-Ld behavior. Additionally, we
have shown that there is some secondary bonding/coupling
between the €” absorption properties of two SWCNTs with
the resulting MWOCNT. This feature warrants further
exploration/investigation but it is presently considered here
to be small enough for our assumption of independent layers
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FIG. 8. The two systems that are now solvable by explicit analytical Lifshitz
formulations in the near and far limits. (a) An optically anisotropic solid
cylinder with an optically anisotropic substrate with its primary uniaxial
polarization contained within the surface plane and (b) an optically aniso-
tropic solid cylinder with another optically anisotropic solid cylinder.

to hold. Although the primary purpose of this paper is to give
us the ability to calculate accurate Hamaker coefficients and
total vdW-Ld energies of complex SWCNTs system (e.g.,
surfactants, SWCNTs mixed w/core materials, MWCNTSs),
the strategy presented here is widely applicable to other
nanoscale/biological systems for which analytical add-a-
layer Lifshitz formulations are not currently available.
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APPENDIX A: KEY FEATURES AND CONCEPTS FOR
THE OPTICALLY ANISOTROPIC ROD-ROD AND
ROD-SURFACE LIFSHITZ FORMULATIONS

We recently extended the Lifshitz formulations to in-
clude the following systems in both the near and far limits.

(a) Two optically anisotropic solid cylinders interacting
with each other.

(b)  An optically anisotropic solid cylinder interacting with
an optically anisotropic substrate.

Figure 8 shows these systems visually with the proper
parallel and perpendicular optical directions clearly labeled.
Both these systems have unique formulations for their re-
spective near- and far-limit formulations, which we then
originally applied to the [6,5,s] and [9,3,m] SWCNTSs us-
ing the solid-cylinder spectra. In this analysis, we determined
that the system is considered to be in the “far limit” regime
when at a surface-to-surface separation distance “€” is ap-
proximately two full SWCNT diameters. The “near limit” is
essentially contact and everything in between requires inter-
polation. The scaling law analysis used to make this regime
limit the determination, as well as the complete derivation of
the total solid-cylinder Lifshitz formulations, can be found in
the original paper.8

For systems containing optical anisotropy, there exists
the potential and opportunity for orientation-dependent
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vdW-Ld energies and Hamaker coefficients. So rather than
just having A as a single Hamaker coefficient, it is split into
two parts. The A? is the Hamaker coefficient when the two
€ optical directions are 90° out of phase (see Fig. 8 again for
a proper frame of reference). The A® term is the additional
Hamaker coefficient component when going from the 90°
out of phase orientation to that of perfect (optical) alignment
with the principal axis of the other object. Clearly, if there is
no orientational preference, A‘® goes to zero and we are
back to a single Hamaker coefficient.

The cylinder-substrate and cylinder-cylinder formula-
tions in both the near and far limits have the same overall
structure for the Hamaker coefficient calculation, which is as
follows:

o _ 3ksT 1 o[
A0 = =22 = Arn(®)Aru(d=90)de, (A1)
2 2m,2 Jo
* 360
40 40 =L LS 0 A (),
2 2m,5 Jo
(A2)

where kj is the Boltzmann constant. A, and Ay, are the
spectral mismatch or spectral contrast functions of left and
right materials across the neighboring medium. The integra-
tion occurs over all 360° within the plane perpendicular to
the stacking direction. The summation in the expression
above is not continuous but rather over a discrete set of Mat-
subara frequencies, 5,,:2771(78“.16_18 The form of the A spec-
tral contrast functions vary with the particular system we are
dealing with. They are as follows for the near-limit aniso-
tropic solid cylinder—anisotropic solid cylinder and near-

limit anisotropic solid cylinder—anisotropic substrate
systems:8
[ e (LT + A L)cos” p—e,
Apld) = | ——— - : (A3)
| €, (L)1 + Y(L)cos” ¢+ €,
[ ] 2
€, (R)V1+ ¥ R)cos” ¢ - ¢,
Ara(d)=| ——— > : (A4)
| €, (R)V1+ ¥(R)cos” ¢+ ¢,
€, (R)N1 + ¥(R)sin’> ¢p— ¢,
Arn(p=90) = | == — . (AS)
€, (R)V1+ v(R)sin* ¢ + €,

We drop the explicit (¢) dependence for all € materials
and directions in order to keep the notation more legible, but
it is always understood that these properties are a function of
frequency. The y term is a measure of the optical anisotropy
for the left or right half-spaces in the near limit and has the
form

€—€
y= =L (A6)

€
The far-limit equations have a very different form be-
cause we could no longer use the Derjaguin approximation.17
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For the far-limit optically anisotropic solid-cylinder—
optically anisotropic solid-cylinder system, the spectral con-
trast terms are of the following form:

Apn(d)=—{A (L) + H[A(L) - 24, (£)]cos B}, (A7)

Aru(®) =—{A L (R) + H[A(R) - 24 (R)]eos® &},
(A8)

Ar(d=90)=—{A (R) + {[A(R) - 24 (R)]sin® ¢},

(A9)
where A and A are as follows:
€—¢€ € —€
A”= I mAL= 1 m (AlO)
€, €, +E€,

The values of A® and A® are obtained in a straightfor-
ward manner. One uses the A forms for the particular geom-
etry and distance limit and adds in the spectra properties as
the primary input. At this stage, we have the Hamaker coef-
ficients but not the total vdW-Ld energy. To obtain that, one
must then use vdW-LD energy scaling law behavior for the
particular system, which also depends heavily on the geom-
etry and distance limit of the system. For the far-limit solid
cylinders at an arbitrary angle, the total vdW-Ld energy var-
ies as follows:

(ma®)*(AQ + AP cos? 6)
27r€* sin 0

G, 0 =- , (A11)
where the two rods are assumed to be of equal radius a for
this case. If we go to perfect alignment, the total energy for
two infinitely long cylinders diverges. Therefore it is more
relevant to report the energy per unit length as we derived
previously,

3(ma®)H A + AD)
8re?

g(€,0=0)=- (A12)

In the near limit under perfect alignment, the two solid
cylinders exhibit a much different, per length energy scaling
law with distance,

Va
240%2

g(€.0:a) =~ (A9 +A). (A13)

For the purposes of this paper, we are mainly interested
on how the Hamaker coefficients are affected by mixing
rules of the constituent optical properties and will therefore
calculate many total vdW-Ld energies. Those interested can
easily use the above equations with the reported Hamaker
coefficients to graph and compare between the various
SWCNTs.

The primary benefit of the anisotropic solid-cylinder for-
mulations was the ability to quantify the relative strengths in
Hamaker coefficients for each SWCNT chirality and to de-
termine the vdW-Ld torques that arise from the morphologi-
cal and optical anisotropies. Before these formulations ex-
isted, we had to use a crude pairwise comparison in order to
show this effect qualitatively. That is, we took the radial and
axial spectral components and created isotropic planar half-
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spaces out of them to compare the differences between the
radial-radial, radial-axial, and axial-axial components to see
if there was a preferred interaction. For the [9,3,m], there
was clearly a major gain by maximizing the axial-axial in-
teraction, making the case for alignment. While one can get
away with doing this type of comparison for simple systems
to get a rough approximation, it can lead to errors and incor-
rect predictions if one is not careful. The Lifshitz formula-
tions are coupled with respect to the boundary conditions of
all optical independent directions (see the derivation in Ref.
17 for additional information) and can result in values that
are smaller, larger, or even opposite in sign to what one
expects for complex systems.

Although the formulations are a much needed improve-
ment, one must also be aware of certain aspects and assump-
tions contained within them and not blindly use them in a
black box fashion. In particular, one important assumption
contained within the present formulation is that the optical
properties of the SWCNTs were visibly interacting like a
spatially homogenous solid cylinder, which lacks any signifi-
cant optical spectral contrast along the radial direction. This
may be unimportant for very small diameter SWCNTs that
lack a surfactant layer, but the spectral variation along the
radial direction becomes very important for large diameter
SWCNTs (e.g., a [24,24,m] SWCNT is 67% hollow),
MWCNTs, or any nanotubes covered with a surfactant layer
of an appreciable thickness. This is why the mixing formu-
lation considerations are so important in terms of creating
effective spectra that can use these formulations and obtain-
ing meaningful and accurate results.

APPENDIX B: TOTAL VDW-LD ENERGY
EQUIVALENCE AT THE FAR LIMIT

Figure 9 details the concepts of Fig. 2 in a more rigorous
quantitive fashion by comparing the total vdW-Ld energy
ratios as a function of €/a. For simplicity, we calculated the
Hamaker coefficient using fictitious vdW-Ld input spectra by
using simple damped oscillators of the following form:

S
1+ &

€1 =1+ (B1)
where s represents the magnitude or strength of the oscilla-
tor. For Fig. 9, we chose a large value of s=100 for the
unmixed solid material in case C3 and a value of s=0 for the
vacuum. For the mixture material, we used the Bruggeman
EMA at each Matsubara frequency (the details of the EMA
mixing formulation will be described more rigorously in the
next section). The total energy and Hamaker coefficients
were calculated using the following simple nonretarded iso-
tropic plane-plane equations:

)=——, B2

g(e) ol (B2)
3 - €L~ €y ER— €n

A ==’ : 2. B3

Eml/Rm2 2% ( €+ Eml ) ( €r + emz) ( )

Cases C2 and C3 required a slightly more complicated
add-a-layer form of the overall energy. We use the following
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FIG. 9. (Color online) Compared total vdW-Ld interaction energy ratios of three different systems to demonstrate the utility of mixing formulations in the far
limit. (A) Case C1 uses the optically mixed material in an infinitely thick configuration. Case C2 is a finite block of the optically mixed material. Case C3
contains the unmixed material sandwiching a vacuum layer. (B) The ratio of total vdW-Ld energies varies as a function of the dimensionless scale factor //a.

(see Ref. 17) subscript notation, i.e., Az, zm» SO as to elimi-
nate confusion. Here the slash in the subscript denotes the
sides to the left and right of the medium. The first term in
each subscript couple denotes the material farthest away
from the middle/intervening separation layers. If we label the
EMA mixture material as m, the low value vacuum as v, and
the high value of the solid material as &, then the cases Cl,
C2, and C3 would be solved as follows:

Cl Q(€) _ Amv/mv (B4)

' T 127(0)%]
ng(g) _ - Amv/mv - Amv/vm (BS)

T a0 T 2+ a)?

- Amv/hv - Amv/hv - Amv/hv
OO = D02 T om(C+a3) T 12m(C + 2013
- Amu v
/h (B6)

+ —,
127(€ + 3a/3)?

Equation (B6) may look bulky but there is a clear and
easy to understand pattern that arises when moving from C1
to C3. In short, the total energy equation for each case is
merely a summation resulting in a single term for each inter-
face pair across the intervening medium layer. The distance
part in the denominator is equivalent to the separation dis-
tance between that given pair of interfaces. The Hamaker
coefficient subscripts denote the optical properties of the two
neighboring materials at each of these interfaces using the
ordering scheme described above (outermost material gets
listed first). Thus each term can easily be constructed from
the picture. As an example, the last interfaces in case C3
have a Hamaker coefficient A,,,,, at an interface-interface
separation distance of €+a. It is worth noting that in cases
such as C2, the Hamaker coefficients are equal in magnitude
but opposite in sign simply because they include the same
spectra and just have their subscript order reversed. If we
were to bring these interfaces completely together, the two
total energy terms would cancel out as expected because the
interfaces would annihilate and disappear.

At the near-limit, it is clearly the materials closest to the
intervening medium that dominates the total vdW-Ld energy
interaction, which is demonstrated by the C1/C2 ratio con-

verging to 1 and thus being effectively equal despite the fact
that C2 is of a finite thickness and has an additional interface
term. This effective equivalence is due to the divergent, 1/¢>
behavior of the nearest interface-interface pair dominating
the total energy as € goes to zero. In effect, one can place
any arbitrary number of interfaces at distances well beyond
the leading term and they would have little to no impact on
the total vdW-Ld energy. Therefore at contact, we only need
to use the optical properties of the outermost layer and need
not and should not use any spectral mixing.

The opposite effect occurs at the far limit. The individual
Hamaker coefficients found in all four terms of case C3 are
much larger than the Hamaker coefficients for case C2 be-
cause the spectral contrast at each interface in C3 is much
greater. One might be too quick to conclude that these larger
Hamaker coefficients should lead to a larger total energy for
case C3 as compared to C2. However, the interfaces in C3
begin to pack more closely and thus the overall magnitudes
of the 1/€2 terms (i.e., the geometrical components) of the
neighboring interfaces get closer. These two effects (increas-
ing Hamaker coefficients and decreased spacing) cancel each
other out making cases C2 and C3 nearly identical in the far
limit, with case C2 certainly giving us an advantage of re-
duced complexity.

Figure 9(b) illustrates these effects. Additionally, it is
important to note that ratio of C3/C2 converges to a fixed
value when € >2d, where d is the thickness of the finite
layers in cases C3 and C2. This particular distance of con-
vergence is an encouraging result because it is the exact
same distance we determined to be far limit regime in our
analysis of the anisotropic solid-cylinder Lifshitz formula-
tions. For the purposes of stress-testing the EMA mixing
rules, we purposely chose extreme values of s to mimic the
vacuum (v:s=0) and metal (%:s=100) end points. Therefore
this 23% discrepancy can be thought of as the maximum
error that can exist between the total vdW-Ld energies of
cases C2 and C3 in the far limit. If we were to pick values of
s that were closer in value to each other (e.g., v:s=50 and
h:s=100), then the difference in the total energy drops to
less than 4%. Moreover, of course, if materials v and /& have
identical spectra, the ratio of C2/C3 merges to unity at the far
limit. Therefore one can confidently mix spectra that are on
the same order of magnitude and be sure they are getting
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realistic results. When spectra are vastly different, there will
be some discrepancies that need to be taken into account.

There is one final issue to note in Fig. 9. Although the
limiting separation regimes are easy to characterize, there is
a transition range between the near and far limits which is
harder to define. For those cases, one might best use the
interpolation method described previously in order to get a
reasonable Hamaker coefficient and total vdW-Ld energy at
any separation distance. This process is beyond the scope of
this paper, which is primarily focused on the effects of mix-
ing on the limiting behaviors. However, those wishing to
know this information within this regime can do so in a
reasonably straightforward manner.®
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