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a b s t r a c t

Small changes in the dielectric response of a material result in substantial variations in the Hamaker
coefficient of the van der Waals interactions, as demonstrated in a simplified approximate model as well
as a realistic example of amorphous silica with and without an exciton peak. Variation of the dielectric
response spectra at one particular frequency influences all terms in the Matsubara summation, making
the total change in the Hamaker coefficient depend on the spectral changes not only at that frequency
but also at the rest of the spectrum, properly weighted. The Matsubara terms most affected by the
addition of a single peak are not those close to the position of the added peak, but are distributed doubly
non-locally over the entire range of frequencies. A possibility of eliminating van der Waals interactions or
at least drastically reducing them by spectral variation in a narrow regime of frequencies thus seems very
remote.

� 2014 Published by Elsevier Inc.

1. Introduction

There are important issues in the general theory of long-range
(macro) molecular van der Waals (vdW) forces and its applications
that are both widely misunderstood and deeply entrenched in the
colloid and nano-science community. While it is clear that in the
Lifshitz theory of vdW forces [1,2] the interaction free energy is a
functional of the dielectric response function at imaginary
Matsubara frequencies (itself a functional of the imaginary part
of the total dielectric response function via the Kramers–Kronig
relations), it is seldom appreciated exactly how this non-locality
in the dielectric response acts on the properties of vdW interaction
[7]. What is also often misunderstood are the actual quantitative
consequences of variations in the dielectric response of the inter-
acting media on the magnitude of vdW interactions.

There are two important contexts in which the appreciation of
such issues is a sine qua non for the understanding of the overall fea-
tures of the interaction between colloidal or nano-particles. In the
first case, refractive index matching, changes in the dielectric
response functions of the medium between the interacting

dielectrics are used to modify the interparticle interactions through
their vdW component [4–6,8–12]. Here one often assumes that the
dielectric response is dominated by a single absorption peak in the
VUV–UV–vis region of the optical spectrum, corresponding to
electronic properties of the material. The strength of the vdW inter-
action, as codified by the Hamaker coefficient [1], then appears as a
simple function of the difference between the squares of the refrac-
tive index of the medium and the interacting bodies [3]. This esti-
mate of the Hamaker coefficient is usually referred to as the
Tabor–Winterton approximation (TWA) [4]. If the zero-frequency
dielectric response is small, matching the refractive index at this
single absorption peak should effectively quench the long range
vdW component of molecular interactions. While a tempting sim-
plification, this can lead to gross underestimation of the overall
strength of (macro) molecular interactions, possibly precluding cor-
rect interpretation of experimental data on, e.g., wetting.

Another important context for the intricacies of non-locality in
the dielectric response function for the variation of the vdW inter-
action, and the one into which we shall delve more deeply, is the
effect of excitonic peaks in the ultraviolet and visible (UV/Vis) and
higher energy optical region of materials, such as alumina (Al2O3)
[13], silica (SiO2) [24], aluminum phosphate (AlPO4) [14], rare
gas solids such as Ne [15] and Xe [16], molecular crystals [17,18]
and single-walled carbon nanotubes (SWCNTs) [19,20]. Excitons
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introduce additional peaks in the energy range below the funda-
mental absorption edge of the material’s bandgap or slightly shift
the position of some other peaks in SWCNTs. Their importance
for the strength of vdW interaction in the context of SWCNTs re-
mains less clear. Recently Hobbie and co-workers [21] used a sim-
ple empirical approach to assess the effect of the excitonic peaks
on the strength of vdW interactions between SWCNTs. They con-
cluded that in the case of semiconducting nanotubes, neglecting
the three excitonic resonances in the optical regime reduces the
Hamaker coefficient by roughly 5%. For metallic SWCNTs, neglect
of either of these terms reduces the Hamaker coefficient by roughly
3%. In this view, excitonic effects should have a qualitatively small
but possibly measurable effect, with its exact magnitude pending
on more detailed calculations. It thus appears that the importance
of a certain spectroscopic feature in, e.g., the optical regime does
not necessarily translate directly into an equally important feature
of vdW interactions. What exactly is the connection remains
unclear.

The same problem of excitonic peaks and their influence on the
overall strength of vdW interaction appears also between
condensed media. In this case the theoretical method of choice to
evaluate the electronic properties is the orthogonalized linear
combination of atomic orbital (OLCAO) variant of density func-
tional theory (DFT), which uses local atomic orbitals for the basis
expansion rather than the plane waves [22]. This methodology for-
mulated on a one-electron level of course precludes the inclusion
of many-body excitonic corrections, as they are not compatible
with the OLCAO-DFT context and may lead to concerns about the
underestimation of the band gap as well as a possible rescaling
of the complete spectrum. This necessarily implies modifications
in the overall magnitude of the vdW interactions between the con-
densed media. As an example of OLCAO-DFT type of calculation,
one can consider the frequency-dependent dielectric function of
amorphous silica [23] that can be compared with direct experi-
ments [24]. This comparison shows that the one-electron level OL-
CAO-DFT calculations cannot reproduce the measured excitonic
peak. Again the question remains of how relevant this omission
is for the quantitative evaluation of the corresponding strength
of the vdW interaction [7].

In order to address all these issues, we will investigate in detail
the effect of variation in the optical properties of the dielectric re-
sponse function over an interval of frequencies on the strength of
the vdW interactions as quantified by the Hamaker coefficient.
We will confine ourselves to the non-retarded regime as well as
to planar interaction geometry, but the analysis can be straightfor-
wardly repeated also for, e.g., small spherical particles or, in fact,
for any geometry for which there are explicit Lifshitz results [1].
We will first analyse a simple model for the variation of the
dielectric response function and then apply the general theory to
an actual dielectric response spectrum with/without the excitonic
peak and assess the variation wrought by changes in the dielectric
spectrum on the corresponding Hamaker coefficient.

2. Interaction free energy variation: general

Assume that the spectral response of two interacting planar
dielectric surfaces is changed from eðxÞ ! eðxÞ þ deðxÞ. The
Kramers–Kronig (KK) transform that enters the vdW interaction
free energy is defined as [27]

eðifÞ ¼ 1þ 2
p

Z 1

0

xe00ðxÞ
x2 þ f2 dx; ð1Þ

with e00ðxÞ the imaginary part of eðxÞ ¼ e0ðxÞ þ ie00ðxÞ. Quite
generally eðifÞ is a real, monotonically decreasing function of its
argument f. It follows from the Lifshitz theory of vdW interactions

[25] that the corresponding interaction free energy change is then
defined as dG ¼ G½eðifÞ þ deðifÞ� � G½eðifÞ�. For the planar case of
vdW interaction between two semi-infinite layers, one obtains to
the lowest (linear) order in the dielectric response change de the
simple result [25]

dG ¼ � kBT
4p

X10
N¼0

f2
N Tr

Z
ðVÞ
DikðifN; r; rÞd

3r

 !
deðifNÞ

¼ � kBT
4p

S
X10
N¼0

f2
N Tr

Z
ðzÞ
DikðifN; z; zÞdz

 !
deðifNÞ; ð2Þ

where the last identity in the above equation stems from the pre-
sumed planar geometry with surface area S of the interacting inter-
faces. Dikðx; r; r0Þ is the retarded frequency domain dyadic Green’s
function of the electromagnetic field. The sum is over the Matsubara
frequencies, fN ¼ 2pNkBT=�h, where N is an integer, and the N ¼ 0
term is counted with a weight 1=2. At room temperature the thermal
Matsubara frequencies are a multiple of 2:4� 1014 s�1 and/or
0:025 eV and thus cover the whole frequency regime rather un-
evenly. While only a single fN , i.e. f0, corresponds to the static re-
sponse, several for the IR frequencies and a whole band of
Matsubara frequencies fall within the optical and UV regimes, it is
inadmissible to conclude from this that the optical and UV regimes
therefore typically dominate the properties of the vdW interaction.
This interaction is a functional of eðifNÞ and not eðfNÞ. Because of this
non-locality, variation in the spectral properties of the interacting
media at a certain frequency is not directly related to the correspond-
ing frequency term variation in the Matsubara summation over N.

Limiting ourselves to the non-retarded case of planar parallel
interfaces between two semi-infinite media separated by distance
D with dielectric response function eðxÞ and an intervening med-
ium of emðxÞ, the vdW interaction free energy GðDÞ per unit surface
area S in the non-retarded limit is given by

GðDÞ
S
¼ � A
ð12pD2Þ

where A, the Hamaker coefficient, is defined as

A ¼ �3
2

kBT
X10
N¼0

Li3ðD2
12ðifNÞÞ ¼

X10
N¼0

AðifNÞ; ð3Þ

with the dielectric contrast given by

D12ðifNÞ ¼
eðifNÞ � emðifNÞ
eðifNÞ þ emðifNÞ

� �
: ð4Þ

The polylog function LimðzÞ is defined in a standard way [26] and the
KK transforms eðifÞ as well as emðifÞ have been introduced in Eq. (1).
The variation of this interaction free energy corresponding to a
small variation in the dielectric response functions of the interact-
ing bodies can then be obtained formally from the limit c!1 in
Eq. (2), as

d
GðDÞ

S

� �
¼� kBT

8pD2

X10
N¼0

Li2 D12ðifNÞ2
� � 1�D12ðifNÞ2

� �
D12ðifNÞ

deðifNÞ
�ðifNÞ

¼� dA
12pD2 ;

ð5Þ

where Li2ðxÞ is the dilogarithm function and the variation of the Ha-
maker coefficient is given by

dA ¼ 3
2

kBT
X10
N¼0

dAðifNÞ: ð6Þ

Above dAðifNÞ is the partial contribution to the full Hamaker coeffi-
cient at the Matsubara frequency fN whose definition is obvious
from comparison with Eq. (5).
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We next investigate the dependence of the terms in the above
Matsubara sum on the value of the frequency. While the relative
change in the dielectric response function deðifÞ=eðifÞ is a mono-
tonic function, the factor multiplying it in Eq. (5),

Li2 D12ðifÞ2
� �

1� D12ðifÞ2
� �

=D12ðifÞ, is not. As a consequence, the

contribution of the various terms, dAðifNÞ, to the total Matsubara
sum has a maximum whose position depends on the exact form
of deðifÞ and eðifÞ. This can make the connection between the var-
iation in the dielectric spectrum and the corresponding variation in
the vdW interaction free energy quite complicated.

3. Interaction free energy variation: a simple model

In order to analyze dAðifÞ, we need a form for the frequency
dependence of the dielectric function. For this we introduce a sim-
ple model that will reveal the salient features of the more realistic
problem addressed later.

We assume a dielectric response eðxÞ for the two semiinfinite
dielectric regions, with its imaginary part equal to e00ðxÞ that we
then modify to eðxÞ þ deðxÞ by addition of a single narrow absorp-
tion peak, centered at the frequency x0 with an area under the
peak equal to A, approximated as de00ðxÞ ¼ Adðx�x0Þ. Therefore

x0 ¼
R1

0 xde00ðxÞdxR1
0 de00ðxÞdx

: ð7Þ

This defines our simple model. Later we will upgrade it to a realistic
calculation for amorphous silica with and without the excitonic
peak.

From these model assumptions, we then obtain the relevant KK
transforms as

eðifÞ ¼ 1þ 2
p

Z 1

0

xe00ðxÞ
x2 þ f2 dx ¼ 1þ ~eðifÞ ð8Þ

and

deðifÞ ¼ 2
p

Z 1

0

xde00ðxÞ
x2 þ f2 dx ¼ 2

p
A=x0

1þ f=x0ð Þ2
: ð9Þ

Obviously the transform deðifÞ of the dielectric response function
depends on f=x0 and A=x0 as scaling variables.

Assuming furthermore for convenience that the medium is a
vacuum, em � 1, we then have

D12ð~eðifÞÞ ¼
~eðifÞ

2þ ~eðifÞ : ð10Þ

What we are looking for now is the change in vdW interaction free
energy as the x0 peak is added, viz. as the dielectric response
changes from eðifÞ ¼ 1þ ~eðifÞ to eðifÞ ¼ 1þ ~eðifÞ þ deðifÞ.

We proceed with some general observations. The expression for
the KK transform Eq. (8) has the following two limits for f! 0 and
f!1, respectively

eðifÞ ’
1þ 2

p

R1
0 x�1e00ðxÞdx ¼ 1þ 2

p C
1þ 2

p f�2 R1
0 xe00ðxÞdx ¼ 1þ f�2 2

p C
0

(
: ð11Þ

where we introduced

C ¼
Z 1

0
x�1e00ðxÞdx ¼ p

2
ðeð0Þ � 1Þ

C0 ¼
Z 1

0
xe00ðxÞdx ¼ p

2
x2

p ð12Þ

These two quantities are obviously connected with the dielectric
response sum rules [27]. In the first integral we recognize the static
limit sum rule, with eð0Þ the static dielectric constant. For sub-
stances with the lowest absorption frequency in the optical (visible

and UV) region, the static dielectric constant is equal to the square
of the optical refraction index. In the second integral we recognize
the oscillator strength sum rule (for details see Ref. [27]), where xp

is the plasma frequency depending on the effective number of elec-
trons used in transitions at all energies.

The two limits in Eq. (11) then suggest a convenient approxima-
tion covering the whole range of frequencies that will allow us to
analyze the corresponding vdW interaction free energy. It has the
form

~eðifÞ ’ ðeð0Þ � 1Þ
1þ f=x0ð Þ2 x0= ~xð Þ2

; ð13Þ

with ~x2 ¼ C0=C. This approximation is, in fact, quite accurate as long
as the dielectric response is given by a single band of frequencies in
the optical and/or UV regimes. It becomes inadequate when there
are contributions to e00ðxÞ also from the IR and MW regimes. In that
case, one should simply revert to the exact definition Eq. (8). From
the sum rules [27], it follows that ~x can be written explicitly as

~x2 ¼
R1

0 xe00ðxÞdxR1
0 x�1e00ðxÞdx

¼
x2

p

ðeð0Þ � 1Þ ; ð14Þ

and is thus obviously equal to hx2i for the spectral distribution
x�1e00ðxÞ. r2 ¼ ðx0= ~xÞ2 thus equals the square of the ratio of the
position of the additional peak and the width hx2i of the underlying
spectrum.

We expressed the f dependence in terms of the dimensionless
variable ðf=x0Þ because of the assumed form of deðifÞ, Eq. (9), that
depends on this dimensionless combination. Therefore ~eðifÞ as well
as the variation in the Hamaker coefficient, Eq. (5), both depend on
the static dielectric constant eð0Þ � 1 and the ratio r.

Having the explicit form of ~eðifÞ, we can now calculate the
dependence of dAðifÞ on the ratio f=x0 for r ¼ 1 (see Fig. 1(a)). This
dependence shows a maximum that depends on the values of
ðeð0Þ � 1Þ and the ratio r. Obviously as ðeð0Þ � 1Þ grows past a fixed
value, found numerically to be C0 ’ 4:7 (see below) for r ¼ 1, the
maximum of dAðifÞ is displaced from f ¼ 0 to non-zero values. This
means that the maximum contribution to the vdW interaction free
energy is given by the zero frequency term for ðeð0Þ � 1Þ < C0 and
then depends monotonically on ðeð0Þ � 1Þ for larger values. In fact,
indeed Max dAðifÞð Þ on ðeð0Þ � 1Þ bears a striking formal resem-
blance to the temperature dependence of the order parameter
close to a second order phase transition [29].

Fitting the calculated dependence of Max dAðifÞð Þ for r ¼ 1 on
ðeð0Þ � 1Þ, it is possible to extract the following behavior for the
frequency of this maximum, fmax:

fmax �
0; ðeð0Þ � 1Þ < C0

x0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðeð0Þ � 1Þ � C0

p
; ðeð0Þ � 1ÞP C0;

�

where C0 ¼ 4:7 can be read off Fig. 1(a). Obviously, spectra with
ðeð0Þ � 1Þ > 4:7 would lead to a maximum in the vdW interaction
free energy variation at frequencies that scale linearly with x0. Fur-
thermore, the numerical coefficient in Eq. 15 as well as C0 are both
functions of the ratio r. The dependence of fmaxðeð0Þ � 1; rÞ is pre-
sented in Fig. 1(b). It is clear that C0 changes only marginally for
r > 2 but has an important effect for r < 1. Apart from this, qualita-
tively, the functional form of fmax is very similar in the whole
parameter space. It is indeed quite unexpected that the effect of
addition of a lone peak to the dielectric spectrum would affect the
different Matsubara terms of the vdW interaction free energy in
such a non-monotonic fashion.

The relation between the spectral change and the Matsubara
frequency at which there is the largest change of the vdW interac-
tion free energy is thus quite complicated and extremely indirect.
It depends on overall properties of the complete dielectric spec-
trum as exemplified by ðeð0Þ � 1Þ and r. Though these results can
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be derived explicitly only for the very simple model explained
above, the salient features revealed remain true even in more real-
istic cases, as we will elucidate below.

4. Interaction free energy variation: realistic spectrum variation

We now apply our general formulation of the dielectric re-
sponse variation and the consequent vdW interaction free energy
variation to the case of an exciton peak in amorphous silica. This
is aimed at elucidating the often posed, but never properly an-
swered, question of what exactly is the effect of addition or re-
moval of a single sharp (exciton) peak on the vdW interaction
free energy.

For the non-perturbed dielectric dispersion spectrum, we take
the imaginary part of the dielectric permittivity, �00ðxÞ, of amor-
phous silica, as calculated with the OLCAO-DFT methodology by
Li and Ching [23]. Being a one-electron approximation, the calcu-
lated spectrum does not contain any exciton effects; the corre-
sponding peak measured by Tan et al. [24] is missing. In order to
simulate an additional excitonic peak, we next synthesize a modi-
fied spectrum by adding a Lorentz oscillator peak just below the
fundamental absorption edge of the OLCAO-DFT calculated dielec-
tric dispersion spectrum, at a frequency �hx0 ¼ 8:21 eV. The magni-
tude, position, and full width at half maximum (FWHM) of this
Lorentz oscillator peak were determined by comparison with
experimental spectra [24], so that the ratios of both the position
and magnitude of the exciton peak to the first interband transition
peak were the same in the experimental spectrum and our synthe-
sized spectrum. The FWHM of the added Lorentz oscillator peak is
the same as that of the exciton peak in the measured spectrum. Fi-
nally, the whole synthesized spectrum was rescaled so that the to-
tal oscillator strength of the spectrum was unchanged by the
addition of the Lorentz oscillator peak and that the number of elec-
trons does not depend on the way the spectrum is constructed: the
number of electrons involved in transitions up to a certain suffi-
ciently large energy is fixed for a given real material [27].

From Fig. 2(a) we discern that the addition of the Lorentz oscil-
lator peak affects all or most of the imaginary part of the dielectric
spectrum. The imposition of the oscillator strength sum rule has
the most significant effect only in a narrow frequency interval

centered around the fundamental absorption edge, showing a
weak tail at larger frequencies. As expected, the corresponding
KK transform of the dispersion spectrum eðifÞ shown in Fig. 2(b)
shows the largest variation close to the static f ¼ 0 region but
has a finite variation distributed throughout the whole range of
imaginary frequencies. Obviously the non-local connection be-
tween e00ðxÞ and eðifÞ, provided by the KK transform, Eq. (1), shows
up in their quite distinct dependence on the addition of an extra
Lorentz oscillator peak.

The effect of peak addition on the corresponding terms in the
Matsubara sum for the non-retarded Hamaker coefficient (Eq.
(6)) is shown in Fig. 3. Clearly, the largest variation of about 10%
is observed for lowest Matsubara terms, closest to the static limit.
We are thus in the fmax ¼ 0 limit, see Fig. 1.

After summing up the Matsubara terms, the total change of
the Hamaker coefficient amounts to dA ¼ �5:03 zJ and is propor-
tional to the area between the two curves in Fig. 3. The value of
the Hamaker coefficient for the original spectrum is 84.9 zJ. The
relative change in the Hamaker coefficient is thus �6%. Consider-
ing that this change is due to the presence of a single narrow
Lorentzian peak in the dielectric spectrum of the interacting
material, it is non-negligible. Addition of multiple peaks would
simply contribute additively to the overall change of the Hamaker
coefficient.

We now modify the unperturbed calculated dielectric disper-
sion spectrum by adding a Lorentz oscillator peak at variable fre-
quency positions, thus avoiding the constraint that the simulated
excitonic peak should be just below the fundamental absorption
edge. Again the FWHM and the oscillator strength of these added
Lorentz oscillator peaks were taken from experimental spectra
[24], while the position was chosen arbitrarily. The background
spectrum was multiplied by a scaling factor so that that the oscil-
lator strength at 43 eV (6:88� 1016 s�1) for the original spectrum
with the additional Lorentzian peak matches the oscillator strength
at 43 eV from the experimental spectrum as measured in Ref. [24].
This guarantees that the effective number of electrons up to and
including the energy 43 eV remains invariant.

In general the effective number of electrons up to and including
the energy �hx is related to the oscillator strength sum rule and is
given by

(a) (b)
Fig. 1. (a) The function dAðifÞ, Eq. (5), for six different values of ðeð0Þ � 1Þ (from 2 to 12, top to bottom) as a function of ðf=x0Þ. With increase of ðeð0Þ � 1Þ the maximum
(purple squares) moves from zero frequency toward non-zero values. The inset shows the complete dependence of the maximum of dAðifÞ; fmax , on ðeð0Þ � 1Þ. For this
calculation, we took r ¼ x0= ~x0 ¼ 1. (b) Contour plot of Max dAðifÞð Þ as a function of ðeð0Þ � 1Þ as well as r ¼ x0= ~x. The inset in (a) is obtained by cutting the contour plot (b)
with a horizontal plane at r ¼ 1. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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neff ðxÞ ¼
m0

2p2�he2
0

Z �hx

0
ue00ðuÞdu: ð15Þ

From Fig. 4(a) it is obvious that neff ðxÞ for a synthesized spectrum
becomes effectively identical to the background spectrum without
the exciton peak at energies above the added peak. Because the
oscillator strength of a given dielectric response feature is depen-
dent on the energy at which that feature occurs (hence the above
integrand of ue00ðuÞ rather than simply e00ðuÞ), the added exciton
peaks vary in magnitude despite having their oscillator strength
invariant, i.e., lower energy peaks are larger than high energy ones
despite representing the same number of electrons involved in tran-
sitions over their given energy range.

Fig. 4(a) shows the imaginary part of the dielectric spectra for
various peak positions as obtained from the aforementioned
rescaling as well as their energy dependent oscillator strengths.
At energies above the added Lorentzian peak the oscillator strength
becomes universal. The Matsubara frequency components of the
Hamaker coefficient are shown in Fig. 4(b). A broad range of

behaviors is observed for the latter, but overall one notices that
the peak position at lower x0 leads to larger changes in the Ha-
maker coefficient.

Because of the rescalings implicit in the synthetic spectrum, in
order to satisfy the sum rule up to the highest value of the fre-
quency at which data are available for both spectra, the ab initio
and the experimental results, i.e., 43 eV or 6:88� 1016 s�1, the fre-
quency variation of the Matsubara terms in the Hamaker coeffi-
cient depends on the position of the peak. For different peak
positions the corresponding relative changes in the full Hamaker
coefficients are given in Table 1. We can thus conclude that the
simulation of spectra with an added peak confirms the insight of
the model that the addition of peaks at smaller characteristic fre-
quency x0 and larger FWHM have a more pronounced effect on
the Hamaker coefficient, and make it larger. In fact, one can deduce
that the relative changes in the Hamaker coefficient are propor-
tional to FWHM of the added peak and inversely proportional to
its frequency x0.

4.1. Discussion

Because the vdW interaction free energy is a functional of the
KK transform, itself a functional of the imaginary part of the dielec-
tric function, the relationship between the characteristics of an
added peak in the e00ðxÞ and the Matsubara frequency components
of the Hamaker coefficient closest to that frequency is not direct. In
fact, the Matsubara frequency component at which the largest
change to the Hamaker coefficient occurs varies non-linearly with
the frequency of the added peak and depends in a complicated way
on the properties of the original spectrum. The overall variation in
the Hamaker coefficient is then proportional to the full width at
half maximum of the added peak and inversely proportional to
its frequency. Its total relative change spans values from a few
and up to �10%, depending on the characteristics of the added
peak. In the case of more complicated variations of the dielectric
response, corresponding to addition of several peaks, the total var-
iation equals the sum of variations for individual peaks and can be
quite large.

In order to estimate quantitatively the effect of a single peak
addition we synthesized a modified spectrum of amorphous silica
by adding a Lorentz oscillator peak just below the fundamental

(a) (b)
Fig. 2. (a) The dielectric dispersion spectrum �00ðxÞ as a function of frequency x in eV for amorphous silica without the exciton peak (blue line) and with a simulated exciton
peak (green line). The inset shows the difference between the two spectra as a function of frequency. (b) The KK transform �ðifNÞwithout (blue line) and with (green line) the
exciton peak, as a function of the Matsubara index N of fN . The inset again shows the difference. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Fig. 3. The variation of the different Matsubara frequency components in the
Hamaker coefficient AðifNÞ from Eq. (3) for the two spectra from Fig. 2. The x-axis
shows the index N of the Matsubara frequencies fN . The biggest change is associated
with the lowest frequency terms. The change in the Hamaker coefficient dAðifNÞ
from Eq. (6) is shown in the inset as a function of the Matsubara frequency
components.
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absorption edge of the OLCAO-DFT calculated dielectric dispersion
spectrum. For the added exciton peak at 8.21 eV the calculated
change in the Hamaker coefficient was established accurately to
be 6%. The spectrum was synthesized in such a way that the total
oscillator strength neff ðxÞ up to 43 eV is held invariant for each
spectrum at 12.173 electrons per formula unit of SiO2. An added
peak sweeps up 0.2814 electrons per formula unit from across
the whole spectrum into the vicinity of that peak, relocating
2.31% of the total oscillator strength of the material. Therefore
the change in Hamaker coefficient of 6% is quite significant, not
only because this change is seen despite oscillator strength being
held invariant, but doubly so because of how little oscillator
strength was actually relocated into this added excitonic peak.

A secondary effect of adding features to the e00ðxÞ spectrum is a
change in the visible range index of refraction, nvis. This follows di-
rectly from the KK transform which links the real and imaginary
parts of any physical variable that obeys causality. Table 1 shows
the effect on nvis ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e0ðxvisÞ

p
evaluated at �hxvis ¼ 2 eV from the

addition of each peak. Because the dispersive and absorptive opti-
cal properties of a given system are inextricably linked in this man-
ner, any change in the index of refraction (or, equivalently, e0ðxÞ) of
a material necessarily results in a change of the e00ðxÞ spectrum as
well, and thus a change in the Hamaker coefficient for a given sys-
tem. In this manner the index-matching approach to eliminating
vdW forces in a system is not totally misguided; however, the im-
plied mechanism is erroneous and the results are imprecise.

Previous results have shown that, in real materials, it is neces-
sary to include transitions up to approximately 20 eV in order to
make a reasonable estimate of the Hamaker coefficient for that sys-
tem [28]. Neglecting features at these higher energies has the

consequence of significantly underestimating the strength of
vdW-Ld interactions. This further highlights the danger of index-
matching approaches that extrapolate results from low-energy
data: without sufficient knowledge of high-energy spectral
features in a material, it is not possible to calculate Hamaker coef-
ficients with any accuracy.

4.2. Conclusions

Our calculations of a simplified approximate model as well as of
a realistic example of amorphous silica spectrum with and without
an exciton peak indicate that even small changes in the dielectric
response can show up as substantial variations in the Hamaker
coefficient of the vdW interactions. However, caution needs to be
exercised in making estimates of these variations. VdW interac-
tions are non-local in the frequency response: first through the
summation over the Matsubara frequencies in the Lifshitz theory,
and then through the imaginary part of the total dielectric re-
sponse function via the KK relations. This means that a variation
of the dielectric absorption spectrum at one particular frequency
influences all the terms in the Matsubara summation of the vdW
interaction energy, making the total change in the Hamaker coeffi-
cient depend not only on the spectral changes at that frequency,
but also at the rest of the spectrum properly weighted. For exam-
ple, the Tabor–Winterton approximation would suggest that
matching the refractive index at a single absorption peak should
effectively quench the long range vdW component of molecular
interactions. Our detailed calculations prove that this is certainly
not the case.

While it is true that addition of a single peak in the dielectric
absorption spectrum can induce a substantial change in the magni-
tude of vdW interactions, the Matsubara terms that are most af-
fected are not those close to the position of the added peak but
are distributed over the whole interval of frequencies and can
show a maximum whose position is not directly related to the po-
sition of the added peak. A possibility of eliminating vdW interac-
tions or at least drastically reducing them by spectral variation in a
narrow regime of frequencies thus seems very remote.

Some care is therefore necessary when estimating and/or pre-
dicting changes in the vdW interactions wrought by changes in
the dielectric spectrum. There is no linear correspondence between

(a) (b)
Fig. 4. (a) The background dielectric dispersion spectrum �00ðxÞ of amorphous silica without the exciton peak in the frequency interval 5–30 eV, (black line), and the
synthesized spectrum with an added (exciton) Lorentzian peak at various frequencies in units of eV. The dashed curves represent neff ðxÞ as a function of frequency for each
spectrum. (b) Different Matsubara frequency components as well as their change (inset), as in Fig. 3, both as a function of the Matsubara frequency index. The biggest change
is associated with the low frequency terms and peak position at lower frequencies. Lower energy peaks are larger than high-energy ones despite representing the same
number of electrons involved in transitions over their given energy range (see main text).

Table 1
Position of the added (excitonic) peak, index of refraction, nv is ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e0ðxvisÞ

p
, at

�hxv is ¼ 2 eV, and the corresponding relative change of the Hamaker coefficient. The
index of refraction for the background dispersion spectrum is 1.5222.

x0 (eV) 4.2 6.2 8.2 10.2 13.2 18.2
x0 (�10�16 s�1) 0.638 0.942 1.245 1.549 2.005 2.764
nv is 1.7065 1.5926 1.5566 1.5404 1.5289 1.5209
dA=A (%) 16.2 9.4 5.9 3.8 1.8 �1
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the interaction free energy variation and the spectral properties of
the interacting media.
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