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ABSTRACT: Polyelectrolyte chains confined by macroions bearing electrostatic charges
of opposite sign can mediate an effective attraction between the macroions. This
polyelectrolyte-mediated attraction is usually referred to as the bridging interaction. I
review the theories of polyelectrolyte-mediated interactions based on analytic mean-
field and variational approaches. I will describe the origin and the salient properties of
this interaction in the context of planar and point macroions with special emphasis on
the connection between the polymer chain conformations and the ensuing polymer
mediated interactions. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42:

3539-3556, 2004
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INTRODUCTION

Ubiquitous in colloidal systems and soft matter in
general,? charged polymers play a fundamental
role in determining the interactions between as
well as stability and structure of various (macro)-
molecular assemblies. Statistical properties of
charged polymers set them quite apart from the
noncharged polymers.®? Their effect on colloidal
interactions has been studied and exploited in
various technological contexts ranging from the
paper industry to the pharmaceutical industry.*
It seems, however, that their most basic role is
played in the biological context. They are an es-
sential and fundamental component of the cellu-
lar environment, and make their mark in its ev-
ery structural and functional aspect.’® It is thus no
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surprise that the behavior of charged polymer
chains in biological context has been one of the
major foci of soft matter research for quite a few
years now.®

In charged colloidal system the interactions
are usually subsumed under the heading of the
DLVO theory.” Within this framework the elec-
tromagnetic interactions between macroscopic
bodies are broken into two disjoint contributions.
First there is a contribution that has its origin in
the creation of double layers in the bathing solu-
tion close to the charged surfaces.® Their exis-
tence is due to the interplay of entropic effects,
that favor homogeneous distribution of mobile
charges, and electrostatic attraction between the
charges on the surfaces and their counterions in
the aqueous environment.® This contribution to
the total force between the surfaces is repulsive, if
the surfaces bear charges of the same sign. The
second contribution is usually attractive, irre-
spective of the charges on the surfaces; its origin
is in the fluctuations (thermodynamic as well as
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quantum mechanical) of the local electromagnetic
fields in the component dielectric media. It is usu-
ally referred to as the van der Waals-Lifshitz
interaction.'® In general, however, the two contri-
butions are not additive or even separable.®

The addition of polyelectrolytes to the bathing
solution demands a thorough generalization of
the DLVO theory, especially its electrostatic part,
that has to take into account the connectivity
between charged segments along the polymer
chain. This connectivity can often lead to a very
peculiar interaction, where long charged poly-
mers can mediate interactions between macro-
ions of opposite charge.'' The term bridging in-
teractions is usually applied to this situation
where a single chain can adsorb to different, two
or more, macroions, and via its connectivity me-
diate attractive interactions between them. These
interactions have been studied intensively both
experimentally as well as theoretically. Surface
force apparatus and atomic force microscopy'?
have provided direct data on the separation de-
pendence of the bridging interaction between
macroscopic surfaces with polyelectrolyte chains
either grafted or in chemical equilibrium with a
bulk solution. Theoretical work has added a clear
mesoscopic picture for the bridging interaction
between macroscopic surfaces and elucidated the
effects of salt and nonelectrostatic excluded vol-
ume on the strength and range of this interac-
tion.'3!8 Because it is based on sometimes severe
model or formal restrictions there is no single
theoretical approach that is able to account for all
experimentally observed details or is able to ex-
plore in comparable details all the regions of the
parameter phase space.!! Different approaches
address different regions of the parameter space.

The problem of polyelectrolyte chains in the
bulk, worked out at different levels of approxima-
tions,'®2° is reasonably well understood. On the
other side, the case of a confined (neutral) poly-
mers is also well understood, and the forces be-
tween confining surfaces have been studied at
various levels of approximation.?! The two were
first brought together, that is, charged interfaces
with charged polymers, in the seminal work of
Muthukumar.?? A further step was taken when
the mean-field theory was applied to the problem
of polyelectrolyte mediated interactions, starting
from the work of van Opheusden.?®> Due to the
connectivity of the polyelectrolyte chain the re-
sults of these model calculations based either on
continuum' or lattice-type®* mean-field theories
bear almost no resemblance to the case of con-

fined unconnected ions. A self-consistent field the-
ory, akin to the usual Poisson-Boltzmann theory
of electrostatic interactions in colloidal systems,
has been proposed for confined polyelectrolytes
and applied successfully to the problem of polyelec-
trolyte mediated interactions between charged sur-
faces.' This approach has been later properly gen-
eralized to include also the effect of steric interac-
tions between polymer segments on adsorption and
polyelectrolyte mediated interaction.!”!® For small
macroions with free'® or grafted®® polyelectrolyte
chains a different approach was found to be more
convenient, based on a harmonic variational ansatz.
It allows for an elegant and straightforward evalu-
ation of the polyelectrolyte mediated interactions in
the geometry where self-consistent field theory
would be more difficult to solve.

In this short review of the problem of polyelec-
trolyte mediated interactions I will try to remain
as close to the Poisson-Boltzmann (PB) approach
to a confined electrolyte as possible. For planar
surfaces with intervening polyelectrolytes I will
describe a straightforward generalization of the
Poisson-Boltzmann theory where the statistical
averages over the polymeric degrees of freedom
will be included in a self-consistent manner and
will lead to pronounced polyelectrolyte-mediated
bridging. In the opposite limit of small macroions
with intervening oppositely charged polyelectro-
lyte chains I will review a different approach
based on a harmonic variational, two particle (two
macroions) theory of the bridging interaction.
Again, the coupling between polyelectrolyte con-
formation and electrostatics will lead to pro-
nounced bridging interactions with similar prop-
erties as in the planar case. I will estimate the
salient features of the polyelectrolyte mediated
interactions in both cases and indicate the regions
of the parameter space where they might domi-
nate the interaction. I will not specifically review
the simulation work pertaining to the bridging
interaction as well as the many experimental
studies that are in one way or another relevant
for the proper understanding of the different fac-
ets of the bridging effect.

PLANAR INTERFACES—SELF-CONSISTENT
FIELD THEORY

The Model and Its Hamiltonian

The planar case is schematically represented on
Figure 1. Polyelectrolyte chains and salt ions are
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Figure 1. Schematics of the model for planar and
point macroions. In the first case, the confinement of
the chain at small intersurface separations gives rise to
repulsive interactions. At larger spacings the chain
assumes bridging conformations, partly adsorbed to
one surface, partly to the other one, with segments of
the chain spanning the region in between, conferring
intersurface attractions. With small (ideally point)
macroions the chains are bound to both of them at
small separations, thus creating bridging configura-
tions and conferring attractive interactions. At larger
separations because of their finite length, the chains
remain bound each to its own macroion, renormalizing
its charge in a Debye-Hiickel like repulsion.

confined between two oppositely charged surfaces
of surface charge density o (presumed negative)
separated by 2a, that are impenetrable to all
mobile charges. The uni—uni valent electrolyte is
described in the frame of the primitive model with
ionic charge e, dielectric constant € and activity
zo. For the level of subsequent approximations
the hard-core radius is not important, so is the
possible grafting of the chain. The effects of the
latter would only show for short chains or if the
grafting density would be high enough to create
polyelectrolyte brushes.!! Both these possibilities
will not be addressed in what follows.

The polyelectrolyte chains are described in the
frame of a continuum model as freely jointed links
of charge 7 per bead of Kuhn’s length ¢, with a
total contour length equal to N¢. The total num-
ber of polymer chains is N. All electrostatic inter-
actions are mediated by the Coulomb kernel of
the form

!

ee

(1)

u(r, r) = 4meeglr — |’

where e, e’ refer to the charges located at r, r'. In
what follows we will ignore the possibility of sta-

tistically distributed charges along the chainZ®
and will assume them to be fixed and uniform.
The configurational part of the Hamiltonian for
this model system can be written as

3 o [V (dre 1
B¥H[r;] = 302 > j ( zin)) dn + 5B > u(r;, )

tJ

1
) B 2 Nuu(ry, v,) + B X eid(r). (2)
k i

In the above equation r“(n) stands for the contin-
uous coordinate of the nth bead along the ath
polymeric chain, index i, j, and & run over all
polymer beads of all the chains, all mobile salt
anions and cations and g = (kT) ! is the inverse
thermal energy. The first term corresponds to the
chain connectivity, while the third term merely
removes the self-energy terms (i = j) from the
Hamiltonian. ¢.(r) is the external electrostatic
potential due to the charges on the surfaces. In
this form of the Hamiltonian the possibility of
discrete surface charges as well as the presence of
dielectric discontinuities was disregarded.

The Partition Function

In what follows we will closely follow the analysis
of ref. 13. The partition function of the system
characterized by the configurational Hamiltonian
7 acknowledges the fact that the ions are allowed
to exchange with the bulk reservoir as the sepa-
ration between the surfaces varies. As for the
polymeric chains, we assume that they are not in
equilibrium with the bulk phase because the
transverse diffusion rate of a polymer trapped
between two surfaces is small, and the overall
situation is one of restricted equilibrium. The ap-
propriate partition function is therefore

© N,
E=111] > Jff‘j e P gre(n)a™r  (3)
a s=a,c Ns=0 st

[re,r]

where a, ¢ stand for anions and cations, « is the
index of polymeric chains, ¢ is the renormalized
value of the absolute activity and ¢ = z,eV/2Fesnn)
The integration measures in the above equation
are defined as: Ir*(n) = d*r*(1)d*r“?2) . . . d*r*(N%)
and 9Neer = @Pr(1)d®r(2) . . . d°r(N,) where r(N,) is
the position vector of the N.~th anion or cation (s
= a, c¢) respectively.
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Introducing now the Hubbard-Stratonovich
transformation permits us to write the pair inter-
actions in an effective one-particle form, so that
we can perform the summations in eq 3 explicitly
remaining, apart from an irrelevant multiplica-
tive factor, with the following compact form of the
partition function®’

i

=1 f J (Gy(r®, v’ N°) d’r* d’r'*)y.  (4)

G4(r* r'%; N®) is obtained in the following form
Gd)(ra’ r/a; Na)

ro(N)=re 3 Ne dra(n) 2
= Dr*(n)exp| — o dn dn
a(0)=r'« 0

r

Na
+i(B7) J d(x*(n)) dn) (5)

and is clearly nothing but the Green’s function of
the ath polymeric chain in an external field.?’
Because u(r, r') is a solution of the Poisson equa-
tion we can use its inverse to obtain the following
form'® for the ¢ average in eq 4

()= f B(r)(. . Je FHLiv] (6)

where @¢(r) = lim, . dd(r)dd(ry) ... dd(x,)
and

H[p] = Fpp= — %Efo j (V¢)? d°r

— ZkTg“j cosh(Beyd) d’r — § dod’r (7)

is the Poisson-Boltzmann form of the electrostatic
free energy of a univalent electrolyte. In eq 6 it
has to be evaluated at imaginary values of local
potentials or, what amounts to the same thing, at
imaginary values of the charges just as in the case
of a confined Coulomb fluid.?® We can now take
into account all the above developments and de-
rive the final expression for the partition function
eq 4 as

E= J D(r)e P, €))

where the action in the exponent can be put into
the form

Sy = H[id]

— kTN ln<Jj Gy, v'; N)d’r d’r' |, (9)

disregarding the possibility of polydispersity of
polymeric chains, thus setting N* = N and G ,(r°,
r'%; N = Gux* r'* N®). A related represen-
tation of the partition function in the case of ex-
cluded volume interactions is well known.?’

The Self-Consistent Field Method

The partition function eq 8 cannot be evaluated
analytically. Just as in the case of an electro-
lyte,?® we thus resort to its approximate evalua-
tion. The self-consistent field (SCF) method pro-
vides a good start. The SCF field is obtained as a
solution of the saddle-point of the action eq 9

8(r)

0 (10)

We shall not write down this functional derivative
explicitly at this stage. To evaluate it, one needs
the following identity®’ that can be derived from a
differential equation corresponding to eq 5, viz.

)
09(r) ln(f J Gole, '3 N) dr dsr') ~ iBrpy(r)

N
JI d’r’ d’r' J dnG,(x',r; N — n)G,(r,r'; n)
0

=iB7
JJ d’r &°r'G(r, r'; N)

(11)

where p,(r) is the polymer segment density of a
single chain at position r.

The functional derivative eq 10 now decouples
into two terms: a volume contribution that
amounts to a modified Poisson-Boltzmann equa-
tion, and a surface contribution in a form of a
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boundary condition, expressing the electroneu-
trality of the system. It is straightforward to see
that the boundary condition demands that the
stationary-point ¢ be pure imaginary. Making
thus the substitution ¢ — i¢, one remains with
the following saddle-point equations

€€0V2¢(1‘) = 2e,sin h(Beyd(r)) — TNP¢(I‘)

d
— €€ £ =0 (12)

where n is the local normal of the boundary sur-
faces. Furthermore, the polymer segment density
p4(r) is obtained via eq 11 from the Green’s func-
tion eq 5. The definition of the polymer density eq
11 and eq 12 represent the self-consistent field
equations for a polyelectrolyte immersed in an
electrolyte solution.

The Polyelectrolyte Poisson-Boltzmann Equation

The main conclusions of these rather formal de-
velopments can be restated on the basis of purely
physical arguments that are standardly used in
different derivations of the Poisson-Boltzmann
equation.” Because the only mobile charged spe-
cies in our model system are anions, cations, and
charged polymeric chains, the local Poisson equa-
tion can be straightforwardly written as

e€V2¢(r) = —p(r) = —2 pi(r) (13)

where ¢(r) is the local mean electrostatic poten-
tial at point r, while p(r) is the local total charge
density, composed of the local charge density of
cations, anions, and polymeric chains (repre-
sented by index 7). Inserting now all these local
charge densities (cationic, anionic, and polymeric)
into the Poisson equation, we are led exactly to
the first equation of eqs 12, if the polymer density
is given by

py(r) = (e ), (14)

where now the averaging (. . .) has to be done over
all the degrees of freedom of the polymer chain.
The question now remains of how to represent
py(r) explicitly as a function of the local mean
potential ¢(r). To do that we assume the ground-
state dominance ansatz,® so that the polymer
Green’s function has the form

Gy(r,x'; N) = Gz, 2'; N) = gl2) il )e N (15)

where |E | is the lowest lying energy eigenvalue
and /(z) is the polymer density field. Configura-
tions with negative Ey correspond to the case
where polyelectrolyte chain has at least one sur-
face-bound state. With this ansatz we are ignor-
ing all effects that depend on the size of the
chain.?® On this level we can eliminate the depen-
dence of the Green’s function on the transverse
coordinates, thus obtaining p,(z) = (N/S)y?(2)
with [*¢ ¢?(2) dz = 1. With these simplifications
eqs 12 and the Edwards equation for the Green’s
function eq 4 are reduced to the following set of
two coupled nonlinear equations'® for the local
average potential ¢(z) and the polymer density
field y(z)

12 d2)
a2t (Exy— B1d) =0

2

. N

€€ 7o~ 2Le sinh(Beyd) + TN 3 ¥*=0. (16)
The impenetrability of the surfaces to polymer
beads is now reduced to the boundary condition
Y(z = =a) = 0, while the appropriate boundary
condition for the electrostatic potential can be
deduced form eq 12. Equations very similar in
content to the above were first derived by Varo-
qui.®!

Clearly, in the absence of polymeric chains, the
above two equations reduce to the standard Pois-
son-Boltzmann equation for a uni-uni valent
electrolyte. With the polymeric chains present, we
can view eqs 16 as a modified Poisson-Boltzmann
equation, where the dependence of the polymeric
charge density on the mean electrostatic potential
has to be determined self-consistently, via the
dependence of the polymer density field on the
electrostatic potential.

An interesting limit of the above general SCF
equations is obtained in the case of a single poly-
electrolyte chain®* between two oppositely
charged surfaces. In this case, the second equa-
tion of the general ground-state dominance SCF
equations, eq 16, can be solved analytically lead-
ing to a one-dimensional Hartree equation, where
the SCF potential is given by Bro/ee, [2 |z
— 2'|y?(2")dz’. It is obviously a nonlinear equa-
tion, and allows for very complicated behavior
including transition between different equilib-
rium states (see below).
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The SCF approach allows also for simple gen-
eralizations. Steric interactions between polymer
beads'” can be simply included in the free energy
functional as additive terms, and lead to modified
SCF equations of a higher order in the polymer
density field. Another variation on this set of
equations can be obtained if one relaxes the an-
sazt for constrained equilibrium of the polyelec-
trolyte chains and allows their exchange with the
bulk at a fixed chemical potential.'” This elimi-
nates the Lagrange multiplier for the fixed num-
ber of monomers that is, in fact, proportional to
Ey. In this case, Borukhov, Andelman, and Or-
land'” derive the following set of SCF equations
(in our notation)

1?d*
St Brou+ vl — ) = 0

2

d*¢ .
€€ g2~ 2{e(sinh(Bey¢)

N
7N g (P — e =0, (17)

where v is the second virial coefficient character-
izing steric short-range interactions and s, is the
value of the polymer density field in the bulk.
This is the most general form of the SCF equa-
tions that one can derive.

A linearized form of these SCF equations, that
takes into account the short-range steric interac-
tions as well as the equilibrium of the polymers
with the bulk, together with an additional chem-
ical surface adsorption term, has been already
derived and solved by Joanny.®

Free Energy, Pressure, and the Contact Theorem

We are now ready to evaluate the surface free
energy density defined on the SCF ground-state
dominance level by taking into account eqs 16
with the appropriate boundary conditions, and
are led to the following explicit form of the surface
free energy density

kT _ N Fpp
F = —gln:=kTN—EN+—

S S
12 +a
gl

—a

—hry Y
]

dy

dz

2
dz + BTJ s dz]

—a

d(l) 2 +a
4, | 92— 2kTC | cos h(Beod) dz

1 +a
_266()]

—a

20z = +a)o = f A, ) dz (18)

—a

where Fpp is the standard Poisson-Boltzmann
free energy of a nonhomogeneous electrolyte. The
local nonequilibrium free energy density f is thus
a functional of y(z) and ¢(z). This form of the
surface free-energy density can be used to derive
the SCF equations, eqs 16, which are just its
Euler-Lagrange equations. In doing this one
should take into account the constrained equilib-
rium of the chains via a Lagrange multiplier for
the constraint [*¢ y*(z) dz = 1. The Lagrange
multiplier w for this constraint turns out to be
equal to A TN(N/S)E .

After deriving the free energy density that
leads to correct SCF equations we can now apply
the argument of de Gennes,?? together with the
first integral of eqs 16 and show that the pressure
acting between the two bounding surfaces located
at z = *a can be reduced to'?

9 = 2kRT{ cosh(Beyp(z = a))

12 kTNNl2<da,l;2 19
9, FNg6\qz) (19

This relation represents an appropriate generali-
zation of the “contact theorem” amply used in the
Poisson-Boltzmann theory of interacting double
layers to the case with added polyelectrolyte
chains. The first two terms of the above equation
are clearly identical to the standard Poisson-Bolt-
zmann contact theorem, while the last term em-
bodies the equilibrium of forces due to the pres-
ence of polymeric chains.?3

Results

Numerical investigations of the SCF equations
can be systematized if one introduces appropriate
dimensionless quantities. In the case of polycoun-
terions, no added salt, the solution of eqs 16 ap-
propriately linearized'® depends on only one pa-
rameter \y°® = (6B70/{%e€y)'’® of dimension in-
verse length, characterizing the size of the chain.
For small values of the dimensionless quantity
A53a, the distribution of the polymer between the

surfaces is monomodal (Fig. 3) the lowest energy
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p/Py

log(p/pe)

Figure 2. Dimensionless pressure and lowest energy
eigenvalue E,; as functions of the dimensionless spac-
ing. The insets show the position of the maxima, a,, of
the monomer distribution function as the function of
dimensionless coordinate. Upper figure: polycounte-
rion-only case, filled circles dimensionless pressure,
open circles E,. Lower figure: polyelectrolyte chains
with monovalent salt, filled circles log of dimensionless
pressure, open circles E,,. For the polycounterion-only
casea, = Az 2, p, = (0%/2€¢,) and for polyelectrolyte
plus salt a, = Ap, po = (RT/€,A%). The values of the
parameters (defined in the text) are I' = 5.4, A = 1 and
k¢ = 1. Bridging interaction corresponds to negative
values of the pressure. Bridging configurations of the
chains correspond to bimodal distribution, with a,,
# 0.

eigenvalue varies approximately as a2, and the
pressure is repulsive varying approximately as
a~ 3. At a critical value of the intersurface sepa-
ration a the polymer distribution becomes bi-
modal (Fig. 3), and the position of its maximum
a,, varies with a, as shown on the inset of Figure
2. At the same time, the pressure turns from
repulsion to attraction while the lowest lying en-
ergy eigenvalue, Ey, goes through a minimum. At
large values of the intersurface separations both
the pressure as well Ey decay approximately ex-
ponentially and remain attractive.

In the case of polyelectrolyte and salt ions, the
main difference in comparison with the previous
case is the contribution of the osmotic pressure of
the salt ions to the total intersurface pressure.'®
Here, the solution of the SCF equations, eq 16,
depends on four dimensionless parameters: w,,
= ka, where k is the inverse Debye screening
length of the salt, dimensionless surface charge I'
= (Beyo/eeyk), dimensionless electrostatic cou-
pling constant A = (BeZ/eeyk)(N/S), where N is
the total number of the polymer beads and S is
the surface area of the interfaces and the dimen-
sionless product «f. These parameters scale the

p/po

Figure 3. Upper graph, generic form of the monomer
density distribution between the charged surfaces. w,
= ka is the dimensionless separation between the sur-
faces and w = kz is the dimensionless coordinate in
between the surfaces, —a < z < a. The graph has been
normalized so that w/w, is always between 1 and —1,
while for different curves w, = 0.5, 1.5, 2, 2.5, 3.
Lower graph, log of dimensionless pressure for the
polyelectrolytes plus univalent salt, same as in Figure
2.T = 5.4 and k€ = 1. Upper curve A = 0 and the rest
in progressing order A = 1, 2, 3, 4. The inset shows the
Maxwell construction in the case of pronounced bridg-
ing interactions, A = 2.5 and I' = 5.45, which allows for
a coexistence of two phases at different intersurface
spacings.
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effects of the separation between the surfaces, the
charge on the surfaces, the charge on the chains,
and the flexibility of the chains. They define dif-
ferent regions in the parameter phase space with
different behavior of the interaction pressure.

At small values of w, = ka the polymer distri-
bution is monomodal (Fig. 3), with the lowest
energy eigenvalue varying approximately as a 2.
Again, at a critical value of the intersurface sep-
aration the polymer density becomes bimodal
(Fig. 3), the lowest lying energy eigenvalue goes
through a minimum, but the location of this min-
imum does not coincide with the monomodal-
bimodal transition of the polymer density. This is
due to the coupling between the polymer and the
salt ion degrees of freedom. The pressure how-
ever, has a more complicated behavior due to the
presence of the osmotic component of the salt
ions. For small enough values of A it remains
purely repulsive over the whole range of ¢ and
decays approximately exponentially with a Debye
screening length. However, for sufficiently large
coupling constants A, the pressure can also ex-
hibit pronounced attractive regions (Fig. 3). The
interplay between attractive polymer-mediated
and repulsive osmotic ionic contribution to the
total intersurface pressure can lead to phase sep-
aration in the system via the Maxwell construc-
tion3* (Fig. 3).

In both cases described above, the attractive
component of the pressure feeds off the bimodal
distribution of the polymer density, which in es-
sence, characterizes bridging configurations:
parts of the chain are in close proximity to one of
the surfaces and parts to the opposing surface.
The intervening part of the chain confers a
stretching force that tends to pull the surfaces
together. The origin of this stretching force is
obviously the connectivity of the chain. The range
of this bridging interaction can be seen'® to scale
as an inverse power of the number of polymer
segments, and is thus usually quite small, on the
order of the average segment—segment spacing of
the polymer, a conclusion consistent also with
extensive simulations of the confined polyelectro-
lyte system®® as well as with other variants of the
SCF theory set up specifically for grafted polyelec-
trolyte chains.?® At very large intersurface spac-
ings, however, there is a residual weak and long
ranged pseudo-Casimir attractive interaction
stemming from the fluctuations of the local elec-
trostatic field and polymer density field around
their respective SCF profiles.?” This weak force
would be difficult to detect in simulations, al-

though some indications for its existence can be
found in ref. 38.

Generalizing the SCF equations by including
also steric effects as well as polymer exchange
with the bulk adds additional features to the in-
tersurface interactions. In the low-salt regime a
strong repulsion is seen at small separations,’”
followed by a strong attraction due to polyelectro-
lyte depletion between the surfaces at larger sep-
arations. At high-salt concentration the interac-
tion is purely repulsive at all separations and
decays exponentially with the Debye screening
length. The most interesting results, however, ap-
pear to be those where electrostatic and steric
interactions as well as chemical equilibrium with
the bulk and nonelectrostatic adsorption are
treated together on the linearized Debye-Hiickel-
like level.'® It was shown that on this level there
is a region of the parameter space where the
solution of the mean-field equations can give rise
to nonmonotonic, oscillatory behavior of the poly-
mer density due to the interplay of the tendency
of polyelectrolytes to collapse on macroscopic
scales and swell on the microscopic scale due to
the presence of counterions. This oscillatory spa-
tial variation of the bulk polymer density persists
also for confined adsorbing polyelectrolytes, and
in its turn leads to oscillatory polyelectrolyte-me-
diated interactions. The conclusions of this theory
have been completely vindicated by detailed sim-
ulation studies that take into account electro-
static as well as steric interactions between poly-
mer segments,?® and appear to be operative also
outside the region of the parameter phase space,
where the linear theory'® is supposed to be
strictly valid.

POINT MACROIONS—VARIATIONAL
THEORY

The Model and Its Hamiltonian

The model system in this case is again quite sim-
ple (see Fig. 1); it is composed of two spherical
point macroions with M negative fixed charges
located at r; and r,, plus two oppositely charged
chains, each with N monomers, one positive
charge per each monomer, grafted to the macro-
ions. The pair interaction potential u(r’, r) be-
tween all the charges in the system will be taken
of the screened Coulomb (Debye-Hiickel) form?

2 —klr—r'|

e e

u(r',r) = (20)

4eey [r — 1’|’
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k is the inverse Debye length, e is the charge per
each Kuhn’s length, and the rest of the notation is
standard. Obviously, counterions are not explic-
itly included in this model, and the difference
with the planar case is that from the start we
work on the linearized PB (Debye-Hiickel) level,
and thus this model cannot capture nonlinearities
such as charge renormalization or counterion con-
densation. It can, however, take into account the
electrostatic stiffening of the chain®® as well as
the finite chain size effects.

The interaction potential between the polyelec-
trolyte chains and the macroion charges is as-
sumed of a similar form viz.

—klr—r1| —k|r—rg|

eey, e e\e, e

Pexi(r) =

*

4:77660 ‘I‘ - I‘l‘ + 477660 ’r - r2’ e
(21)

where r,, r,, etc., are the positions of macroions,
and their charges are e; = e, = Me, etc. Our
model is thus a very straightforward generaliza-
tion to many macroions of the model used in poly-
electrolyte adsorption studies.*!

We will again use the standard continuum
model for the polyelectrolyte chain where the
mesoscopic Hamiltonian has contributions from
chain connectivity, interactions between the seg-
ments of the chain, and the interaction with an
external field due to the presence of two macro-
ions. It is written as

3 2 (¥
B¥H[r,(n)] = 27 EJ r2(n) dn

1

5B EJ f u(ri(n), rj(n)) dn dn’

J=

NO|

i=1

2 (N
+B 2 J Pexi(ri(n)) dn,  (22)
0

where u(r’, r) is the pair interaction potential,
while ¢.(r) is the external interaction potential.
The indexes i, j stand for the two polyelectrolyte
chains. Clearly, the nonpairwise additive effects
such as bridging between multiple macroions me-
diated by a single chain, have been completely
disregarded in this model. The finite macroion
size effects have also been disregarded. The graft-
ing of the chains is only taken into account via

their center of mass coordinates in the way ex-
plained later.

Variational ansatz and Formalism

In what follows now we will closely follow refs. 25
and 42. For the variational ansatz corresponding
to two chains we will chose a general harmonic
hamiltonian of the Feynman-Kleinert form*3

3 2 (v 32
BHo[r;(n)] = 202 > J i} (n) dn + 9 > C(ry)
i=1Jg i=1
N
X j (r;(n) — ry)® dn + BNL(ry;, ros). (23)
0

This ansatz is obviously still dependent on r; for
i = 1, 2, that stand for the centers of mass of the
two chains, that is, ro; = (1/N) [5 r;(n)dn, as
well as the functions {;(ry;) and £(ry,, rys) that
will be determined variationally. The term with
{3(r,;) represents an external harmonic potential,
centered on r(;, that acts either to confine or to
expand the chain, depending on its sign. The term
BNZ(xy;, roo) simply represents the value of this
harmonic external potential at the centers of
mass of both chains. As will become clear when
we proceed, both quantities depend in a compli-
cated way on the interactions between the mono-
mers as well as on the interactions between the
monomers and external macroions.

This is not the only possible formulation of the
variational approach,** but the results of differ-
ent formulations are even quantitatively very
similar.?

The statistical integral, that is, the partition
function for the variational ansatz can be ob-
tained in the following form?3

Eo(N) = f D[r;y(n)] J Gry(n)]eFHolrin)]

= ff d3r01 d3r02e*5§0(r01,r02). (24)

The two polymer chains are thus represented as
two effective Gaussian, Asakura-Oosawa “parti-
cles”® with an effective Hamiltonian given by
Fo(ro1, Yoz)- The details of the implementation of
the Feynman-Kleinert ansaitz for (self)interacting
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polymer chains have been given before,*> and we
will rely on the formal developments described in
that work. First, we introduce the radius of gyra-
tion defined as

1 N
azz(rOi) = ?)]vf ((r;(n) — rOi)2> dn

0
1 (&%21\3
=5 g ) @

where £(x) = cot hx — (1/x) is the standard
Langevin function. One can then derive*? that
minimization of the upper bound of the varia-
tional free energy with respect to the function
L(ryy, roo) leads to the following equation

BN¥(ry1, To2)

3 2
Y > Z(ro)Nai(ry) + BW(ryy, rog). (26)

i=1

W(ry,, ros) represents the total interaction free
energy, due to self as well as interactions with
external fields, of a smeared monomer cloud with
a Gaussian density distribution. Let us introduce
the combined monomer density function p(r, ry,
ro;) and assume it has the form p(r, ry;, ros)
= pa2r,ro1) + par, roe), where for each of the
chains the monomer density distribution function
is given by

v —ro,f”
pa(r, o) = (2ma2)"? €Xp g2
12 l

Then via the self-interaction and interaction with
the external fields as in eqs 20 and 21, we obtain

2 2
W(ros, rop) = 2 Fax(ro — 1) + > Fa2(ro2 — 1)
k=1 k=1

2

+ E OWak,ak(rOky rOk) + oWal,az(rola r02)' (27)

k=1

Here, r; stand for the position of the two macro-
ions (to be distinguished from the position of the
two centers of mass of the polymer chains r,).
F,2(r — r’') are due to the interaction of the chains
with external fields and can be written in the
form

3

d’k o
For —x') = Wpa,?(k)u(k)e‘ *=r) (28)

The intra and interchain interactions are given by

3

, d’k —
Waia(r, ¥) = | (5 53 pa(Ku(k)pa(=K)e™ ™
(29)

and represent the electrostatic self-energy of the
chains and electrostatic interaction energy be-
tween the chains, where the chains are treated as
Gaussian blobs.

Variational Equations

These are straightforward generalizations of the
variational theory set up previously for a single
chain.*? The functions ¢;(r,;) are obtained by min-
imizing the upper bound to the exact free energy
with respect to a? leading to

3 ) d
9 Li(ro))N =B 9a2 Wiy, ros). (30)

The effective centers-of-mass free energy of the
two polymer chains is finally given by the expres-
sion

. LGN
2 sinh —— 3 2
BFo(ro1, Too) = 3 i:El log TN 2 i:21 CNa?
2

+ BW(ry1, 10), (31)

The first two terms of this variational free energy
represent the entropy of the Gaussian chain, and
the last one is due to the interactions with the
external fields as well as electrostatic inter- and
intrachain interactions (see eq 27). These are the
basic equations of the Feynman-Kleinert varia-
tional theory as applied to the self interacting
polyelectrolyte chains. They are still quite compli-
cated because of the dependence on the center-of-
mass coordinates r,, and the final integration
over these variables in eq 24.

If there are no external fields that break the
translational symmetry of the problem it can be
easily seen*? that the dependence on r,; vanishes,
and the solution of the variational equations is
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straightforward. With external fields the final
quite complicated r,; integration can be obtained
only numerically. In the case that F,(ry;, ros)
scales with a positive power of N and N is large
enough, there is, however, an additional quite
accurate approximation to circumvent this final
integration.*® It consists of the saddle-point eval-
uation of the final integration with respect to r,;,
that is of an additional minimization of %F,(ry;,
ro,) with respect to ry; as well as ry,. If the
solutions of these minimization conditions are rfy,
and rj, then we obtain from eq 24 a simple ex-
plicit and accurate estimate for the free energy of
system, viz.

F = —kTE (N) = Fo(rs,, ¥5y). (32)

The solutions of the variational equations have
two branches, depending on the relative magni-
tudes of the interaction with external fields and
the self and mutual interaction of the chains. The
two branches of the solution are:

1. what we call a strong coupling branch that
corresponds to /2(ry;) > 0 in the variational
equation eq 30, and thus to the dominance
of the interactions of the chains with the
external macroion fields, the self and mu-
tual interactions of the chains being a small
perturbation.

2. and what we term a weak coupling branch
where (?(r,;) < 0 and thus corresponds to
the case where the self and mutual interac-
tions of the chain are dominant, and the
interactions with external macroion fields
are perturbative. Coupling in both cases
thus refers to coupling with the external
macroion field.

In this model the external macroions break the
translational symmetry of the system, and we
thus also apply the minimization condition with
respect to ry; as well as ry,. To avoid the final
complicated integral over the centers of mass of
the two polyelectrolyte chains. Taking into ac-
count the Gaussian-like form of the function f;(y,
t), we realize that there are, in fact, two different
symmetric solutions to this minimization condi-
tion: rfj; = r; and r{, = r,, that is, each of the
chain remains associated with its grafting macro-
ion and rj; = rj, = %(r1 + ry), that is, each chain
is shared by the two macroions symmetrically.
Here we assumed that the first chain is grafted to

the first macroion while the second one is grafted
to the second macroion. We refer to the configu-
ration of the polyelectrolyte chains in the first
case as weakly paired and in the second case as
strongly paired. The terms are self-explanatory:
in the first case, each of the chains is bound to one
of the macroions, whereas in the second case they
are bound by both of them. In both branches of the
solution we can, in general, observe some bridg-
ing effects, but they are several orders of magni-
tude stronger in the first case. Nevertheless, they
are always present to some extent.

Solutions of the Variational Equations

As already stated, we consider only symmetric
solutions of the variational equations for which a2
= a2 = a?, but in general with r{; # r{,. This
symmetrization will be applied to results derived
below in their final form. We have from the total
variational free energy eq 31

€BMN23/2
BW(ry;, ros) = —

E: ( |r01 I‘k|7 ’:/;)

zN? 405N?  ([|rg; — ol
+5 A0, k) fl( L

(33)

€5

s = dmeekT

was introduced above as the Bjerrum length.
Also, we introduced the following function

7 u sinuye ™ 4
My = =z 9
0

On the other hand, the variational equation eq 30
can be obtained just as straightforwardly as,

J
B ?1;21 W(ro1, ro2)

wa

_ N 2
2 [ZS/QM E g( |r01 I'k|’ K%)
N

k=1

_ 2Ng(|““;““|, Ka) ~ Ng(o, Ka)]. (34)
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A similar equation could be obtained also for B(d/
0a2)W(ryy, ryy) except that ry; on the r.h.s. would
be turned into ry,. The following new function
was defined above g(y, t) = —(3/dN) £, (y, t)],_1.
What the variational equation eq 34 really as-
serts is which terms are important in determining
the statistical conformation of the chain, that is,
a? in our case. The first term on the r.h.s. of eq 34
is due to the interactions with the macroions, the
second one is due to the interactions between the
two chains, and the last one is the self-interaction
of the chains. The conformation of the chain as
described by a? is thus determined by the relative
magnitudes of these three terms. The final clo-
sure for this system of variational equations is
provided by the relation between ¢ and a, (eq 25).

Strong Coupling Limit, £ > 0

In this domain of the parameter space the effect of
the interactions of the polyelectrolyte chain with
the macroions, the term proportional to M in eq
34, determines the overall configuration of the
chain. Minimization with respect to ry;, ry, leads
first of all to a solution, stable for small values of
the separation between the macroions, that cor-
responds to strong pairing configuration of the
chain with r§; = ri, = %(r1 + r,). The variational
equation for { in this case reads

¢ [2 Ka

< 2 _ 5/2 N2 _ —

2 4 ol [2 Mg(2a lry — 1y, \,E)
— 3Ng(0, Ka)}, (35)

while the corresponding free energy has the form

{zN

BFo = 2BFy(|r; — 1s)) — e

b
X (27/2M[f1(;a Iry — 1y, Kg)] — 6Nf;(0, Ka)>.
\/
(36)

The form of the dependence F,(lr; — ry)) is, of
course, given implicitly via the dependence of ¢
and a. Once again, the chain here is bound to both
macroions, and its statistical properties are dom-
inated mostly by the interaction with the charges
on the macroions. One would expect that the poly-
electrolyte mediated interactions between the
macroions would be strongest in this case. Obvi-

ously, for large enough |r; — ry| the r.h.s. of eq 35
can become negative, going first through zero.
This is due to the fact that g(y, ¢) is a decaying
function of y. At this point the above solution
ceases to be stable and we have a transition from
the strongly paired to weakly paired branch of the
strong coupling limit. The transition depends on
the macroion parameters such as the magnitude
of their charges as well as the length of the
chains. In this sense, it represents a finite size (of
the chains) effect.

The weakly paired configuration is character-
ized by r{; = r; and r{, = ry, and is the stable
branch at larger separations between the macro-
ions. Here, the variational equation for { becomes

3 €BN Ka
9 9 _ 3/2 bl
9 g ma’ [2 M[g(oa \E)

\,‘5 Ka
+g a |r1 - r2|a /,Z
\

vy — 1y

- 2Ng< , Ka) — Ng(0, Ka)}, (37)

The corresponding free energy in this case can be
obtained as

BFo = BFs(|r; — 13))

N s Ka \‘E KQ
i 2 fi O,E +f1;|1'1—1'2|,$

|1'1 - 1‘2|

- 4Nf1< , Ka) — 2NF,(0, Ka)). (38)

a

The most important term to determine the con-
formation of the chain is the interaction with the
single macroion, and is thus only weakly depen-
dent on the separation between them. These are
the first and the last term in the r.h.s. of eq 38.
The separation-dependent terms act only as a
perturbation to these terms. It is thus to be ex-
pected that the polyelectrolyte mediated interac-
tions will be much weaker in this case.

Weak Coupling Limit, £* < 0

In this case, the effect of electrostatic self-
interaction is dominant, and would lead to stiff-
ening up the chain, giving it a rod-like appear-
ance quantified by the scaling a ~ N. We expect
that even with external fields originating at the
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macroions the chain will essentially assume
this type of extended configurations in this
limit, modified only perturbatively by the effect
of both macroions. Simulations of single chain
adsorption! are completely consistent with this
picture because for large N protruding rod-like
tails are observed that correspond to electro-
statically stiffened portions of the chain. Calcu-
lations of Nguyen and Shklovskii*” also lead to
the same qualitative picture of chain adsorption
in this limit. Because in this limit the effect of
the macroions is small, the polyelectrolyte
chains can never be strongly paired by both
macroions. We thus remain solely with the
weakly paired configuration of the chains due to
the grafting to the macroions. The solution of
the variational equation eq 30 thus only has one
branch in this case given by

3 , N [ry — 1y
§§ = 3 | 2Ng T, ke + Ng(0, ka)

Ta
2
Ka | Ka
- 2%°M [g(O, ) + g(\' [y — 1y, )H (39)
\rE a \15

Clearly, this equation is obtained by the substi-
tution { — i{ from eq 30. This transformation
should be taken into account also in eq 25 leading
to

1 (PN
2 _ '
@ =37 (2()’

where now &'(x) = (1/x) — cot x. The interaction
with the macroion, the M term in the eq 39, can
modify the value of the size of the chain, but it
has no effect any more on the stability of the
solution.

The corresponding free energy is given by an
equation similar to eq 38 but with the change { —
i{ well taken into account in Fy(|r; — ry|). It leads
to the following result

. N
sin ———
BF, = 6 log N + 32Na?
2
N 5o Ka V’E Ka
—m<2 M| fi O,E +fi ;|1'1—1'2|,E
|I'1

- 4Nf1(;r2|, Ka) — aNF,(0, Ka)). (40)

Again, because the solution of the variational
equations here remains on a single branch all the
time, showing no jump from one stable branch to
another one (“snapping” of the chain, see below).
The free energy shows no discontinuities either,
although it still depends on the separation be-
tween macroions.

Results

Qualitative features of the numerical solutions of
the variational equations, the details of which are
discussed in ref. 25, can be systematized by ana-
lyzing first the strong and then the weak coupling
limit for two substantially different values of the
Debye length, that is, salt activity. In the strong
coupling limit the free energy and the size of the
chain are given on Figure 4 for ionic strengths 1
mM and 60 mM, as functions of the separation
between the macroions. At small separation the
free energy is dominated by the bare screened
Coulomb repulsion. The chains are in the strongly
paired configuration, thus adsorbed to both mac-
roions symmetrically, and their size in general
follows the increase in the separation between the
macroions. This stretching of the chains gives rise
to an attractive contribution to the interaction
free energy that becomes dominant for interme-
diate macroion separations, giving rise to strong
bridging interactions. The bridging interactions
are composed of configurational part as well as
electrostatic parts.

Increasing the separation further starts to
change the balance of the two terms in eq 35. At a
crossover separation between the macroions, |r,
— r,| = D,, when % = 0, corresponding to

2
29201g( Yo p "%) = 3Ng(0, ka)  (41)
2a (] VE ’

there is an instability point and the chains snap
from strongly to weakly paired configuration,
thus from being adsorbed to both macroions sym-
metrically to being adsorbed each to its own graft-
ing macroion. The crossover separation given by
the solution of eq 41, obviously depends on M, N
and ka.

This snapping is seen as a clear break in the
dependence of the size of the chain on the macro-
ion separation, and is observed also in simula-
tion.'® The snapping of the chains from strongly
to weakly paired configuration is not due to their
grafting to the macroions but rather to the intri-
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Figure 4. Macroion interaction free energy eq 36 as a function of separation between
the macroions |r; — r,| in the strong coupling limit. M = 100 and N = 30 in 1 mM
(upper curve) and 60 mM (lower curve) univalent electrolyte. The insets show the
radius of gyration eq 25 of the chain. For comparison, the bold line represents the
screened Coulomb interactions between two bodies each bearing M elementary charges.
The region of separations with attractive polyelectrolyte-mediated interactions coin-
cides with the bridging region of polyelectrolyte conformations, see inset.

cate interplay between the entropy and the en-
ergy of the chain configurations. After the two
chains snap from the bridging configuration they
remain centered each on its own grafting macro-
ion, renormalizing its effective charge. The bridg-
ing contribution to the interaction free energy
disappears and the remaining interaction is again
screened Coulomb with a renormalized value of
the effective charge on the macroion. The quali-
tative picture of polyelectrolyte-mediated interac-
tion provided by the variational approach is com-
pletely consistent with existing simulation data

for one chain'® or several chains*® in the field of
two macroions. The snapping of the chain at in-
termediate spacing appears to be a salient feature
of the configurations of the chain in the strong
coupling limit, and is a consequence of the inter-
play between the energy and the entropy of the
chain configurations.

The effect of the salt in the strong coupling
regime can be simply understood via screening of
the interactions between the polyelectrolyte
chains and the macroions. For large salt activity
the bridging contribution becomes quenched and
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Figure 5. Macroion interaction free energy eq 40 in the weak coupling limit. M = 40
and N = 50 in 1 mM (upper curve) and 60 mM (lower curve) univalent electrolyte. The
insets show the radius of gyration of the chain. Again, for comparison, the bold line
represents the screened Coulomb interactions between two bodies each bearing M
elementary charges. The bridging configurations of the chains are missing now, and the
bridging interaction itself is extremely attenuated (note the scale of the free energy).
The enhanced relusion is due to “coronal” interpenetration of the extended chains.

would eventually disappear altogether. Also, the
variation of the size of the chain with the separa-
tion between the macroions becomes less pro-
nounced for larger screening.

Contrary to this case, in the weak coupling
limit there is a clearly discernible (see Fig. 5),
repulsion at smaller separations. It is due to the
interpenetrating “coronas,” that is, extended con-
figurations of the grafted chains, on approach of
the macroions. These extended conformations of
the chain have been clearly seen also in simula-
tions*! and are due to electrostatic stiffening of

the chain; in other words, they are due to the
electrostatic self-interactions of the chains.
Should we have many chains grafted to both mac-
roions instead of just two, this incipient repulsion
would develop into a full-blown brush repulsion
regime.!! Because we have only one chain per
macroion the effect of “coronal” interpenetration
is rather weak, but nevertheless clearly discern-
ible. Its range depends on the size of the chain N
as well as the amount of salt that regulates the
overall extension of the chain and quenches the
“coronal” repulsion.
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In the weak coupling limit the chain conforma-
tions are always in the weakly paired configura-
tion, and there is no snapping of the chain. The
residual bridging attraction is very weakened
(note the energy scale on Fig. 5), and is in con-
stant competition with repulsive “coronal” inter-
penetration interactions. The effect of the separa-
tion between the macroions on the size of the
chains is opposite to the one observed in the
strong coupling limit. The extent of the chain is
thus largest at smaller separations where the
“coronal” interpenetration forces the chains to ex-
tend into space.

OUTLOOK

Bridging interactions in both contexts, interac-
tions between charged planar, as well as
charged point macroions, are thus a conse-
quence of the polyelectrolyte chain configura-
tions driven by the electrostatic interactions
with external fields. Because the charge on the
macroions is of the opposite sign from the
charge on the polyelectrolyte, the chains are
invariably attracted to the macroions while the
parts of the chain spanning the region between
the macroions act as bridges. The entropic and
energetic cost of these bridges gives rise to an
attractive contribution to the interaction free
energy, that is, to bridging interactions. The
rest is details, and there are many.

The theoretical framework in which we for-
mulated the description of the bridging effects
is, in many respects, quite restrictive. First of
all, we completely disregarded all electrostatic
correlation effects that cannot be formulated in
the framework of the SCF or the Debye-Hiickel
variational theory. These effects, which have
not been properly addressed in the bridging
context, become dominant for higher valency
counterions, and can lead to a reversal of sign of
the electrostatic interactions.*® Correlation ef-
fects of polymer configurations have also been
shown to lead to an effective weak long-range
pseudo-Casimir tail in the bridging attrac-
tion.3”

The nature of the SCF approximation in the
planar case also does not allow us to include the
effects of electrostatic stiffening of the chain*’
into the formalism. Contrary to this case, for
point macroions the variational approach can de-
scribe the electrostatic stiffening of the chain on
the Odijk-Skolnick-Fixman level.’° This effect is

also driving the separation dependence of the
polymer-mediated interaction in the weak cou-
pling limit as described above. For the planar case
with grafting also taken into account it should
lead to more brush-like behavior of the interac-
tion.

The ground-state dominance ansatz in the
planar case does not allow us to address the
finite size effects, although this shortcoming
could be easily implemented if higher eigenval-
ues would be taken into account.?® More serious
drawbacks are due to the fact that we ignored
the grafting of the chains to the surfaces. Again,
for small grafting densities this would not make
a whole lot of difference, but for higher grafting
density the system would start to exhibit the
behavior of interacting polyelectrolyte brushes,
which is very much different from the bridging
regime.'!

The approximation of fixed charges on the poly-
electrolyte can also be made more realistic by
assuming either a quenched or annealed distribu-
tion along the chain. Annealed distribution of
charges in general makes the free energy smaller,
and would thus lead to stronger attraction or
more pronounced bridging contribution.®!

The main drawback of the variational formu-
lation of the bridging interaction in the case of
small macroions is the linearized (Debye-Hiickel)
form of electrostatics. All nonlinear effects are
thus a priori excluded. On this level, the main
effect of the salt is to attenuate the bridging in-
teraction as well as the repulsive interaction be-
tween the polyelectrolyte “coronas.” In this re-
spect the variational approach is inferior to the
ground-state dominance ansatz. One possible way
out would be to formulate also the electrostatic
part of the problem on a variational level,’2 where
all the Debye-Hiickel parameters would be deter-
mined self-consistently.

Another important omission of the variational
approach is the size of the macroions. The finite
size of the chain in weakly paired or strongly
paired configuration clearly showed by the nu-
merical results is thus not due to the finite size of
the adsorbing macroions as in more realistic sim-
ulations,*! but is an entropy-energy competition
effect: high adsorption energy versus low config-
urational entropy in the weakly paired state,
leading to the finite size of the weakly paired
state even with a point adsorbing macroion. This
type of finite size effect can be straightforwardly
incorporated into the statistics of free, noninter-
acting chains,?® but would be difficult to incorpo-
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rate into the Feynman-Kleinert variational
method, and were thus ignored in our formula-
tion. Alternative approaches would thus have to
be considered.?*

Although bridging effects are well documented
in different contexts of the colloid science, it re-
mains to be seen just what is their role in biolog-
ical milieu. Recent experiments on the second
virial coefficient of the nucleosomal core parti-
cles®® can be interpreted at least in part as a
bridging effect. Nevertheless, further work is nec-
essary to understand the detailed properties of
polyelectrolyte bridging in more complex biologi-
cal environments.
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