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We study the distribution of multivalent counterions next to a dielectric slab, bearing a quenched,
random distribution of charges on one of its solution interfaces, with a given mean and variance,
both in the absence and in the presence of a bathing monovalent salt solution. We use the previ-
ously derived approach based on the dressed multivalent-ion theory that combines aspects of the
strong and weak coupling of multivalent and monovalent ions in a single framework. The presence
of quenched charge disorder on the charged surface of the dielectric slab is shown to substantially
increase the density of multivalent counterions in its vicinity. In the counterion-only model (with no
monovalent salt ions), the surface disorder generates an additional logarithmic attraction potential
and thus an algebraically singular counterion density profile at the surface. This behavior persists
also in the presence of a monovalent salt bath and results in significant violation of the contact-
value theorem, reflecting the anti-fragility effects of the disorder that drive the system towards a
more “ordered” state. In the presence of an interfacial dielectric discontinuity, depleting the coun-
terion layer at the surface, the charge disorder still generates a much enhanced counterion density
further away from the surface. Likewise, the charge inversion and/or overcharging of the surface
occur more strongly and at smaller bulk concentrations of multivalent counterions when the surface
carries quenched charge disorder. Overall, the presence of quenched surface charge disorder leads to
sizable effects in the distribution of multivalent counterions in a wide range of realistic parameters
and typically within a distance of a few nanometers from the charged surface. © 2014 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4898663]

I. INTRODUCTION

Nature is not perfect and various types of disorder are
ubiquitous. Disorder often causes large changes in the prop-
erties of condensed matter systems as predicted on the ba-
sis of naive idealized models that assume perfect regu-
larity. Electron properties in two-dimensional1 and three-
dimensional disordered media,2, 3 crystalline lattices with
structural defects,4, 5 spin glasses with random interactions,6, 7

and systems exhibiting criticality modified by the presence of
disorder,8 are all instances of pronounced disorder effects in
the bulk of the materials that can fundamentally change the
behavior of idealized model systems. Apart from their fun-
damental importance in modifying the bulk properties, disor-
der effects at surfaces and interfaces are particularly impor-
tant in the context of the solid-electrolyte interphases9, 10 rele-
vant also for energy generation and storage technologies.11, 12

The structural disorder in the charge distribution and/or di-
electric response spatial profile in the vicinity of the mate-
rial interfaces couple to long-range electrostatic interactions,
leading effectively to long-range disorder effects as well,13–23

that cannot be understood in terms of the usual assumptions
of piecewise homogeneous charge distribution and/or dielec-

a)Email: a.naji@ipm.ir

tric properties, underpinning so much of colloid science and
electrochemistry.24–29

The coupling between electrostatic interactions and dis-
order has been already noted and discussed in other impor-
tant cases,30–46 including surfactant-coated surfaces,32–36 ran-
dom polyelectrolytes and polyampholytes,41–44 and contami-
nant adsorption onto macroscopic surfaces or in amorphous
films showing grain structure after being deposited on crys-
talline substrates.47 In all these cases the charge distribution
often shows a fundamentally disordered component that often
remains unaltered after the assembly or fabrication of the ma-
terials, thus exhibiting a frozen, or quenched, type of disorder
(see, Refs. 19, 20, 44–46, and 48–51 for examples of surfaces
with annealed charge distributions that will not be considered
in this paper). This charge disorder coupled to the long-range
electrostatic interactions can then leave its fingerprint also on
the interactions between macromolecular surfaces that in their
turn can play a fundamental role in the stability of colloidal
systems.14–16

In fact, this coupling between disorder and Coulomb
interactions has been suggested to underlie the anomalously
long-ranged interactions observed in ultrahigh sensitivity
experiments on Casimir-van der Waals interactions between
surfaces in vacuo.52–56 The intricate experimental details of
accurate measurements of these interactions can be properly
accounted for only if one considers also the disordered nature
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of charges on and within the interacting surfaces by invoking
the so-called patch effect,13, 17–23, 52–58 where the disorder
stems, for instance, from the adsorption of charged con-
taminants and/or impurities that can give rise to monopolar
random surface charges, and/or the variation of the local crys-
tallographic axes of the exposed surface of a clean polycrys-
talline sample and the corresponding electron work function
that can cause a variation of the local surface potential. Such
random distributions of surface charges can be measured
directly by Kelvin force microscopy measurements.59

The salient features of electrostatic interactions them-
selves, even for homogeneous charge distributions in the
absence of any disorder, are however quite involved (see,
e.g., Refs. 13, 24–29, and 60–73, and references therein).
It has been recognized some time ago that electrostatic in-
teractions in fact come in several varieties, depending on
the strength of electrostatic coupling in the system.65–73 In
the presence of mobile monovalent counterions, they are
standardly described by the Poisson-Boltzmann (PB) the-
ory stemming from the mean-field, collective description of
Coulomb fluids13, 24–29, 61–63 that gives rise to pronounced re-
pulsive interactions between like-charged macromolecules
(such as polymers, colloids, and nano-particles). On the con-
trary, in the presence of multivalent counterions, electro-
static interactions exhibit basically a single-particle charac-
ter and mediate strong attractive interactions between like-
charged macromolecules.65–73 This attraction led to a new un-
derstanding of the theory of electrostatic interactions in col-
loidal domain based on the strong-coupling (SC) limit,71–73

devised to describe the equilibrium properties of Coulomb flu-
ids when charges involved become large. In the simple case of
a counterion-only system, the transition from the mean-field
PB description, dubbed also the weak-coupling (WC) limit, to
the SC limit is governed by a single dimensionless electro-
static coupling parameter,67–73 being a ratio of the Bjerrum
length, which identifies Coulomb interaction between coun-
terions themselves, and the Gouy-Chapman length, which de-
scribes electrostatic interaction between the counterions and
the charged (macromolecular) surfaces. The emerging pic-
ture of equilibrium properties of Coulomb fluids has thus be-
come much richer than conveyed for many years by the stan-
dard Derjaguin-Landau-Verwey-Overbeek (DLVO) paradigm
of colloid science.24–29

However, this is still not the complete story. The most
relevant case of a Coulomb fluid is in fact not a counterion-
only system, but an asymmetric mixture of multivalent ions in
a bathing solution of monovalent ions, a particularly relevant
situation specifically in the context of bio-macromolecules,
where multivalent ions together with the screening properties
of the monovalent salt are believed to play a key role in the
stability of macromolecular aggregates such as liquid crys-
talline mesophases of semiflexible biopolymers,74–76 or DNA
condensates that form in the bulk77–83 or within viruses or
virus-like nano-capsids.84–86

In an asymmetric mixture, multivalent counterions and
monovalent ions are coupled differently to the macromolec-
ular charges: multivalent ions strongly, while monovalent
ions only weakly, as evidenced from their respective elec-
trostatic coupling parameters. Since usually multivalent ions

are present at very low concentrations, e.g., around just a
few mM, their behavior is expected to be properly described
within the virial expansion in powers of their fugacity (or
bulk concentration).67–71, 87–89 A dressed multivalent-ion the-
ory then emerges naturally within this context69, 87–91 since the
degrees of freedom due to weakly coupled monovalent ions
can be traced out from the partition function, leading to an ef-
fective formalism based on screened interactions between the
remaining dressed multivalent ions and fixed macromolecular
charges. The dressed multivalent-ion theory for complicated
asymmetric mixtures of multivalent ions in a bathing solution
of monovalent ions can then seamlessly bridge between the
standard WC and SC limits.69, 87–89

These baroque features of electrostatic interactions
furthermore give their imprint also on the effects of
disordered charge distribution along macromolecular
interfaces.13–16, 30–46, 48–51 While on the WC level and for
homogeneous planar systems the quenched disorder effects
are nonexistent,14 they can lead to qualitative changes in the
stability properties of the system once the dielectric contrast
between the solution and macromolecular interfaces (or the
inhomogeneous distribution of salt ions) is taken fully into
account.13, 15, 17–23, 37 Nevertheless, it is in the SC limit that the
coupling between electrostatic interactions and the quenched
disorder in the external interfacial charge distributions gives
rise to fundamentally novel and unexpected phenomena.14, 16

While studying the interaction between two disordered
charged surfaces it was noticed14, 16 that disorder can in fact
lead to a lowering of the effective temperature of the system,
engendering a distribution of the multivalent counterions
between the interacting surfaces that is characterized by
less effective entropy. This is intuitively difficult to foresee,
as one would perhaps naively assume that thermal and
externally imposed charge disorder would somehow enhance
one another.

In order to properly understand and identify all salient
features of the coupling between quenched charge disorder
and long-range electrostatic interactions, we now proceed to
characterize more closely the consequences of coupling be-
tween charge disorder and electrostatically strongly coupled
multivalent counterions immersed in a monovalent salt solu-
tion bath. In particular, we will identify the defining feature
of this strongly coupled, disordered system as belonging to
the anti-fragility92 exhibited by this system. In the present
context, anti-fragility simply refers to the fact that an ex-
ternally imposed, quenched charge disorder, effectively di-
minishes the intrinsic thermal disorder in the system, forc-
ing its behavior to be more “ordered.” We will show that
this behavior stems from the interplay between the transla-
tional entropy of the multivalent counterions and the config-
urational entropy due to the averaging over different realiza-
tions of the quenched disorder. In the particular example of
the counterion-only model (with no monovalent salt ions and
no interfacial dielectric discontinuity), we show that multiva-
lent counterions experience an additional logarithmic attrac-
tion towards the surface due to the presence of the surface
charge disorder in a way that their density profile exhibits an
algebraically singular behavior at the surface with an expo-
nent that depends on the disorder strength (variance). This
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behavior persists also in the presence of a monovalent salt
bath and results in significant violation of the contact-value
theorem.93–96 In the presence of an interfacial dielectric dis-
continuity, depleting the counterion layer at the surface, the
charge disorder still generates a much enhanced counterion
density further away from the surface. Likewise, the charge
inversion and/or overcharging of the surface are predicted to
occur more strongly and at smaller bulk concentrations of
multivalent counterions when the surface carries quenched
charge disorder.

The organization of the paper is as follows: In Sec. II, we
introduce our model and then in Sec. III present the theoret-
ical formalism that will be used to study the distribution of
multivalent counterions next to a randomly charged dielectric
interface. We then proceed to present our results in Sec. IV,
where we discuss the case of counterion-only systems and the
effects due to the presence of a bathing salt solution, an inter-
facial dielectric discontinuity, and also the overcharging and
charge-inversion phenomena in the system. We conclude our
discussion in Sec. V.

II. THE MODEL

Our model is comprised of an infinite, planar dielectric
slab of thickness b and dielectric constant εp, immersed in a
bathing ionic solution of dielectric constant εm (see Fig. 1).
The ionic solution is assumed to consist of a mixture of a
monovalent 1:1 salt of bulk concentration n0 as well as of a
multivalent q:1 salt of bulk concentration c0. The dielectric
slab is assumed to be impermeable to mobile ions and occupy
the region −b ≤ z ≤ 0 with its surface normal oriented in the
direction of the z-axis. The bounding surface of the slab at
z = 0 is assumed to be charged, carrying a quenched spa-
tial distribution of random monopolar charges, ρ(r), while the
other surface of the slab is uncharged. The multivalent coun-
terions are assumed to be in contact only with the charged sur-
face (see below). The disordered (random) charge distribution
is described by the Gaussian probability distribution function

P[ρ] = C exp

(
− 1

2

∫
dr g−1(r) [ρ(r) − ρ0(r)]2

)
, (1)

FIG. 1. Schematic view of an infinite, planar dielectric slab of thickness b
and dielectric constant εp immersed in a solution of dielectric constant εm,
containing a mixture of mono- and multivalent salts. The slab boundary at
z = 0 is randomly charged. The multivalent ions (counterions) with charge
valency q are shown by large blue spheres and monovalent salt anions and
cations are shown by small orange and blue spheres. The multivalent counte-
rions are in contact only with the charged surface (right).

where C is a normalization factor, ρ0(r) is the mean, and
g(r) the variance of the spatial distribution of random surface
charges. It is obvious that the above probability distribution
function entails an uncorrelated disorder, i.e., 〈〈(ρ(r) −
ρ0(r))(ρ(r′) − ρ0(r′))〉〉 = g(r)δ(r − r′), where double-
brackets denote the configurational (quenched) average
〈〈· · · 〉〉 = ∫

Dρ P[ρ] (· · · ).
In what follows, the general formalism is valid for an ar-

bitrary shape of the charged boundaries, but for the later de-
velopments in this paper we shall delimit ourselves to the spe-
cific example of a planar slab as noted above. In this case, the
mean charge distribution and its variance are given by

ρ0(r) = −σe0 δ(z), g(r) = ge2
0 δ(z), (2)

where g ≥ 0, and, without loss of generality, we assume σ

≥ 0 and, for the multivalent counterions, q ≥ 0. The mono-
valent salt is assumed to be present on both sides of the slab
while the multivalent counterions are restricted to the right
half-space z ≥ 0. This spatial constraint can be taken into ac-
count formally by introducing the indicator functions �c(r)
= θ (z) for the multivalent counterions, and �+(r) = �−(r) =
�s(r) = θ (z) + θ (b − z) for the monovalent ions, where θ (z)
is the Heaviside’s step function. This constraint can be real-
ized by enclosing the region on the left side of the slab in a
membrane impermeable to multivalent ions; such a constraint
will be relevant in our analysis only in the situations where
the slab thickness is small relative to the salt screening length
and will otherwise have vanishing impact on the distribution
of multivalent counterions next to the charged surface in the
regime of parameters that will be of interest in this paper. For
the most part, however, we shall focus on the case of semi-
infinite slabs.

Another point to be noted here is that, for the sake of
simplicity, we model the monovalent and multivalent ions as
point-like particles. Since the monovalent ions will be treated
implicitly (Sec. III), the generalization of our formalism to
include a finite size for the multivalent counterions (which
can have a relatively large size as compared with the monova-
lent ions) is quite straightforward and we shall return to it in
Sec. IV F, where we also analyze its consequences.

III. THEORETICAL BACKGROUND

A. Field action for dressed multivalent ions

For a given realization of the fixed charge distribution
ρ(r), the grand-canonical partition function of the above
model can be written exactly in a functional-integral form
as60–63, 71

Z = e− 1
2 ln det G

∫
Dφ e−βS[φ], (3)

where β = 1/(kBT) and φ(r) is the fluctuating (electrostatic)
potential and the effective “field-action” reads

S[φ] = 1

2

∫
dr dr′φ(r)G−1(r, r′)φ(r′)

+ i
∫

dr ρ(r)φ(r) − kBT

∫
drV(φ(r)), (4)
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where G−1(r, r′) is the operator inverse of the Coulomb
interaction (or the bare Green’s function), G(r, r′), in the
presence of dielectric boundaries satisfying the equation
−ε0∇ · ε(r)∇G(r, r′) = δ(r − r′). The “field self-interaction”
term is given by69, 87

V(φ)=λc�c(r)e−iβqe0φ + �s(r)(λ+e−iβe0φ + λ−eiβe0φ), (5)

where λc and λ± are the ionic fugacities of multivalent coun-
terions (c) and monovalent anions (−) and cations (+), re-
spectively. Note that, since the multivalent counterions result
from a q:1 salt of bulk concentration c0 mixed with a 1:1 salt
of bulk concentration n0, we have λc = c0, λ+ = n0 and λ−
= n0 + qc0.

The above field action obviously represents a highly
asymmetric Coulomb fluid especially when counterions are
multivalent, q > 1. These counterions couple strongly to the
fixed (mean) surface charge, whereas the monovalent salt
species couple weakly. This leads to a complex situation
where different components of the Coulomb fluid couple dif-
ferently to the same surface charges, thus making the analyti-
cal progress and, in particular, obtaining exact solutions,97, 98

very difficult.
Nevertheless, progress is possible and systems of this

type can be treated using a combined weak-strong coupling
approximation, which has been discussed in a series of re-
cent works.69, 87–89 It was shown, by employing both analyt-
ical approaches as well as implicit- and explicit-ion simu-
lations that, in a wide range of realistic system parameters,
the monovalent ions can be treated safely within the Debye-
Hückel (DH) framework, while the multivalent ions can be
handled by means of a standard virial expansion scheme67–73

of the strong coupling approximation. The DH-type terms in
this context follow by expanding the last two terms in Eq. (5)
up to the second order in φ(r) (which can be justified on a
systematic basis in highly asymmetric systems with q � 187),
i.e.,

V(φ(r)) 	 λc�c(r) e−iβqe0φ − nb�s(r)(βe0φ)2/2 + O(φ3),
(6)

where nb is the bulk concentration due to all monovalent ions
nb = λ+ + λ− = 2n0 + qc0.

On the analytical level, the above procedure allows one to
trace the partition function over the degrees of freedom asso-
ciated with monovalent ions and thus one remains with only
“dressed” multivalent ions and surface charges that then in-
teract through a DH-type interaction kernel (or the screened
Green’s function) defined via

−ε0∇ · ε(r)∇G(r, r′) + ε0ε(r)κ2(r)G(r, r′) = δ(r − r′),
(7)

where the Debye (or salt) screening parameter κ(r) is non-
zero only outside the dielectric slab and is given by κ2

= 4π
Bnb with 
B = e2
0/(4πε0εmkBT ) being the Bjerrum

length.
This type of methodology leads to the so-called dressed

multivalent-ion theory,69, 87–89 which is a direct generalization
of the standard counterion-only SC theory.67–73 In fact, the
dressed multivalent-ion theory has a hybrid character in that
it reproduces both the counterion-only SC theory and the DH

theory as two asymptotic limits at small and large salt screen-
ing parameters, respectively.

In what follows, we shall use this framework to study
the effects of surface charge disorder on the distribution of
multivalent counterions.

B. Counterion density profile

The density profile of multivalent counterions follows
standardly from the general formalism defined by Eqs. (3) and
(4) as63, 67–73

c(r; [ρ]) = λc�c(r)〈e−iβqe0φ〉, (8)

where 〈···〉 denotes the thermal (ensemble) average over the
fluctuating field φ(r). For a given (quenched) realization of
ρ(r), this average can be calculated analytically in both limits
of weak and strong coupling in the counterion-only case63, 71

and also in the more general context of dressed multivalent
ions in asymmetric Coulomb fluids.87–89 As noted before,
the effects due to multivalent ions can be investigated by
virial expanding the partition function in terms of their fu-
gacity and keeping only the leading order contributions (see
Refs. 67–73 and 87–89 for further details). This procedure
leads to a single-particle form for the density profile of multi-
valent counterions as

c(r; [ρ]) = λc�c(r) e−βu(r;[ρ]), (9)

where u(r; [ρ]) is the single-particle interaction energy

u(r; [ρ]) = qe0

∫
dr′ G(r, r′)ρ(r′) + q2e2

0

2
Gim(r, r). (10)

Here, Gim(r, r) is the generalized Born energy contribution
that stems purely from the dielectric and/or salt polarization
effects (or the so-called “image charges”). In other words,
Gim(r, r) = G(r, r) − G0(r, r), where G0(r, r) is the forma-
tion (self-)energy of individual counterions in a homogeneous
background, which is obtained from the free-space screened
Green’s function defined via −ε0εm(∇2 − κ2)G0(r, r′) = δ(r
− r′).

In the present model, the fixed surface charge distribu-
tion, ρ(r), has a disorder component and thus, in order to ob-
tain the measurable counterion density profile, one must av-
erage Eq. (9) over different realizations of this disorder field
using the Gaussian weight (1). This can be done straightfor-
wardly by computing

c(r) = 〈〈c(r; [ρ])〉〉 = λc�c(r)〈〈e−βu(r;[ρ])〉〉, (11)

which then gives

c(r) = λc�c(r) e−βu(r), (12)

where the effective single-particle interaction energy now
reads

u(r) = u0(r) + uim(r) + udis(r), (13)

with

u0(r) = qe0

∫
dr′ G(r, r′)ρ0(r′), (14)
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uim(r) = q2e2
0

2
Gim(r, r), (15)

udis(r) = −β
q2e2

0

2

∫
dr′g(r′)[G(r, r′)]2. (16)

The three terms, respectively, originate from the contribu-
tion of the interaction of multivalent ions with the mean
surface charge density (first term), the contribution of self-
interactions (interactions with image charges, second term),
and the contribution of the surface charge disorder (third
term). The latter can be viewed as an effective surface-
counterion interaction which is induced by the quenched ran-
domness in the surface charge. It is proportional to the disor-
der variance but also shows an explicit temperature depen-
dence. Another interesting point is that the disorder inter-
action term exhibits a quadratic dependence on the Green’s
function and likewise also on the multivalent ion charge va-
lency q. These features can be understood by noting that the
disorder term in fact represents the sample-to-sample fluctu-
ations (or variance) of the single-particle interaction energy,
u(r; [ρ]), Eq. (10), which is a linear functional of the Gaussian
field ρ(r), and hence one can show that

u(r) = 〈〈u(r; [ρ])〉〉 − β〈〈u2(r; [ρ])〉〉c/2, (17)

where 〈〈u2(r; [ρ])〉〉c ≡ 〈〈u2(r; [ρ])〉〉 − 〈〈u(r; [ρ])〉〉2, and

〈〈u(r; [ρ])〉〉 = u0(r) + uim(r), (18)

〈〈u2(r; [ρ])〉〉c = −2kBT udis(r). (19)

C. Rescaled representation

In order to proceed, we introduce the dimensionless
(rescaled) quantities

r̃ = r/μ, κ̃ = κμ, b̃ = b/μ, � = q2
B/μ, (20)

where

μ = 1/(2πq
Bσ ) (21)

is the Gouy-Chapman length and � = 2πq3
2
Bσ is the elec-

trostatic coupling parameter associated with the mean surface
charge.67–73 Analogously, one can define the dimensionless
disorder coupling (or disorder strength) parameter

χ = 2πq2
2
Bg, (22)

which is proportional to the disorder variance; its dependence
on the counterion valency, q, is different from that of the mean
electrostatic coupling parameter as first noted in Ref. 14.

IV. RESULTS

A. Counterion-only case

Let us first consider the special case of multivalent coun-
terions next to a charged surface in the absence of any salt
screening (κ = 0) and dielectric image charge effects (i.e.,
in a dielectrically homogeneous system with εp = εm). This
case has been considered in a previous work on the effective

interaction between two randomly charged surfaces,14 which
however did not investigate the distribution of counterions.

In this case, the number of counterions, N, is fixed by
the mean charge on the surface through the electroneutrality
condition Nq = Sσ , where S is the surface area. The fugacity
of counterions is thus given by14

λc = N∫
dr �c(r) e−βu(r)

. (23)

The effective single-particle interaction is obtained by us-
ing Eqs. (13)–(16) and noting that, in this case, G(r, r′)
= 1/(4πε0εm|r − r′|). Hence, in rescaled units, we have
βuim(r) = 0, and

βu0(z̃) = z̃, (24)

βudis(z̃) = χ

2
ln z̃ (25)

(up to irrelevant additive constants). Therefore,

βu(z̃) = z̃ + χ

2
ln z̃. (26)

The rescaled density profile of counterions is then obtained
using Eq. (12) as

c̃(z̃) ≡ c(z̃)

2π
Bσ 2
= z̃− χ

2 e−z̃

�(1 − χ

2 )
, z̃ ≥ 0, (27)

where �( · ) is the Gamma function. This expression shows
a standard SC exponential decay of the multivalent coun-
terion density, which dominates at large separations from
the surface and is a well-established result within the SC
context.65, 67–73 But it also exhibits an algebraic dependence
on z̃, which dominates at small separations from the surface
and thus shows that, in the presence of surface charge disor-
der, the counterion density diverges in the immediate vicin-
ity of the surface. The presence of disorder thus clearly vi-
olates the contact-value theorem which was derived for uni-
formly charged surfaces;93–96 this theorem entails a contact
value of c̃(0) = 1 in the whole range of coupling parameters.
Note that, nevertheless, the electroneutrality is exactly satis-
fied as

∫ ∞
0 dz̃ c̃(z̃) = 1.

The behavior of the density profile, Eq. (27), is shown
in Fig. 2 for a few different values of the disorder cou-
pling parameter. As seen, due to the singular behavior at
the surface, the presence of charge disorder enhances (sup-
presses) the density of counterions at small (large) separa-
tions, in general agreement with the previous findings in the
case of non-disordered but heterogeneously charged surfaces
such as surfaces carrying discrete charge patterns (see, e.g.,
Refs. 99–102, and references therein).

The above results can be illuminated further by analyzing
the averaged cumulative charge defined as

Q(z) = 1

σ

∫ z

0
dz′[e0qc(z′) + ρ0(z′)], (28)

or, in rescaled units,

Q(z̃) = −1 +
∫ z̃

0
dz̃′ c̃(z̃′) = −�

(
1 − χ

2 , z̃
)

�
(
1 − χ

2

) , (29)
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FIG. 2. Rescaled density profile of multivalent counterions next to a ran-
domly charged surface in the absence of salt and image charge effects for
different values of the disorder coupling parameter as shown on the graph.
Inset shows the diverging behavior of the density profile at small distances
from the surface in the log-log scale.

where �( · , · ) is the incomplete Gamma function. Note that
Q(z) is normalized such that Q(0) = −1, which represents the
mean surface charge density at z̃ = 0, and Q(z) → 0 for z
→ ∞, which reflects the global electroneutrality of the sys-
tem. As seen in Fig. 3, nearly all of the counterions become
strongly localized in the vicinity of the surface (i.e., Q(z̃) 	 0
for finite z̃ > 0) as χ is increased. In fact, the counterion den-
sity profile tends to zero at any finite separation from the sur-
face c̃(z̃) → 0 when χ tends (from below) to the threshold
value

χ∗ = 2, (30)

because the Gamma function in the denominator of the nor-
malization factor in Eqs. (27) and (29) goes to infinity.

It should be emphasized that the strong accumulation of
multivalent counterions in the immediate vicinity of the sur-
face does not give rise to a renormalized mean surface charge
density (see also Appendix C in Ref. 16) and that the singular
behavior of counterions at the surface in the present context
should be distinguished from the surface adsorption or coun-
terion condensation phenomena.69

B. Disorder-induced anti-fragility

The foregoing results clearly show that the excess ac-
cumulation of counterions near the surface is driven by
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χ = 0
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χ = 1.00
χ = 1.50
χ = 1.95

z~

Q z~( )

FIG. 3. Cumulative charge next to a randomly charged surface in the absence
of salt and image charge effects for different values of the disorder coupling
parameter as shown on the graph.

the disorder-induced, single-particle interaction energy (25),
which is attractive and depends logarithmically on the dis-
tance from the surface and thus generates the singular behav-
ior of the counterion density profile at the surface. This sug-
gests that the presence of quenched surface charge disorder
drives the system towards a state of lower thermal “disorder.”
This point can be established systematically by calculating the
difference in the entropy of counterions in the presence and in
the absence of disorder, �S(χ ) = S(χ ) − S(0). We find

�S(χ )

NkB

= χψ
(

1 − χ

2

)
+ ln �

(
1 − χ

2

)
, (31)

where ψ( · ) is the digamma function. It thus follows that
�S(χ ) ≤ 0. The entropy reduction is larger for larger disorder
strength, χ , and diverges as χ → 2−.

In other words, the reduction in the translational entropy
of multivalent counterions in the solution is driven by intro-
ducing a finite degree of configurational entropy due to the
presence of quenched randomness in the surface charge dis-
tribution. Formally, this latter type of entropy is generated
by the non-thermal (quenched) average taken over different
realizations of the surface charge disorder. This subtle in-
terplay between the different kinds of entropy is therefore
essential in generating the singular behavior of counterions
near the disordered surface. It thus seems appropriate to re-
fer to this type of behavior of the multivalent counterions as
anti-fragile,92 since introducing an external (quenched) dis-
order source effectively diminishes the intrinsic thermal dis-
order in the system and drives it towards a more “ordered”
state.

Another interesting point to be noted here is that the in-
ternal energy of the system also decreases due to the presence
of disorder but in such a way that leads to a decrease in the
free energy of the system as can be seen from the free en-
ergy difference, β�F(χ )/N = −ln � (1 − χ/2) ≤ 0. There-
fore, the system also attains a thermodynamically more sta-
ble state, which is again a direct consequence of the singular
behavior of counterions near the disordered surface. By con-
trast, one can show that in the case of counterions next to a
uniformly charged surface, which exhibits a regular potential,
the attraction of counterions towards the surface leads to a
larger free energy as compared with the ideal case where the
system is uncharged.

C. Salt image effects

We now turn to the effects due to a monovalent salt bath
by assuming that in addition to the multivalent counterions (of
bulk concentration c0), we also have a finite amount of mono-
valent salt in the system, giving a total bulk monovalent ion
concentration of nb = 2n0 + qc0 (Secs. II and III). We take
a semi-infinite slab (b = ∞) impermeable to all ions and as-
sume that the system is again dielectrically homogeneous, i.e.,
εp = εm. This helps to disentangle the polarization effects due
to the inhomogeneous distribution of salt ions (“salt image
effects”) from those resulting from the inhomogeneous distri-
bution of the dielectric constant (“dielectric image effects”).

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:  193.2.67.21

On: Wed, 05 Nov 2014 10:18:55



174704-7 Naji et al. J. Chem. Phys. 141, 174704 (2014)

For a semi-infinite slab, the Fourier-Bessel transform of
the Green’s function can be obtained by standard methods as

Ĝ(Q; z, z′) = 1

2ε0εmγ
[e−γ |z−z′ | + �s e−γ (z+z′)], (32)

where

�s = γ − Q

γ + Q
, γ 2 = Q2 + κ2. (33)

Note that because of the translational and rotational sym-
metry with respect to the transverse (in-plane) coordinates
ρ = (x, y) and ρ ′ = (x ′, y ′), the Green’s function depends
on these coordinates only through |ρ − ρ ′|, i.e., G(r, r′)
= G(|ρ − ρ ′|; z, z′), and thus its Fourier-Bessel transform is
defined via G(r − r′) = ∫ ∞

0
QdQ

2π
Ĝ(Q; z, z′) J0(Q|ρ − ρ ′|).

The contributions to the effective single-particle interac-
tion energy, u = u0 + uim + udis, Eqs. (13)–(16), are now
obtained, in rescaled units, as

βu0(z̃) = − 2

κ̃
e−κ̃ z̃, (34)

βuim(z̃) = �

2

∫ ∞

0
Q̃dQ̃

�s

γ̃
e−2γ̃ z̃, (35)

βudis(z̃) = −χ

2

∫ ∞

0
Q̃dQ̃

(1 + �s)
2

γ̃ 2
e−2γ̃ z̃, (36)

where γ̃ = γμ. These equations can be used along with
Eq. (12) in order to compute the density profile of counte-
rions.

As seen in Fig. 4, the rescaled density profile of counte-
rions shows a clear depletion effect in the absence of disorder
(note that here we have rescaled the density of counterions
with their bulk concentration). This behavior is caused by the
salt image effects that are produced by the second term in
Eq. (32). The depletion effect becomes weaker when the
surface is randomly charged as the counterions are again
attracted more strongly to the surface in the presence of
charge disorder. The interplay between salt image deple-
tion and disorder attraction leads to a non-monotonic be-
havior in the counterion density profile as the disorder ef-
fects dominate at small separations while the salt image
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FIG. 4. Rescaled density profile of multivalent counterions next to the ran-
domly charged surface of a semi-infinite slab for � = 50, κ̃ = 0.3 and in the
absence of dielectric image charge effects (εp = εm). Different curves cor-
respond to different values of the disorder coupling parameter as shown on
the graph. Inset shows the diverging behavior of the density profile at small
distances from the surface in the log-log scale.

effects dominate at intermediate separations. At large dis-
tances from the surface (z̃ � κ̃−1), the behavior of the den-
sity profile is dominated by the salt screening effects and
we get c(z̃)/c0 → 1 for z̃ → ∞. The accumulation of coun-
terions in the vicinity of the surface is suppressed when
the bulk salt concentration is increased or when a finite
dielectric discontinuity is introduced at the surface (see
Sec. IV D).

Note that the counterion density profiles show a singu-
lar bahavior at the surface even in the presence of additional
salt. This behavior is in fact present at any finite values of
χ (as may be discerned more clearly from the log-log plot
in the inset of Fig. 4) and coincides with the same algebraic
divergence ∼ z̃−χ/2 on approach to the surface as we found
in the counterion-only case in Sec. IV A. This is intuitively
expected because the salt bath effects diminish at separations
much smaller than the screening length κ̃−1.

The effects of a finite slab thickness, b, can be examined
by using the appropriate form of the Green’s function in this
case that can be obtained by means of standard methods as

Ĝ(Q; z, z′) = 1

2ε0εmγ

×
[

e−γ |z−z′ | + �s(1 − e−2Qb)

1 − �2
s e−2Qb

e−γ (z+z′)
]

. (37)

Hence, the three different terms in the effective single-particle
interaction energy follow in rescaled units as

βu0(z̃) = − 2(1 + κ̃ b̃)

κ̃(2 + κ̃ b̃)
e−κ̃ z̃, (38)

βuim(z̃) = �

2

∫ ∞

0
Q̃dQ̃

�s(1 − e−2Q̃b̃)

γ̃ (1 − �2
s e−2Q̃b̃)

e−2γ̃ z̃, (39)

βudis(z̃) = −χ

2

∫ ∞

0
Q̃dQ̃

(1 + �s)
2(1 − �s e−2Q̃b̃)2

γ̃ 2(1 − �2
s e−2Q̃b̃)2

e−2γ̃ z̃.

(40)

The finiteness of the slab thickness is expected to be rele-
vant mainly in the regime where the thickness is compara-
ble with or smaller than the screening length, i.e., κ̃ b̃ � 1. As
it can be seen directly from Eqs. (38)–(40), both the attrac-
tion experienced by multivalent counterions due to the mean
surface charge and its disorder variance and the repulsion
due to the salt image effects become stronger as the slab be-
comes thicker or, in other words, as the system becomes more
strongly inhomogeneous in terms of the salt distribution. The
overall effect is such that the counterion density close to the
charged surface becomes smaller for smaller b̃ as shown in
Fig. 5, inset (compare also Figs. 4 and 5). This behavior can
be understood also by noting that for thinner slabs the salt ions
on the left side of the slab also contribute to the screening ef-
fects and, hence, further suppress the multivalent counterion
density on the right side (see Fig. 1). This however leaves
the effects resulting from the surface charge disorder qualita-
tively unchanged, especially at small distances from the sur-
face, where the singular behavior persists.

It is to be noted that the expressions for the effec-
tive single-particle interaction energy, Eqs. (38)–(40), can
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FIG. 5. Same as Fig. 4 but for fixed rescaled slab thickness b̃ = 5 and differ-
ent values of the disorder coupling parameter as shown on the graph (main
set) and also for fixed disorder coupling parameter χ = 1 and different values
of the rescaled slab thickness (inset).

correctly reproduce the counterion-only result, Eq. (26), when
the limit κ̃ → 0, which also gives �s → 0, is taken (in
this case, the thickness b̃ will be irrelevant). The counterion-
only limit cannot be recovered if we start with the infinite-
thickness expressions (34)–(36) (where the thickness of the
slab is strictly set equal to infinity) and then take the limit of
zero salt. The difference would be in a factor 2 in the expres-
sion for u0, indicating that the two limits κ̃ → 0 and b̃ → ∞
do not commute. Alternatively, one can recover Eq. (26) from
Eqs. (38)–(40) by first taking the limit of a thin slab b̃ → 0
and then κ̃ → 0.

D. Dielectric image effects

So far we focused on the cases with no dielectric dis-
continuity at the boundaries of the slab. The case of a dielec-
trically inhomogeneous system with εp �= εm can be studied
by simply replacing the definition of �s in the expressions in
Sec. IV C (e.g., Eqs. (34)–(36)) with a more general one, i.e.,

�s = εmγ − εpQ

εmγ + εpQ
. (41)

In the absence of a salt bath (κ̃ = 0), the dielectric image
charges lead to very strong repulsions from the surface when
εp < εm (as is often the case for aqueous solvents and macro-
molecular surfaces). This effect enters through the image in-
teraction term βuim = ��/4z̃, where the dielectric disconti-
nuity parameter is defined as

� = εm − εp

εm + εp

. (42)

The image interaction term diverges at the surface and thus
implies a vanishing contact density c(z̃) → 0 for z̃ → 0, a be-
havior that is very distinct from that generated merely by salt
images (Figs. 4 and 5), as the latter cannot be described gener-
ally in terms of “point-like image charges” and generate much
weaker repulsive forces on multivalent ions than the dielectric
images.

In the most general case with both salt and dielectric
image effects, the density profile of counterions can be cal-
culated via Eqs. (12) and (34)–(36) with the definition in
Eq. (41). The results are shown in Fig. 6 for κ̃ = 0.3 and
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FIG. 6. (a) Rescaled density profile of multivalent counterions next to the
randomly charged surface of a semi-infinite slab for � = 50, κ̃ = 0.3,
� = 0.95 and different values of the disorder coupling parameter as shown
on the graph. (b) Same as panel (a) but for χ = 1 and different values of the
rescaled salt screening parameter.

� = 0.95, corresponding to the dielectric discontinuity at
the water/hydrocarbon interface (with εp = 2 and εm = 80).
Clearly, both added salt and charge disorder effects become
irrelevant in the small-distance regime, where the dielectric-
image repulsions dominate and generate a wide depletion
zone near the surface. The counterion density thus again van-
ishes at the surface and tends to the bulk value at large sep-
arations. Although the qualitative form of the density profile
remains the same in the absence and in the presence of charge
disorder (which is in contrast with what we found in Sec. IV
C), the peak of the density profile becomes more pronounced
and shifts to smaller values of the distance from the surface as
the disorder strength is increased, see Fig. 6(a). A similar ef-
fect is seen in Fig. 6(b), where the salt screening parameter is
decreased; in this case the location of the peak of the density
profile remains nearly unchanged while its height increases
by almost an order of magnitude when the salt screening pa-
rameter is decreased by only a factor of 2.

E. Charge inversion and overcharging

The preceding results suggest that the charge inversion
and/or overcharging of the surface, which are known to occur
in ionic mixtures (as originally noted in Ref. 103 and substan-
tiated in later works; see, e.g., Refs. 65, 88, and 104–116, and
references therein), may be enhanced when the surface car-
ries a random charge component. This can be inferred from
the averaged cumulative charge, Q(z), being the sum of the
average charges due to fixed and mobile charges (including
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both monovalent and multivalent ions) within a finite distance
z from the surface, i.e.,

Q(z) = 1

σ

∫ z

0
dz′[e0n+(z′) − e0n−(z′) + e0qc(z′) + ρ0(z′)],

(43)
where n±(z) represent the averaged (DH) density of monova-
lent ions and c(z) the density of dressed multivalent counteri-
ons. As shown in Ref. 88, the cumulative charge can be writ-
ten only in terms of the counterion density by using the fact
for monovalent ions we have n+(r) − n−(r) 	 −nb(βe0ψ(r)),
where ψ(r) is the mean electrostatic potential generated by
the explicit charge densities, i.e.,

ψ(r) =
∫

dr′ G(r, r′)[e0qc(r′) + ρ0(r′)]. (44)

Hence, using the Green’s function expressions (32) for an in-
finite slab, we have88

Q(z̃) = −e−κ̃ z̃ + 1

8
χ̃2

c

×
∫ ∞

0
dz̃′[sgn(z̃ − z̃′) e−κ̃|z̃−z̃′ | + e−κ̃(z̃+z̃′)]ĉ(z̃′),

(45)

where ĉ(z) ≡ c(z)/c0 and χ̃c = χcμ with the definition

χ2
c = 8πq2
Bc0. (46)

As seen in Fig. 7(a), the cumulative charge shows a posi-
tive hump at intermediate separations from the surface, also
known as the charge-inversion effect. The charge-inversion
degree is usually found to amount to a fraction of the to-
tal charge (i.e., the maximum value of Q(z̃) is smaller than
unity).88, 107–114 In the presence of charge disorder, a substan-
tially larger amount of multivalent counterions are attracted
towards the surface and also a much larger charge-inversion
degree (corresponding to the height of the hump) is predicted
to occur.

There is a narrow region at small separations from the
surface where one can see a decrease in Q(z̃) as the disorder
strength, χ , is increased. For sufficiently large χ , it exhibits
a short-distance dip with Q(z̃) < −1. In this region, the cu-
mulative charge has the same sign as the mean surface charge
but with a larger magnitude and, therefore, represents the so-
called overcharging effect. Note that the overcharging effect
can be present even in the absence of disorder and depends
on the bulk concentration of multivalent counterions, which
enters in Eq. (45) through the rescaled parameter χ̃c.

In Fig. 7(b), we show the minimal amount of bulk mul-
tivalent counterion concentration (represented by χ̃c) that is
required to achieve the charge-inversion (main set) and over-
charging effects (inset) for a wide range of rescaled salt
screening parameters. The region above the curves pertains to
the parameter values where we find charge inversion or over-
charging of the mean surface charge. As seen, for larger salt
screening parameters, a larger bulk concentration of multi-
valent counterions are required to achieve these effects, and
for a given salt screening parameter, a larger concentration of
multivalent counterions are required to cause overcharging of
the surface than its charge inversion. The presence of surface
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FIG. 7. (a) Averaged cumulative charge next to the randomly charged sur-
face of a semi-infinite slab for � = 50, κ̃ = 0.25, χ̃

c
= 0.25, � = 0.95 and

different values of the disorder coupling parameter as indicated on the graph.
(b) “Phase diagram” showing the minimal amount of multivalent counterion
concentration, χ̃

c
(in rescaled units), required to find the charge-inversion

(main set) or overcharging effect (inset) as a function of the rescaled salt
screening parameter in the absence (χ = 0) and in the presence of surface
charge disorder (χ = 4). The region above the curves shows where charge
inversion (main set) or overcharging (inset) is predicted to occur.

charge disorder facilitates both these effects as they can occur
for smaller threshold values of χ̃c, especially at intermediate
to large values of the salt screening parameter.

The aforementioned features of the averaged cumula-
tive charge depend strongly on the dielectric discontinuity at
the surface, which generates the image-charge repulsion that
competes with the disorder-induced attraction of ions towards
the surface. Note that these two latter mechanisms affect the
spatial distribution of multivalent counterions (Figs. 6(a) and
6(b)), and to a lesser extent, also the spatial distribution of
monovalent ions (not shown) that are treated implicitly in this
work; this latter quantity can be calculated from the mean po-
tential, Eq. (44), which depends on various system parameters
through the Green’s function and the distributions of explicit
charges (see Refs. 88, 89, and 114 for explicit-ion simulations
of charge inversion and overcharging phenomena at uniformly
charged surfaces that incorporate the dielectric image charges
as well). The exact form of Q(z̃), and the ensuing charge-
inversion and/or overcharging effects, thus follow from the
interplay between the contributions from the explicit multiva-
lent counterions and the implicit monovalent ions to the av-
eraged cumulative charge at any given set of values for the
system parameters.

Finally, it should be noted that, while the predicted
boundaries of the parameter space pertaining to the onset of
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the charge inversion and/or overcharging are expected to be
relatively accurate,88 the single-particle approximation that
lies at the heart of the dressed multivalent-ion description
is not expected to be adequate in the regime of parameters
deeply within the regime of charge inversion and/or over-
charging due to non-negligible many-body contributions.88

These considerations and the role of other possible factors
such as ion-ion excluded-volume repulsions107–116 remain to
be assessed further in future simulations.

F. Counterion size effects

We have so far assumed that the multivalent counte-
rions are modeled as point-like particles and can therefore
access the whole volume in the region z ≥ 0. On the mi-
croscopic level and within the primitive model considered
here, the counterion size effects enter through the excluded-
volume repulsions between the counterions themselves as
well as through the excluded-volume repulsion between indi-
vidual counterions and the randomly charged surface, which
leads to the steric depletion of counterions from the imme-
diate vicinity of the surface. Within the strong-coupling ap-
proach or its generalization, the dressed multivalent-ion the-
ory on which our approach is based, the partition function is
virial expanded systematically to the leading order (Sec. III)
and, as such, involves only the single-particle contributions.
This means that only the counterion-surface excluded-volume
repulsion enters in the leading-order theory and the excluded-
volume repulsions between counterions enter in the sublead-
ing terms that become important at lower electrostatic cou-
plings, falling outside the regime of interest in the present
analysis.67–73 (The dressed multivalent-ion theory of course
has a range of validity69, 87–89 that can be ascertained in detail
once simulations or, indeed, alternative theoretical approaches
for the present problem become available; see Sec. V.) The in-
corporation of the counterion size effects on the leading virial
level is thus straightforward.

For the sake of simplicity, we model the multivalent
counterions as hard-sphere particles with radius a. There-
fore, one needs to restrict the volume accessible to multiva-
lent counterions to the region z ≥ a, which can be done by
re-defining the indicator function as �c(r) = θ (z − a). It is
thus evident that the form of the single-particle interaction en-
ergy and, therefore, the z-dependent form of the density pro-
file remain unchanged, with the proviso that now one needs
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FIG. 8. Averaged cumulative charge next to the randomly charged surface of
a semi-infinite slab for � = 50, κ̃ = 0.25, χ̃

c
= 0.25, � = 0.95, χ = 4 and

different values of the rescaled radius of hard-sphere multivalent counterions,
ã = a/μ, as indicated on the graph.

to impose the constraint z ≥ a. The prefactor λc in Eq. (12) is
still given by the bulk concentration of multivalent counteri-
ons, c0, in the presence of a salt bath (Secs. IV C and IV D)
and is determined from Eq. (23) within the counterion-only
model (Sec. IV A). In this latter case, we find the rescaled
density profile of hard-sphere counterions of rescaled radius
ã = a/μ as

c̃(z̃) ≡ c(z̃)

2π
Bσ 2
= z̃− χ

2 e−z̃

�
(
1 − χ

2 , ã
) , z̃ ≥ ã. (47)

In other words, the singular behavior of the single-particle
interaction energy remains intact and, therefore, the z-
dependent form of the density profile still involves an alge-
braic factor and thus differs qualitatively from that in the case
of a uniformly charged surface, only that the (hard-sphere)
multivalent counterions cannot probe the singular point at z
= 0 and do not exhibit the diverging surface density obtained
with point-like counterions.

The exclusion of multivalent counterions from the vicin-
ity of the surface for large counterion radii can suppress
the charge-inversion and/or overcharging effects discussed in
Sec. IV E. In Fig. 8, we show the averaged cumulative charge,
Q(z̃), as a function of z̃ for a few different values of the
rescaled counterion radius, ranging from ã = 0 up to 2.5 (in
actual units, and assuming μ = 0.23 nm, see Table I, these
values correspond to counterion radii of up to around 5.8 Å).
As seen, upon increasing the counterion radius, the height of
the positive hump (the charge-inversion degree) is decreased

TABLE I. Examples of the actual values of bulk concentrations n0 and c0 that may correspond to the typical
values of the rescaled parameters κ̃ and χ̃

c
used to plot the figures in Sec. IV. We have chosen q = 4 (tetravalent

counterions), 
B = 0.7 nm, and surface charge density σ = 0.25 nm−2, which give μ = 0.23 nm and � = 50. We
also show actual values of the disorder variance g corresponding to a few different values of the disorder coupling
parameter χ (see the text for definitions).

� = 50

κ̃ = 0.2 0.25 0.3 0.4 χ g (nm−2)

n0 = 69 mM 109 mM 158 mM 283 mM c0 = 1.1 mM χ̃
c
= 0.1 0.5 0.01

57 mM 98 mM 147 mM 272 mM 7 mM 0.25 1.0 0.02
51 mM 91 mM 140 mM 270 mM 10 mM 0.3 2.0 0.04
36 mM 75 mM 125 mM 250 mM 18 mM 0.4 4.0 0.08
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and its location shifts to larger distances from the surface. The
location of the negative (overcharging) dip also shifts to larger
separations; however, the overcharging effect is enhanced at
first when the counterion radius is increased and diminishes
only when the latter is increased beyond ã 	 1.5. It is also
important to note that for sufficiently small counterion radii,
the cumulative charge nearly coincides with that of point-like
counterions (black solid curve). In fact, the effects of finite
counterion size show up only when the counterion radius be-
comes larger than the size of the depletion zone generated
by dielectric images in the vicinity of the surface, which, in
the case of Fig. 8, corresponds to counterion radii ã � 1 (see
also Figs. 6(a) and 6(b)). In other words, the charge inversion
and/or overcharging of the surface are affected also by the
interplay between the image-charge depletion and the steric
depletion of multivalent counterions from the dielectric inter-
face.

Finally, we note that multivalent counterions may have
an internal structure that can introduce higher-order multipo-
lar effects; these effects can be relevant especially for multiva-
lent counterions with an extended structure (such as rod-like
polyamines including the trivalent spermidine and tetravalent
spermine117), in which case the present hard-sphere model
may not be appropriate in order to account for the counte-
rion size effects (see, e.g., Refs. 69 and 118, and references
therein).

V. CONCLUSIONS AND DISCUSSION

We have investigated the distribution of multivalent coun-
terions close to a dielectric slab bearing a quenched, ran-
dom distribution of monopolar surface charges on one of
its solution interfaces with set mean value and variance,
both in the absence and in the presence of an asymmetric
Coulomb fluid, comprised of a mixture of multivalent coun-
terions in a bathing solution of monovalent ions. Such asym-
metric Coulomb fluids are commonplace in many experimen-
tal examples such as in the condensation of DNA by mul-
tivalent cations in the bulk77–83 or in viruses and virus-like
nano-capsids.84–86 Our analysis is done within the framework
of the dressed multivalent-ion theory, which reproduces the
strong-coupling theory of multivalent counterions67–73 in the
zero salt limit and takes into account the surface-counterion
as well as counterion-image correlations on the leading or-
der and in the presence of a bathing salt solution as discussed
in detail elsewhere.69, 87–89 (Note that in the opposite regime
of weak coupling, where, e.g., all ions are monovalent, the
quenched charge disorder effects turn out to be small and do
not lead to any qualitatively new features in the behavior of
the system.14, 45, 46)

In the case of counterions only, we show that a randomly
charged surface generates a singular density profile for multi-
valent counterions with an algebraically diverging behavior at
the surface; the latter is characterized by an exponent which
is determined by the disorder strength (variance). Thus, mul-
tivalent counterions are predicted to accumulate strongly in
the immediate vicinity of the randomly charged surface in a
way that violates the contact-value theorem, which describes
the behavior of counterions at uniformly charged surfaces and

predicts a finite contact density.93–95 This behavior stems from
the interplay between the translational entropy of the solution
ions and the (non-thermal) configurational entropy due to the
averaging over different realizations of the quenched disor-
der. Therefore, by introducing an external (quenched) disor-
der component, we find that the system is driven towards a
more “ordered” state characterized by a diminished intrinsic
thermal “disorder” in the system. It thus seems appropriate
to characterize this response of the system to an externally
imposed quenched disorder as the anti-fragile behavior92 of
multivalent counterions in the presence of quenched charge
disorder. It is to be noted that, in the presence of disorder, the
system also attains a thermodynamically more stable state be-
cause the internal energy of the system drops in a way that
leads to a lowered free energy.

The singular behavior of multivalent counterions persists
also when counterions are immersed into a bath of a monova-
lent salt solution and there are no dielectric inhomogeneities
in the system. In this case, the slab defines an ion-excluded
region, creating salt image effects. The interplay between the
disorder-induced attraction and the salt-image depletion leads
to a non-monotonic density profile for counterions close to the
surface. The amount of multivalent counterions accumulated
near the surface is again enhanced strongly when the surface
is randomly charged. This holds also in the case of a finite
discontinuity in the dielectric constant (even though dielectric
image charges, unlike salt images, eliminate the singularity
and create a counterion-depleted zone in the immediate vicin-
ity of the charged surface) and/or when the multivalent coun-
terions have a finite size (that prevents them from probing the
singular point of the single-particle interaction energy on the
charged surface). The charge disorder can thus make the over-
charging and/or charge inversion of the mean surface charge
highly pronounced.

Our results are presented in terms of rescaled (dimen-
sionless) parameters such as the rescaled screening parameter
and the electrostatic and disorder coupling parameters, which
can be mapped to a wide range of values for counterion and
salt bulk concentration, mean surface charge density, coun-
terion valency, etc. A few examples of the actual values for
these latter quantities (corresponding to the typical values of
the rescaled parameters that were used to plot the figures in
Sec. IV) are shown in Table I. Note that other sets of actual
parameter values than those given in the table (e.g., using di-
valent and trivalent counterions) are just as conceivable, as
long as they correspond to the same set of dimensionless pa-
rameters. The typical values of the disorder coupling param-
eter that we used in our study, e.g., χ 	 0 − 4, correspond to
a relatively small degree of charge disorder on the surface g
	 0–0.08 nm−2. Assuming that the disorder originates from a
quenched, random distribution of positive and negative impu-
rity charges, ±e0, residing on the surface with a surface den-
sity of ns, we find g = ns.

19 Therefore, the above-mentioned
values of g can be obtained by relatively small densities ns
� 0.1 nm−2 of impurity charges as compared with the mean
number of surface charges (typically σ � 1nm−2) and can
thus be easily realized in actual systems. Hence, we conclude
that the effects due to charge randomness, even at such small
amounts, can be quite significant!
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We should emphasize that our results are valid strictly
in the case of highly asymmetric Coulomb fluids, where
the dressed multivalent-ion approach can be justified.87 The
dressed multivalent-ion theory, that was implemented here,
follows as a limiting single-particle theory from the virial
expansion of the partition function up to the leading order
in the fugacity of multivalent counterions and, as such, is
expected to be applicable in two distinct regimes:69, 87–89 (i)
when the electrostatic interactions are strong enough giving
rise, on the leading order, to a strong-coupling, single-particle
behavior for multivalent counterions next to an oppositely
charged boundary (typically at low salt concentrations or in
counterion-only systems),67–73 and (ii) when multi-particle
interactions between counterions are sufficiently weak due,
e.g., to high salt screening effects, allowing again for a
single-particle description (typically at moderate to high salt
concentrations).69, 87–89 This analytical approach is thus ex-
pected to be valid only at relatively small bulk concentra-
tions of multivalent counterions around, for instance, just a
few mM, which is in fact often the case in experiments (see,
e.g., Refs. 75–83).

The dressed multivalent-ion theory has been tested ex-
tensively against implicit- and explicit-ion simulations69, 87–91

and turns out to have a wide range of validity in the parame-
ter space when the surfaces bear uniform charge distributions.
Similar simulations are still missing in the case of randomly
charged surfaces with multivalent ions mostly because of a
significantly large increase in the computational time, which
would be required in order to produce reliable quenched dis-
order averages. Our results, however, produce concrete pre-
dictions that can be tested against simulations. The finger-
prints of charge disorder are expected to show up in appro-
priately designed experiments as well,13, 17–23, 52–58 although
one should note that experiments on systems containing so-
lutions of multivalent ions face certain difficulties as is, for
instance, the case108 in electrophoresis measurements con-
ducted to show the charge inversion effect (see Refs. 104–106
and 119 for other recent methods such as streaming currents
or atomic force microscopy measurements). In general, we
expect that the previously determined regimes of validity of
the dressed multivalent-ion theory88 roughly hold also for the
present case with disordered surfaces. One particular case that
should be treated with caution in systems containing added
monovalent salt is the situation where the mean electrostatic
potential near the randomly charged surface becomes large,
e.g., when the disorder strength is very large and/or the di-
electric discontinuity parameter is small, in which case the
validity of the underlying DH approximation used for the
monovalent ions can break down.88 Another case that goes
beyond the present approach is the situation where nonlin-
ear charge renormalization and/or Bjerrum pairing effects be-
come relevant (see, e.g., Refs. 120–124); however, these ef-
fects turn out to be negligible in the regime of parameters
that is of concern here.69, 87–89 Also, while we expect that
the predicted boundaries of the parameter space pertaining to
the onset of the charge inversion and/or overcharging would
be relatively accurate, the single-particle approximation that
lies at the heart of the dressed multivalent-ion description
is not expected to be adequate in the regime of parameters

deeply within the regime of charge inversion and/or over-
charging due to non-negligible many-body contributions.88

These considerations and the role of other possible factors
such as higher-order virial corrections,67–73 the discrete na-
ture and the finite size of monovalent salt ions88 and the
ion-ion excluded-volume repulsions,107–116 etc., that are ex-
pected to become relevant especially at intermediate elec-
trostatic couplings and/or within the regime of charge inver-
sion/overcharging, remain to be assessed further in future sim-
ulations.

Our model is based on a few simplifying assumptions
and, as such, neglects several other factors including solvent
structure (see, e.g., Refs. 24, 29, and 125–129, and refer-
ences therein), the polarizability of mobile ions (see, e.g.,
Refs. 130–134, and references therein), specific surface ion-
adsorption effects,135, 136 etc. We have also neglected the in-
ternal structure of counterions that can introduce higher-order
multipolar effects (see, e.g., Refs. 69 and 118, and references
therein); these effects can be relevant especially for multiva-
lent counterions that have an extended structure such as rod-
like polyamines like the trivalent spermidine and tetravalent
spermine with chain lengths of up to 1–1.5 nm.117

On the other hand, we have assumed that the charge dis-
order is distributed according to a Gaussian weight and that it
is uncorrelated in space. Spatial correlations can be included
in our formalism in a straightforward manner20, 23 and will
be considered in future works. It is important to note that
the precise statistical characteristics of charge disorder in real
systems can be highly sample and material dependent, in-
volving also the method of preparation, features that should
all be considered if the theoretical findings are to be com-
pared with experiments. Furthermore, annealed as opposed
to quenched disordered surfaces, containing mobile surface
charges that are in thermal equilibrium with the rest of the
system,19, 20, 44–46, 48–51 as well as surfaces containing partially
quenched or partially annealed charge distributions,10, 16 and
also charge regulating surfaces51, 137–142 constitute other inter-
esting examples that can be studied in the present context. All
of these additional features we plan to address in the future.

Another interesting problem, which is closely related to
the present work and can be studied using similar methods,
is the strong-coupling interaction between randomly charged
surfaces immersed in an asymmetric Coulomb fluid.143 It is
also worth mentioning that some of the key findings in the
present study, such as the singular behavior of the density
profile of multivalent ions, remain valid even in the case of
net-neutral surfaces that carry no mean charge density but
only a finite charge disorder variance. The case of net-neutral
surfaces has been studied recently in a series of works in
the context of Casimir interactions13, 17–23 and the role of
an asymmetric Coulomb fluid in this case will be discussed
elsewhere.144
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88M. Kanduč, A. Naji, J. Forsman, and R. Podgornik, Phys. Rev. E 84,
011502 (2011).
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