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a b s t r a c t

Colloidal interactions between proteins determine the behavior and stability of globular proteins such as
monoclonal antibodies (mAbs) against their propensity to cluster formation in solution. We study inter-
actions between these proteins through their dilute solution behavior. Experiments to quantify
intermolecular interactions were done using Dynamic and Static Light Scattering (DLS and SLS) in a
high-throughput manner in parallel with zeta potential measurements with Laser Doppler Electrophore-
sis method (M3-PALS). This approach offers a rapid indirect determination of colloidal interactions
through their measured second virial coefficient. Electrostatic part of the DLVO interaction was conve-
niently parameterized via the corresponding surface charge and/or surface potential, while the van der
Waals interactions were parameterized via their Hamaker coefficient, both as functions of ionic strength
and pH of the bathing solution. This parametrization of protein–protein interactions improves our under-
standing of mAb assembly and provides a means for its control by solution parameter variation. Addition-
ally, our results also provide a consistency check and validation of applicability of the DLVO theory in
mAbs solution assembly processes.

! 2012 Elsevier Inc. All rights reserved.

1. Introduction

Theory of colloidal interactions gives a proper conceptual
framework for understanding the solution behavior of globular
proteins [1] such as therapeutical monoclonal antibodies (mAbs)
[2]. Generally, mAbs as therapeutics are currently gaining tremen-
dous momentum since they are effective at low concentrations
with less side effects compared to other small molecule drugs.
Due to their charges [3], mAbs can be classified as amphoteric
polyelectrolytes. Their net charge can be easily tuned by varying
the solution pH past their isoelectric point (IEP). Charged groups
are not evenly distributed on the surface of mAbs but rather gen-
erate a complex surface mosaic that can make the protein assem-
bly process quite complicated. Furthermore, the occurrence of
hydrophilic and hydrophobic groups endows them also with het-
eropolymer characteristics making their physico-chemical nature
highly non-trivial [4] and in many respects drastically different
from simple polymeric features.

Globular proteins have a strong propensity to cluster formation
or aggregation. In some cases, their aggregation leads to inappro-
priately formed complexes, which gives rise to inactivation of their
therapeutic properties and possible immunogenicity during drug

administration [5]. Assembly behavior of mAbs is highly concen-
tration and solution properties dependent, which leads further-
more to very complex phase behavior. The term ‘‘protein
aggregation’’ is frequently used to summarize two vastly different
phenomena, viz. protein self-association (self-assembly) and pro-
tein aggregation proper. Protein self-assembly denotes the forma-
tion of small, soluble oligomers, by means of weak non-covalent
interactions, that are reversible upon simple dilution in buffer.
On the other hand, protein aggregation denotes any irreversible
formation of strongly linked aggregates that could be classified
as being soluble and/or insoluble and prone to precipitation [6,7].

Protein aggregation can be driven by vastly different mecha-
nisms or processes and eventually leads to crystallization, precipi-
tation, gelation, or liquid–liquid phase separation [8–10]. Random
formation of amorphous, visible aggregates defines protein precip-
itation, whereas ordered three-dimensional lattices define a
crystallite as a particular form of protein precipitate. Protein
precipitation and crystallization are both assembly processes and
better understanding of intermolecular interactions is critical in
order to deal with stability issues and crystallization, as well as
to elucidate the reason why amorphous precipitates are formed
so easily, whereas crystals are not [11].

Protein aggregation depends crucially on inter protein interac-
tions in aqueous solution [1]. Their study is, however, hampered
by the fact that it is difficult to experimentally assess the strength
and separation dependence of protein–protein interactions in
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solution directly as in osmotic stress, surface force apparatus or
AFM experiments [12]. What is relatively straightforwardly avail-
able is only an indirect determination of inter-protein colloidal
interactions via the measurement of their second virial coefficient
[13]. In what follows we shall use exactly this approach, coupled to
a Derjaguin-Landau-Verwey-Overbeek (DLVO) model [14] of the
underlying interaction potential, in order to assess the various
parameters entering into the analytical form of this potential.

We will focus on IgG1 monoclonal antibody (mAb) and its inter-
actions in aqueous solutions. The protein used in experiments has
the most acute angle observed between the two Fab segments as is
evident in 3.2 Å resolution X-ray crystallography [15]. However, it
is still too large for its structure to be determined with current
NMR methodologies and the structural information obtained from
crystal scattering is of limed validity because of the hinge-region
flexibility [16].

A three dimensional structure and electrostatic potential sur-
faces of the whole mAb are presented in Fig. 1 at different pH. At
pH 3.0, we can discern a predominance of positive charges and at
pH 10.0 a predominance of negative charges. At pH 8.0, which is
near IEP of the protein, the positive and negative potentials are
evenly distributed. One should note the large positive charge zone
at the Fab ends and negative zone in the center of the hinge region.
This charge distribution effects the orientational and radial depen-
dence of interactions especially at small separations [17]. In what
follows, we will be only interested in the orientationally averaged
interactions as they enter the second virial coefficient.

We will use Dynamic and Static Light Scattering (DLS and SLS)
in a high-throughput manner as well as concurrent measurements
of zeta potential with Laser Doppler Electrophoresis method (M3-
PALS) in order to provide as accurate experimental determination
of the second virial coefficient as possible and based on this exper-
imental data to parametrize the protein–protein interaction poten-
tial in dilute solutions of IgG1 mAb. We will parametrize the
repulsive electrostatic component of the protein–protein interac-
tion via the protein effective surface charge and/or its surface
potential, while the attractive van der Waals part of the interac-
tions will be parametrized by their Hamaker coefficient. We will
study in detail the variation of these parameters with solution
pH and ionic strength of a uni–uni valent salt. The goal of this study
is thus twofold: to measure the second virial coefficient for this
protein and from these experiments extract parameters quantify-
ing the DLVO framework thereby elucidating the range of condi-
tions suitable for its aggregation.

2. Theoretical aspects

Ideally, the behavior of colloidal particles in aqueous solutions
may be characterized and quantified within the framework of the
DLVO theory [14]. To describe the solution behavior of proteins,
we have to take into account the complex protein structure, which
complicates the simple DLVO Ansatz. Proteins often display poorly
understood assembly behavior, which need not correspond neatly
to the van der Waals-electrostatic interaction DLVO dichotomy,
but can be modified essentially by the presence of non-DLVO inter-
actions such as hydration, hydrophobic, and steric interactions
[23].

The electrostatic part of the DLVO theory, the s.c. Poisson–Boltz-
mann electrostatic interactions, predicts repulsion between like-
charged colloidal spheres in an electrolyte solution at moderate
salt concentrations [12]. The universal attractive part, due to van
der Waals interactions [24], represents the long(er) ranged part
of the total interaction potential. This picture applies to the equi-
librium part of the interaction that bypasses the hydrodynamic
and Brownian forces [1]. In the non-equilibrium case, however,
the limitations of the pure DLVO theory have to be assessed and
hydrodynamic aspects have to be included in an appropriate
way, making the understanding of even simple dynamic experi-
ments quite complicated [25].

In the equilibrium case, the model interaction potential, or
more appropriately the potential of mean force (PMF), is related
to thermodynamics via the second virial coefficient B22, which is
frequently used for characterization of pairwise protein self-inter-
actions [13]. By definition, the second virial coefficient reflects the
magnitude and direction of the deviations of protein solution from
ideality in such a way that positive values of B22 indicate net mu-
tual repulsive interactions, and negative values of B22 indicate a net
protein–protein attraction. The connection is however rather indi-
rect since the second virial coefficient is proportional to an integral
of the interaction potential over all separations.

The general variation of the second virial coefficient with solu-
tion parameters entails also a small range of slightly negative val-
ues, which is usually referred to as the ‘‘crystallization slot’’
because it is closely related to protein crystallization [26]. This
range reflects weak attractive interactions conducive to self-associ-
ation or crystal growth, but it cannot by itself provide a quantita-
tive explanation since kinetic and non-equilibrium considerations
should be invoked in order to understand the assembly process
[11].

Fig. 1. A three-dimensional representation of the electrostatic potential of a IgG1 monoclonal antibody. The protein structure was constructed using Swiss-PdbViewer [18]
and the electrostatic potential was calculated using PDB2PQR with PROPKA pKa prediction [19,20] for preparation of files to compute potential with APBS [21]. Graphical
representation was produced using the VMD software [22]. Electrostatic potential contours were calculated (left to right) for pH 3.0, 5.0, 8.0 and 10.0, where red surfaces
indicate the !1 and blue the +1 kBT=e electrostatic potential contours. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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2.1. DLVO interaction model

Within DLVO, the total PMF is given by the sum of repulsive
double layer interaction potential between like charges, WR, and
the attractive van der Waals interaction potential, WA, as [27–29]

WðrÞ ¼WAðrÞ þWRðrÞ: ð1Þ

Here, r is the center-to-center protein separation, leading to a
dimensionless rescaled surface separation,

x ¼ r=2a! 1:

The bare protein radius, a is associated with the hard sphere diam-
eter as r ¼ 2a. In Eq. (1), we omitted hydration, hydrophobic, and
some unclear short-ranged site specific interactions [23]. We also
assumed that the interaction depends solely on the mutual separa-
tion of the proteins. For assymmetric particles (see Fig. 1), the repul-
sive steric or hydration forces are also orientation-dependent,
reflecting their shape, and this is usually the dominating factor in
determining how molecules mutually align themselves in solutions
[12,13,15,30].

The charging of a protein surface in a solvent is due to dissoci-
ation of surface dissociable groups [12]. To compute the average
electrostatic potential, the ions are described by point charges
within the standard Poisson–Boltzmann (PB) approximation [12].
The neglect of finite size of the ions is to some degree permissible
in dilute solutions, where the extent of the diffuse layer is consid-
erable, but becomes incorrect in more concentrated electrolyte
solutions [31].

The interaction potential, for two weakly charged proteins mod-
eled as spheres with radius a, can be approximated by the Debye–
Hückel solution in the limit of low surface potential ðw0 & kBT=eÞ
[12]

WRðxÞ
kBT

¼
z2

pkB

2að1þ jaÞ2
expð!2jaxÞ

xþ 1
; ð2Þ

where zp (i.e., the pH-dependent protein valency) is the effective
protein charge and kB ¼ e2=4pee0kBT is the Bjerrum length with va-
lue of kB ’ 0:7nm for water at room temperature. The Debye–Hüc-
kel screening length kDH is related to j as

j ¼ 1=kDH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2e2NAI=ee0kBT

q
: ð3Þ

where I ¼ 1
2

P
iciz2

i is the ionic strength, ci ¼ n0
i =NA (NA is Avogadro’s

number) is the molar concentration or molarity (units of mol/L) of
free ions of valence zi;n0

i the number density of ions of valency zi

in bulk solution, kB the Boltzmann constant, T the absolute temper-
ature, e0 the permittivity of vacuum, e the dielectric constant of
water and e the elementary charge. Eq. (2) is valid only for distances
r large compared to j!1.

An alternative form for the electrostatic interactions is obtained
by letting the protein charge adjust to the surface potential. This
situation is described via the charge regulation concept as intro-
duced by Parsegian and Ninham [32]. As it turns out, for any sur-
face charge equilibria, the electrostatic interaction is always
between the constant charge and the constant potential limits. In
the latter case, the corresponding interaction potential can be ob-
tained as [33]

WRðxÞ
kBT

¼
w2

pa
2kB

expð!2jaxÞ
xþ 1

; ð4Þ

where wp is now the dimensionless surface electrostatic potential,
that is, electrostatic potential divided by kBT=e. Whatever the pro-
tein surface charge equilibrium, the electrostatic interaction energy
between two proteins in solution will be always between Eqs. (2)
and (4).

The attractive part of the DLVO interaction is given by the van
der Waals interactions. For two spheres of equal radii a, the unre-
tarded attractive dispersion potential is given by [24,27,34]

WAðxÞ
kBT

¼ ! AH

12kBT
FðxÞ ð5Þ

with

FðxÞ ¼ 1
ðxþ 1Þ2

þ 1
x2 þ 2x

þ 2 ln
x2 þ 2x
ðxþ 1Þ2

 !
: ð6Þ

Above, AH is the Hamaker coefficient and characterizes the magni-
tude of van der Waals interaction. It is given by [24]

AH ¼
3kBT

2

X0

n¼0

!ðıxnÞ ! !wðıxnÞ
!ðıxnÞ þ !wðıxnÞ

" #2

; ð7Þ

where !ðıxnÞ; !wðıxnÞ are the frequency dependent dielectric per-
mittivities for protein and solvent, evaluated at the imaginary
Matsubara frequencies. The magnitude of the Hamaker coefficient
for two colloidal particles primarily depends on their chemical com-
position that sets their overall polarizabilities [35] that then deter-
mine the Hamaker coefficient [24].

In this study, AH is a model parameter and is determined from
second virial coefficient experimental data. We assume that the
main contribution to the second virial coefficient comes from small
separations so that the effects of retardation on the Hamaker coef-
ficient need not be included [24].

2.2. Second virial coefficient and its determination

At present, it is not possible to measure the potential of mean
force between proteins in solution directly. We have to take re-
course to indirect methods such as the second virial coefficient
B22 determination. The second virial coefficient enters the osmotic
pressure virial equation of state as

PðcÞ
RT
¼ c

M
þ B22c2 þ ' ' ' ; ð8Þ

where c is the concentration of the proteins in solution and M is
their molecular mass. B22 can be obtained experimentally via Static
(SLS) or Dynamic Light Scattering (DLS). By its definition, B22 repre-
sents an average characteristic of the interaction potential,

B22M2 ¼ 2pNA

Z 1

0
1! e!ðWHCþWðrÞÞ=kBT$ %

r2dr

’ 2pNA

Z 2a

0
r2dr þ

Z 1

2aþh0

WðrÞ
kBT

r2dr
" #

: ð9Þ

Here, we divided the interaction potential into a hard core (first
term), WHC , and a weak soft tail (second term). We assumed the dis-
tance of closes approach is 2aþ h0 and the soft interaction potential
WðrÞ is by assumption sufficiently weak, so that linearization is in
order [33]. Here, NA is the Avogadro number and WðrÞ is the (orien-
tationally averaged) potential of mean force, Eq. (1), that depends
only on the center-to-center protein separation r.

Assuming now the form Eq. (1) with repulsive electrostatic and
attractive van der Waals contributions given by Eqs. (2) and (5),
corresponding to a fixed surface charge of the protein, we can write
B22 in the following form

B22M2

2pNAð2aÞ3
¼ 1

3
þ

z2
pkBð1þ 2jaÞ

8aðjaÞ2ð1þ jaÞ2
! AHCSðh0=2aÞ

12

 !
; ð10Þ

where we defined the integral CSðh0=2aÞ

CSðuÞ ¼
Z 1

u
FðxÞð1þ xÞ2dx: ð11Þ
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On the other hand, if we assume a constant surface potential, that is,
Eq. (4) for the electrostatic interaction energy, the corresponding
expression for the second virial coefficient would be

B22M2

2pNAð2aÞ3
¼ 1

3
þ

w2
pað1þ jaÞ
8kBðjaÞ2

! AHCS h0=2að Þ
12

 !
: ð12Þ

The Debye–Hückel part of this expression is the same as calculated
by Petsev and Denkov [33]. If AHCS > 4, there exists a finite positive
value of the effective charge zp at which the second virial coefficient
changes sign.

As will become clear in what follows, it is significant to intro-
duce the dimensionless second virial coefficient kS in the form

kS ¼
2B22M

v sp
¼ 12B22M2

2pNAð2aÞ3
¼

¼ 4þ
3z2

pkBð1þ 2jaÞ
2aðjaÞ2ð1þ jaÞ2

! AHCSðh0=2aÞ
 !

; ð13Þ

or equivalently for a fixed surface potential

kS ¼ 4þ
3w2

pað1þ jaÞ
2kBðjaÞ2

! AHCS h0=2að Þ
 !

; ð14Þ

where v sp is the partial specific volume, which can be determined
from protein sphere-equivalent volume fraction as
vsp ¼ ð4pNA=3MÞa3. In the case investigated vsp ¼ 0:73 cm3=g.

2.2.1. Second virial coefficient via SLS
In the static case, the Rayleigh scattered light intensity of a pro-

tein solution relates to the osmotic compressibility and the protein
volume fraction, /, through the slope of the static scattering inten-
sity data in a Debye plot [28,36]. In fact

Kc
Rh
¼ 1

RT
@P
@c

" #
¼ 1

M
þ 2B22c ¼ 1

M
ð1þ kS/Þ; ð15Þ

where kS has been defined in Eq. (13) and the protein concentration
was rewritten in terms of the volume fraction as

/ ¼ cvsp:

Here, Rh ¼ RðqÞ is the excess Rayleigh ratio [28] that depends on the
scattering angle h through the wave number q ¼ 4pn0

k0
sin h

2

$ %
. Fur-

thermore, K ¼ ð2pn0ðdn=dcÞÞ2=NAk
4
0 is the system specific optical

constant, k0 is the wavelength of laser incident light, n0 the solvent
refractive index, and ðdn=dcÞ the refractive index increment with
protein concentration, where c is the concentration of the protein
(in g/ml). R is the molar gas constant ðR ¼ NAkBÞ.

2.2.2. Second virial coefficient via DLS
To quantify the relation between pairwise protein interactions

and protein kinetics, the relation between B22 and collective diffu-
sion constant Dc was investigated using Dynamic Light Scattering
(DLS). In the following, we limit ourselves to the hydrodynamic re-
gime that pertains to the long wavelength limit and to measure-
ment times long compared to the characteristic time scale of
direct non-hydrodynamic interactions [28].

In the hydrodynamic regime, diffusivities derived from DLS are
ascribed to the collective diffusion constant Dc . For small volume
fractions, one can relate the collective diffusion constant to the sol-
ute properties as [37–39]

Dc ¼ D0ð1þ kD/Þ: ð16Þ

Here, kD may be split into several different contributions and D0 is
the single particle diffusion coefficient related to the hydrodynamic
particle radius a (assumed to coincide with the interaction radius)

via the Stokes–Einstein relation D0 ¼ kBT=6pga, where g is the sol-
vent viscosity.

The interaction parameter kD accounts for both the direct inter-
molecular interactions through kS as well as for the hydrodynamic
(Oseen) interactions through kH as [33,40]

kD ¼ ðkS ! kHÞ: ð17Þ

kH , which characterizes the hydrodynamic interactions, can be ob-
tained in the approximate form [29,40]

kH ’ kH0 þ 12
Z 1

h0=2a
dxð1þ xÞ½1! e!WðxÞ=kBT ): ð18Þ

where kH0 as the hard-sphere contribution and the second term
takes into account indirect hydrodynamic interactions [33,35,40].
Decomposing the Oseen contribution to kD into the hard-sphere
and the indirect hydrodynamic interactions due to the soft part of
inter-protein interactions [33,35] provides us with a closed form
relationship that can then be fitted to the experiment.

In what follows, we used kH0 ¼ 6:44 [40,29,35] and the second
term can be evaluated in the limit of weak interactions in the same
way as the second virial coefficient. We obtain

kH ¼ kH0 þ
3z2

pkB

að1þ jaÞ2ðjaÞ
! AHCH h0=2að Þ

 !
; ð19Þ

for the case of constant surface charge and

kH ¼ kH0 þ
3w2

p

ðjkBÞ
! AHCH h0=2að Þ

 !

; ð20Þ

for the constant potential case, with

CH h0=2að Þ ¼
Z 1

0
FðxÞð1þ xÞdx: ð21Þ

While SLS is a more sensitive probe of the pair molecular interac-
tion than DLS, the latter provides additional information of particle
sizes, as well as assembly kinetic behavior inaccessible to SLS.

3. Light scattering measurement of interactions between
proteins

3.1. Materials and sample preparation

The IgG1 monoclonal antibody (mAb) with molecular weight of
145 * 103 g/mol and pI of 8.46 measured by isoelectric focusing
(IEF) was obtained from Sandoz Biopharmaceuticals Mengeš as
stock solution of 100 mg/mL in histidine hydrochloride buffer at
pH 6.0 and used without further purification. The buffer reagents
were obtained from Fischer Scientific (Fair Lawn, NJ, USA) and Sig-
ma–Aldrich Chemical (St. Louis, MO, USA). All chemicals used were
reagent grade unless specified. Deionized Milli-Q™ grade water
was used to prepare all solutions. Buffers glycine hydrochloride
(pH 3.0), acetic acid–sodium acetate (pH 4.0, 5.0), histidine hydro-
chloride (pH 6.0), monosodium phosphate–sodium hydroxide (pH
7.0, 8.0), tris (hydroxymethyl) aminomethane hydrochloride (pH
9.0), and glycine sodium hydroxide (pH 10.0) were prepared to
maintain the solution pH. Appropriate buffer concentrations were
selected via Henderson–Hasselbalch equation to maintain the
low total ionic strength at 15 mM without the addition of NaCl.
They were then passed through 0.22 lm Millipore filters (Billerica,
MA, USA). For higher ionic strengths, NaCl was added to the total
ionic strengths of I ¼ 30 mM;50 mM;75 mM;100mM; and175 mM.
The protein solutions were buffer exchanged to the desired pH
using PD MidiTrap G-25 buffer exchange columns in spin protocol
(GE Healthcare). Subsequently, the concentration was adjusted to
10 mg/mL in aliquots before centrifugation on Eppendorf minispin
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(HA, Germany) mini-centrifuge at 7000g for 10 min to settle any
dust particles and then stored at + !80 ,C.

Before analysis, we prepared samples at lower concentrations
by dilution with the corresponding buffers adding desired salt con-
centration with the help of the Tecan robot. The samples were
pipetted into Corning microtiter 0.2 lm filter 96 well plate (Corn-
ing Incorporated, NY, USA) and centrifuged on Eppendorf centri-
fuge (HA, Germany) at 2000g for 30 min to remove residual dust
and air bubbles. Finaly, filtered samples were prepared in Greiner
96(384) well (half-area) UV-transparent flat-bottom microtiter
plate (Greiner Bio one, NC, USA) with 100 lL sample volumes
and their concentrations were measured with UV absorption mea-
surement (Tecan) at 280 nm (using extinction coefficient
a280 ¼ 1:48ðmg=mLÞ!1 cm!1 for 0.1% (w/v) protein solutions) in a
temperature-controlled plate reader. Before measurements, the
plate was covered and placed in an automated light scattering
instrument.

3.2. Methods

DLS and SLS measurements were conducted using a Malvern
Instruments Zetasizer APS (the temperature-controlled auto plate
sampler), and zeta potential measurements were performed with
Malvern Instruments Zetasizer Nano (Worcestershire, UK). All
measurements were conducted at 25- 0:1 ,C. Zetasizer APS auto-
mates measurements from samples prepared in industry standard
96- or 384-well plates and a range of concentrations for collection
of both dynamic and Static Light Scattering data. It utilizes a
k0 ¼ 830 nm (NIR) laser with output power 60 mW and analyses
scattered light at an angle of 90". The solution viscosity varies at
the high buffer reagents concentrations and therefore must be cor-
rected. The buffer viscosity estimated with help of Complex sol-
vents builder in Malvern’s DTS software was used for
calculations. The standard sample we have used is 10% (w/w) su-
crose (Sigma–Aldrich Chemical) solution diluted in Milli-Q™ water
and filtered with 20 nm Anotop filter (GE Healthcare). This partic-
ular concentration of standard sample has been measured in a Mal-
vern’s Zetasizer lV beforehand, to establish a Rayleigh ratio by
comparing its scattering with that of Toluene. The Rayleigh ratio
of standard sample was taken as Rh¼90, ¼ 2:09* 10!6 cm!1 and
its standard refractive index of nsucrose ¼ 1:35. Protein Rayleigh ra-
tios were determined after subtracting the background signal of
the buffer solution. The solvent value of n0 ¼ 1:33 for water and
specific refractive index increment for globular proteins of
dn=dc ¼ 0:185 were used for calculation of the optical constant
K ¼ 4:68* 10!8 mol cm2=g2.

We have used an alternative procedure for measuring B22 with a
DLS instrument that is equipped with an avalanche photodiode
(APD) as the scattered intensity signal detector [41]. DLS uses an
attenuator, which limits the intensity that reaches the detector
and ensures that there is no saturation on APD, in order to set
the scattered intensity at the highest sample concentration. This
setting of attenuator was then used for lower concentration dilu-
tions where appropriate attenuation of the scattering signal is pro-
vided and used to avoid detector saturation. The same samples
were measured simultaneously in both SLS and DLS mode. A single
nonassociating species was assumed to exist (checked with PdI
values), and a combination of assembly states independent of con-
centration and leading to weak reversible oligomerization was ig-
nored [36]. This is completely consistent also with the low scatter
in the molecular weight M, see Fig. 3.

For DLS and SLS measurements, a total of 15 scans, with 30 s
duration between them, were accumulated for each sample in five
replicates and the results averaged to obtain the final result and
standard error estimate. Malvern’s DTS software was used to
analyze the correlogram using a quadratic cumulant expansion

analysis [42] to obtain Dc . Data were rejected if the PdI values were
greater than 0.09 (values <0.05 indicating narrow size
distributions).

For zeta potential measurements, the sample was prepared at
low buffer ionic strength and adjusted to a concentration of
1 mg/mL. The measurements were performed with titration from
pH 3.0 to pH 9.0. The analysis was performed using a DTS1060 dis-
posable cell with monomodal mode analysis. It involves the fast
field reversal technique (FFR) to obtain mean zeta potential. Each
measurement was an average of 30 zeta potential measurements,
and results were averaged for each five independent replicates at
every pH value.

4. Results and discussion

Light scattering experiments were conducted over the pH range
of 3–10, with buffer ionic strength due to uni–uni valent NaCl solu-
tion between 15 and 175 mM. The scattering intensity data are
presented as Debye plots in Fig. 2 and as volume fraction depen-
dent diffusion coefficients Dc vs / at pH 5 for various ionic
strengths as codified by the screening parameter j. The linearity
of the Debye plots persists throughout the range of investigated
protein concentrations. The concentrations were chosen to be in
the linear regime consistent with other experiments [28]. Because
the intensity of scattered light is proportional to protein concentra-
tion and to the square of protein molecular weight, measurements
with high molecular weight components and/or at self-associating
behavior in semidilute concentration regime are problematic [41].
This hurdle was circumvented by using an attenuator to limit the
scattered intensity on the APD diode. In the future investigations,
we plan to extend measurements to the semidilute regime in order
to assess the range of linear concentration behavior and to accu-
rately determine molecular weights and possible assembly states.
There is also an interest to extract the information about both
monomeric and higher-order assembly protein states from B22 val-
ues [43].

The intersections of linear fits w.r.t the volume fraction in the
SLS mode give the molecular weight M via Eq. (15) and infinite-
dilution diffusion coefficients D0 via Eq. (16) in the DLS mode.
The data do not collapse to a single point, but can depend on elec-
trolyte concentration, type and on solution pH. This is clearly
shown in Fig. 3 where the molecular weight M and infinite-dilution
diffusion coefficients D0 are presented for each value j as function
of pH. The value of D0 was used for calculation of radius a and con-
sequently for calculation of dimensionless value ja. It was deter-
mined as the mean of intercepts at j ¼ 1:38 nm!1 for each
solution pH with value of D0 ¼ 4:43- 0:07* 107 cm2=s. This value
falls into the previously published experimental range of
4:16! 4:54* 107 cm2=s [44–47]. M and D0 seem to have a slight
ionic strength dependence through the dependence on j and a
pronounced dependence on pH. Except for small pH and for
pH ’ 9, the measured M agrees nicely with the molecular weight
calculated from the primary sequence of the protein, that is,
approximately 145* 103 g=mol.

From Fig. 3, the main variation of M and D0 is given by the
solution pH, which would imply changes in the surface charging/
adsorption equilibrium either of the mobile ions or possibly the
charged impurities in the solution. We also notice a pronounced
variation for the lowest values of pH (pH = 3–4) and j ¼
0:4 nm!1 that levels off for larger j. With increasing pH, we also
see an increase in D0 and a decrease in M for the smallest value
of j. There is a dip in both dependencies at pH = 8 that we investi-
gate further by determining the sign of the protein charge in the
zeta potential measurements. The salt dependence of the diffusion
coefficient for highly charged colloidal particles in the limit of

D. Arzenšek et al. / Journal of Colloid and Interface Science 384 (2012) 207–216 211



Author's personal copy

constant surface potential was detected and investigated before,
see Refs. [33,48,49]. It was shown that D0 passes through a mini-
mum at ja . 1 and for ja P 3D0 coincides with the Stokes–
Einstein diffusion coefficient DSE. With similar arguments, we can
extract high salt concentration bare hydrodynamic radius by
assuming that in this regime D0 ¼ DSE.

The strong effect of solution conditions, Fig. 4, on mAb dimen-
sionless second virial coefficent kS (SLS) and dimensionless hydro-
dynamic interaction parameter kD (DLS) is clearly seen by applying
Eqs. (3) and (16) to the analysis of data. The static and dynamic
measurements show two trends. For some ionic strengths, kS

shows a non-monotonic behavior, with a region of negative kS. This
first of all indicates that the electrostatic repulsion is screened with
the addition of electrolyte to the bathing solution, as well as that
the attractive van der Waals interactions can change the overall
sign of the second virial coefficient. The details of these trends
depend on different ionic strengths of the solution and are most
pronounced at low ionic strengths, suggesting that they depend

on protein surface charge as well as its sign. As ionic strength in-
creases, the pH dependence gradually levels off. One can clearly
observe a trend from positive to negative second virial coefficient
at pH P 7 when ionic strength is varied. The possible causes for
this dependence lie in the change of sign of the surface charge as
the protein has its IEP at 8.46, which is measured without consid-
ering the electrical double layer and electrokinetic effects.

The change of sign of the second virial coefficient can be inter-
preted as an indicator for incipient self-associating behavior and/or
possibly the presence of reversible assembly states. With the addi-
tion of salt, the repulsive electrostatic interactions are effectively
screened and the van der Waals driven association would ensue.

On the other hand, the behavior of the interaction parameter kD

from the DLS data has a much simpler and regular behavior, Fig. 4.
On the average, it falls off monotonically with pH for any value of
the ionic strength, eventually becoming and staying negative.
There is, however, a clear dip in the interaction parameter at the
value of pH = 9, which is again very close to the protein IEP value
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Fig. 2. Debye plots of scattering ratio Kc=Rh (left) and diffusivities Dc (right), vs protein volume fraction /. pH = 5.0 and different symbols indicate different ionic strengths as
codified by their inverse Debye length j. The error bars in Dc are relatively unnoticeable (usually smaller then the symbol size) when compared to those of Kc=Rh . Linear fits
are obtained using Eq. (15) and (16).
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Fig. 3. Molecular weight M (left) and infinite-dilution diffusion coefficient D0 (right) for each pH at different j. The lines are shown solely to guide the eyes. Nominal
molecular weight calculated from the primary sequence of the protein is obtained as 145* 103 g=mol and is indicated by a horizontal line in the graph.
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of 8.46. This non-monotonic dependence is simply an indication
that the charge of the protein changes sign at the IEP. The ionic
strength dependence of the interaction parameter at a fixed pH
shows only a monotonically decaying behavior.

In order to explain the behavior seen in the regime pH P 7,
that is, the diminishment and eventually the change of sign of
the second-order virial coefficient, one needs to invoke changes
in the effective surface charge driven by the charging equilibrium
at the surface. As will be clear when we present also the direct
measurement of the effective charge on the protein, the changes
in the charging equilibrium at the protein surface eventually lead
to a reversal of the sign of the charge. On the other hand, the
high positive values of the second virial coefficient for pH = 3.0
at j = 0.403 nm!1 (kS ¼ 1270:99 and kD ¼ 460:98) are difficult
to explain by anomalously high values of the surface charge. In
fact, even the maximum chemical charge pertaining to its pri-
mary sequence is not enough to explain the values observed.
We could rationalize this result by invoking anomalously large
scattering from a protein solution in dilute aqueous electrolyte
as is observed but not completely understood also in other cases
[50].

From the definition, Eq. (17), it is clear that kS > kD for any elec-
trolyte concentration at any pH. The direct dependence of kD on the
interaction parameters is then obtained from Eq. (18), which is
however based on additional assumptions [40,29], and has a weak-
er status then the straightforward connection between kS and the
second virial coefficient. We shall next fit both kS and kD theoretical
expressions, that is, Eqs. (13) and (14) for the former and Eqs. (19)
and (20) for the latter, to the experiment and extract the interac-
tion parameters. Rather then dealing with an unknown charge
equilibrium at the surface, we will assume the two limiting cases
of either a constant surface charge or constant surface potential
for the proteins in solution.

On Fig. 5, we present the fits of kS to the formulas Eq. (14). We
fit separately the constant charge and the constant potential cases,
Eqs. (13) and (14), giving zp and wp. The fits for pH 3.0 at low elec-
trolyte concentrations are the worst and suggest there might be
some additional features in the DLVO interaction that we did not
take into account. The point where kS changes sign depends on
the salt concentration and pH. Generally, the change in the sign
of kS occurs only for sufficiently high pH and this depends strongly
on the dissociation equilibria at the protein surface [28].

The calculated values for effective net protein charge and effec-
tive surface potential, zp and wp, as well as the Hamaker coefficient
AH are shown in Figs. 6 and 7. One needs to observe that the fits for
the constant charge have in general much better accuracy then in
the case of constant potential. The value of the surface potential for
small pH also indicates the possible breakdown of the linearized
Debye–Hückel solution and the exact values should be taken with
caution. The fitted results for the Hamaker coefficient are overall in
the range of reasonable values [24]. Though we detect some
dependence of the Hamaker coefficient on the pH of the solution,
the relative error of the fits is pronounced and when we take it into
account the pH effect mostly disappears. There is also more varia-
tion in the Hamaker coefficient as measured by DLS when com-
pared to SLS. However, this deviation is also connected with
bigger uncertainty in the fits, as can be clearly seen from Fig. 6.
The difference between the fitted value of the Hamaker coefficient
between the two methods (SLS vs DLS) could be explained by the
fact that the DLS data are connected with more theoretical uncer-
tainties of the fitted form of kD. The theoretical interpretation is
much cleaner in the case of SLS.

The effective protein charge zp or its surface potential wp de-
crease monotonically with pH up to pH = 8–9. Above this value,
the dependency becomes non-monotonic and both start increasing
with pH. This non-monotonic dependence is simply an indication
that both zp as well as wp change sign at pH ’ 8, a hypothesis that
we confirm with direct zeta-potential measurements. Expressions
for kS in both limits in fact depend quadratically on charge and/
or surface potential, thus precluding the determination of the sign.

The sign reversal of the protein charge can be due to many rea-
sons, but is most probably the effect of the charging equilibrium of
the dissociable surface amino acids that depends strongly on pH.
The change of sign allows us to estimate the IEP of the whole pro-
tein in solution, which seems to be in the vicinity of ’8, similar to
the value found in isoelectric focusing experiments, 8.46. In these
fits, we again observe a discrepancy between the fitted values ob-
tained form SLS vs DSL data, for the same reasons as discussed in
the case of analogous fits for Hamaker coefficients. Also the relative
errors in the estimated charges and potentials are much larger in
the latter case.

To check the reliability of the effective protein charge obtained
from the SLS and DLS experiments, we also measured the zeta
potential independently with an electrophoresis experiment. Zeta
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Fig. 4. Parameters kS (left) and kD (right) from Eqs. (15) and (16) as a function of solution pH and the ionic screening parameter j. The lines are shown solely to guide the eyes.
The result for pH 3.0 and j ¼ 0:40 nm!1 with kS ¼ 1270:99 and kD ¼ 460:98 was not plotted since it falls thoroughly out of range compared with other points. The error bars
in kD are relatively unnoticeable when compared to kS .
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potential itself then allows to estimate the electrokinetic charge
(the protein net charge resulting from zeta potential) and thus
the IEP [44]. The zeta potential, f, was measured using the Laser
Doppler velocimetry technique [51]. The electrophoretic mobility
leðm2=VsÞ is measured under an applied potential and converted
into f (mV) using the Henry’s equation [45]

f ¼ 3g
2ee0f ðjaÞ

le; ð22Þ

where g is the viscosity and f ðjaÞ is the Henry’s function that de-
pends on the particle shape and ionic strength of the medium. For
ja& 1; f ðjaÞ approaches 1.0 and for ja/ 1, it approaches 1.5.
For proteins in this study, assuming a constant radius
(a = 5.6 nm), f ðjaÞ ’ 1, regardless of protein concentration and/or
solution conditions. The viscosity is obtained from the Einstein rela-
tionship assuming that the measured diffusion constant D0 can be
identified as the limit of zero protein concentration.

From the zeta potential f, one then needs to calculate the elec-
trokinetic charge zf. There is no single way to do that but depends
on the level of approximation one uses for the treatment of solu-
tion ions that move with the macroion. For a uniformly charged
spherical molecule, the dependence of electrophoretic mobility
upon protein valence is given by the linearized Debye–Hückle the-
ory that leads to [44]

zf ¼
12pee0f ðjaÞa

e
* f: ð23Þ

A more accurate formula is obtained by using the full nonlinear
Poisson–Boltzmann equation that leads to the following approxi-
mate form [49]

κ κ 

Fig. 5. Left: Experimental values for kS (points) and least square fits to experimental data (lines) vs screening parameter j for different pH. Right: Experimental values for kD

(points) and least square fits to experimental data (lines) vs screening parameter j for different pH. The value for pH 3.0 at j ¼ 0:403 nm!1 is not shown because it falls out of
range. We show just a single fit for the pH = 5 data in order not to clutter the graph, thus the blue line should due compared with the blue markers. Obviously the fit to fixed
charge (thick line) as opposed to fixed potential (dotted line) fares much better. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

Fig. 6. Upper graph: Dynamic Light Scattering. Lower graph: Static Light Scattering.
Fitted Hamaker coefficient from Fig. 5. The relative error is much larger in the case
of DLS then in the case of SLS fits.

ψ

Fig. 7. Upper graph: Static Light Scattering. Lower graph: Dynamic Light Scattering.
Plots of zp and wp obtained by fitting to experimental data in two different ways:
constant charge and constant potential limits. The effective IEP ’ 8 is determined
from the zero of the zp and wp lines. The connection lines are shown to guide the
eye.
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zf ¼ ðjaÞ a
kB
* 2 sinh

ef
2kBT

" #
þ 4 tanh

ef
4kBT

" #& '
: ð24Þ

which is accurate to within 5% of the exact value for ja > 0:5.
In Fig. 8, we plotted the net charge zf obtained from Eq. (23) as

well as from Eq. (24). Both values show similar trends and a similar
estimated effective IEP, which is consistent within the limits of er-
ror for zp obtained by fitting the kS data. The kD data are further off
indicating a less accurate estimate. Nevertheless, there is a pleas-
ing qualitative consistency between all the experimental data on
the protein charge variation with pH.

Fig. 8 also shows the theoretical curve obtained form the pri-
mary sequence of the protein with the SEDNTERP utilities available
from (http://bitcwiki.sr.unh.edu/index.php/MainPage). However,
this calculation has other issues as it does not differentiate be-
tween the buried amino acids and those on the surface.

The IEP measured by isoelectric focusing is 8.46, which is higher
than 7.91 deduced from our experiments. The proteins should be
electrically neutral at pH close to IEP, but the value of le is mea-
sured at the s.c. shear plane (slipping plane), which separates the
thin layer of liquid bound to the solid surface and forms the kinetic
unit consisting of moving particles with a certain amount of the
surrounding liquid, thus suggesting that binding of counterions re-
sults in the difference between the effective IEP and the real value.

5. Conclusions

This study is primarily aimed to measure the second virial coef-
ficient and parametrize it in terms of the net charge, effective Ha-
maker coefficient, and the IEP of a therapeutical monoclonal
antibody IgG1 as probed by different experimental methods. We
used Satic Light Scattering, Dynamic Light Scattering, and electro-
phoretic mobility essay to get the second virial coefficients and

zeta potentials of the protein in various solution conditions, span-
ning the range of 0 < pH < 10 and 0:4 < j½nm!1) < 1:4. The pro-
tein volume fraction in these experiments was within the range
0 < / < 10!2. Our results give a clear insight into the biophysical
properties of this protein, which are essential for the interactions
in ionic solutions. While the effective charge of the protein controls
the repulsive forces between them, the Hamaker coefficient quan-
tifies the strength of the van der Waals interactions. By mapping
the solution parameter dependence of both characteristics, we
can get a detailed insight into solution conditions appropriate for
its aggregation and crystallization.

We found that the effective protein charge as well as the Ha-
maker coefficient both depend on the solution conditions. The
changes in the Hamaker coefficient are bounded and show a much
smaller variation for the SLS case then in the DLS case. The Ha-
maker coefficient is around 3kBT in the SLS case, whereas it shows
a steady increase with pH as well as being in general by about a
factor of 2 larger in the DLS case. Since the SLS B22 data can be
interpreted theoretically in a more reliable way, we do not attach
any particular importance to the pH variation of the DLS Hamaker
coefficient.

There is more quantitative consistency in the effective charge
data for the two complementary light scattering methods. Some
uncertainty remains in the fitting function for the DLS case where
the hydrodynamic effects are taken into account only approxi-
mately. In general, the effective charge diminishes with increased
pH, reaching the IEP at about pH ’ 8. The measured changes in
the effective charge compare very favorably with those extracted
from the zeta potential either in the linear or non-linear limit.
The zeta potential experiments also give the IEP of pH ’ 8. They
are consistent with a separate estimate of bare charge based on
the complete primary sequence of the protein.

At low pH, the effective charge of the protein is ’ þ130,
whereas the primary sequence value would be +150. For high val-
ues of pH, the charge saturates at ’ !30, whereas the primary se-
quence value can be as high as ’ !200. From a colloidal point of
view for the proteins under consideration, the electrostatic repul-
sion alone in the DLVO potential apparently provides an accurate
description of the solution behavior. This cannot be claimed for
some other proteins where the solution stability is mostly deter-
mined by water mediated short range interactions [25].

The anomalously large scattering intensity at pH = 3.0 is diffi-
cult to explain away and it is not clear at this point whether it is
due to anomalous scattering itself, or whether it reflects funda-
mental changes in the form of the DLVO interaction potential. At
this very low values of the solution pH, one could envision a hydra-
tion contribution to the interaction potential as has been invoked
before to explain anomalies in the second virial coefficient of pro-
teins but not for those values of the solution pH [25].

Parametrization of the protein interactions via the effective
charge and the Hamaker coefficient, together with their solution
properties variation, gives the potential to control the assembly
kinetics. Obviously, the most favorable region in the parameter
space for protein aggregation is connected with highest Hamaker
coefficient and/or smallest protein effective charge. In the case
considered here, this would correspond to the IEP of the protein,
as the Hamaker coefficient does not show any pronounced solution
parameter variation. Understanding the mechanisms of protein–
protein interactions in protein nucleation and growth is necessary
for fine tuning the protein assembly dynamics (precipitation or
crystallization).
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