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We examine the effective counterion-mediated electrostatic interaction between two like-charged
dielectric cylinders immersed in a continuous dielectric medium containing neutralizing mobile
counterions. We focus on the effects of image charges induced as a result of the dielectric mismatch
between the cylindrical cores and the surrounding dielectric medium and investigate the
counterion-mediated electrostatic interaction between the cylinders in both limits of weak and
strong electrostatic couplings (corresponding, e.g., to systems with monovalent and multivalent
counterions, respectively). The results are compared with extensive Monte Carlo simulations
exhibiting good agreement with the limiting weak and strong coupling results in their respective

regime of validity. © 2010 American Institute of Physics. [doi:10.1063/1.3430744]

I. INTRODUCTION

Electrostatic interactions of charged macromolecules and
colloids are often governed by small oppositely charged ions
(counterions) that maintain global electroneutrality. These
counterion-mediated interactions play a fundamental role in
classical charged (Coulomb) fluids that are abundant in bio-
logical and soft matter context' and include many charged
macromolecules (such as nucleic acids DNA and RNA, actin
filaments, microtubules, and globular proteins), affecting
their functional, structural and dynamical behavior. In spite
of the importance of electrostatic interactions, there is no
general method that would allow for an accurate prediction
of electrostatic effects in all regions of the parameter space,
defined by the surface charge density of macroions, charge
valency of counterions, and dielectric mismatches between
the often hydrophobic core of the macromolecule and the
surrounding aqueous medium, etc. Often the electrostatic in-
teractions are treated on the Poisson—Boltzmann (PB) level
leading to effective interactions which turn out to be always
repulsive between like-charged macromolecules. Conceptu-
ally, the PB approach corresponds to a mean-field treatment
of electrostatic interactions and is asymptotically valid only
for sufficiently large separations between macromolecules,
low enough surface charge densities and low counterion
valency.1 It characterizes a situation where electrostatic po-
tential fluctuations and correlations due to the counterions
are negligible. There are other regions in the parameter space
of charged macromolecules where one expects the mean-
field framework to break down leading to the emergence of a
completely different non-PB-type physics. A notorious ex-
ample is the phenomenon of like-charge attraction, which
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emerges between highly charged macroions or in the pres-
ence of high valency counterions and has been at the focus of
both experimental%10 and theoretical investigations in recent
years (see Refs. 1 and 11-20 for an extensive reference list).

It appears to us that among the most important recent
advances in this field has been the systematization of non-PB
effects based on the notions of weak coupling (WC) and
strong coupling (SC) approximations. These terms refer to
the strength of electrostatic coupling in the system and may
be understood conceptually in terms of the electrostatic in-
teractions of mobile counterions with fixed external charges
(macroions) in the system when compared with direct elec-
trostatic interactions between the counterions themselves.
This latter contribution may be characterized in terms of the
Bjerrum length,

g = 6(2)/(47T880kBT), (1)

which corresponds to the separation at which two unit
charges, e, interact with thermal energy kg7 in a medium of
dielectric constant & (in water and at room temperature, the
value is €5=0.7 nm). If the charge of the counterions is
+ge, then the Bjerrum length scales as ¢g*€y. The interaction
of counterions with macroion charges (of surface charge den-
sity —o,) can be characterized in terms of the so-called
Gouy—Chapman length,

n=ey(2mqlyoy), (2)

which gives the separation at which the counterion-surface
interaction energy equals kg7. The ratio of these two funda-
mental length scales introduces a dimensionless parameter

E=q2€B/,LL, (3)

which is known as the (Netz—Moreira) electrostatic coupling
parameter = (Ref. 14) and quantifies the strength of electro-
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static coupling in the system. This parameter is closely re-
lated to the plasma parameter of ionic systems21 and may be
written also in terms of the typical lateral spacing, a, be-
tween counterions in the proximity of a charged surface, i.e.,
a,/ M~\E as set by the local electroneutrality condition
ai ~qeyl oy.

It then follows that in the WC regime, defined by E
< 1, the width of the Gouy—Chapman layer w is much larger
than the separation between two neighboring counterions in
the counterion layer and thus it behaves basically as a three-
dimensional gas. Each counterion in this case interacts with
many others and the collective mean-field approach of the
PB type is thoroughly justified. On the other hand, in the SC
regime, defined by E > 1, the mean distance between coun-
terions, a |, exceeds the layer width and thus the counterion
layer behaves essentially as a two-dimensional layer.14 In
this case, the mean-field approach breaks down as each coun-
terion is isolated laterally in a relatively large correlation
hole of size a . In fact, as each counterion can move almost
independently from the others along the direction perpen-
dicular to the charged surface, the properties of the system
are dominated by single-particle contributions on the leading
order, which is in stark contrast with the collective mean-
field picture and emerges as a direct consequence of strong
electrostatic correlations in the system. The two dichotomous
limits are characterized by a low (high) valency of the coun-
terions, a small (large) value of the surface charge density
and/or large (small) medium dielectric constant.

Conceptually the study of the SC regime has been pio-
neered in several recent works''™'® using various analytical
methods. It was shown'* that both the WC and the SC limits
may be described analytically as two exact limiting laws
from a single general theory for classical Coulomb fluids:
while the PB theory follows in the limit of E— 0, a limiting
single-particle SC theory follows in the limit E — o, which
thus allow for an exact statistical mechanical treatment of
charged systems at two opposed limiting conditions. The pa-
rameter space in between can be analyzed by approximate
methods,”>* being accessible effectively only via computer
simulations.'*'*!7*3! Exact solutions for the whole range
of coupling parameters are available only in one
dimension.”” The WC-SC paradigm has been tested
extensively14’16’17’22_24’26’28_31 and was found to describe
computer simulations quantitatively correctly in the respec-
tive regimes of validity, thus providing a unifying view of
the behavior of Coulomb fluids. The main facets of these
results are retained even when the model system is general-
ized in order to include more realistic features describing the
bathing solution or the nature of the fixed or mobile charges
in the system. Though, for instance, multipolar charge distri-
bution of mobile counterions™ or statistically disordered dis-
tribution of fixed charges3 4 unavoidably introduce novel fea-
tures in the counterion-mediated electrostatic interaction, the
application of the same general philosophy embodied in the
weak and SC limits remains sound and valid. The only case
where it needs to be amended in an essential manner is when
the bathing solution contains a mixture of univalent as well
as polyvalent salts, which incidentally are also the most com-
mon experimental conditions. In that case a more sophisti-
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cated mixed weak-SC analysis is in order leading to qualita-
tively different results.*>°

Though originally formulated in the context of planar
macroions, these advances have transpired also in the DNA-
like models of polyelectrolytes which deal with electrostatic
interactions in the context of macroions with cylindrical or
even helical fixed charge distribution. Indeed this particular
variant of counterion-mediated interactions has a venerable
history.37741 During the past 2 decades several distinct ana-
Iytical approaches aimed in different directions improved the
classical PB results for simple DNA-like models and re-
vealed the importance of correlation effects as well as sev-
eral other factors including the discrete or helical charge dis-
tributions, chain flexibility, finite molecular size, and
dielectric inhomogeneities.S’O’3 M7 Guided by these devel-
opments we set ourselves the goal of systematically analyz-
ing the interactions between cylindrical macroions mediated
by mobile counterions in the presence of dielectric inhomo-
geneities.

Contrary to the case of planar macroions which can be
completely characterized by a single dimensionless coupling
parameter, cylindrical macroions require in general two di-
mensionless coupling parameters that consistently describe
the range of validity of the strong and WC approximations.
The existence of two coupling parameters is due to the
simple fact that, if compared to the planar case, the cylinder
has a finite radius that needs to enter the fundamental de-
scription of the problem. This other dimensionless parameter
brought fourth by cylindrical geometry of the macroion is
nothing but the so-called Manning parameter.68 For a cylin-
der of radius a and linear charge density —A, it is given by

E= gty =2, @
€ M

The Manning parameter thus represents the dimensionless
linear charge density or, on the other hand, also the rescaled
radius of the cylindrical charge distribution. Note that the
two parameters (i.e., 2 and £) in the cylindrical geometry are
independent and can be set separately. For double-stranded
DNA (A= 6¢,/nm), the Manning parameter and the (Netz—
Moreira) electrostatic coupling parameter are given by &
=4.1q and E=2.8¢> (at room temperature in water) in
terms of the counterion valency g.

In this paper we will analyze systematically the interac-
tions between two cylindrical macroions characterized by a
fixed surface charge density as well as a finite dielectric jump
between the external dielectric background (corresponding to
a continuum solvent) and the hydrophobic cores of cylindri-
cal macroions. Analytically derived results in both limits of
strong and WC will be compared directly with Monte Carlo
(MC) simulation results. The organization of this paper is as
follows: We first introduce our model and study the image-
charge effects within the problem of a single charged cylin-
der with neutralizing counterions in Sec. II. We then focus on
the interaction between two identical charged dielectric cyl-
inders within the WC and the SC theory as well as MC
simulations in Sec. III. The results in the presence and ab-
sence of a dielectric discontinuity at the cylindrical bound-
aries are analyzed in detail in order to bring fourth the effects
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due to the image charges in the two-cylinder geometry. Our
goal in this paper is not to go into detailed study of any
particular realistic system, but to provide a deeper insight
into the behavior of electrostatic interactions within the
primitive model. We represent results for a wide range of
parameter values in order to cover all the possible electro-
static regimes, although some may seem less realistic.

Il. ONE CHARGED CYLINDER

Let us focus first on the problem of a single infinitely
long uniformly charged cylindrical macroion of radius a. The
charge of the cylinder is assumed to be distributed uniformly
on its surface according to the charge distribution function

o) =~ = dlp—a), 5)
2ma

with N\ being the absolute linear charge density and p the
radial coordinate from the cylinder axis. The cylinder is ar-
bitrarily chosen to be negatively charged and its electrical
charge is thus neutralized by positively charged mobile coun-
terions of valency +¢, which are present in the region p>a
only.

In general, the interior of the cylindrical macromolecule
can be characterized by a different dielectric constant &’ than
the surrounding continuum solvent medium, &. This is cer-
tainly the case for DNA that has a hydrophobic inner core
composed mostly of stacked nitrogen bases that have a vastly
different dielectric response from an aqueous solution."
Other charged polymers that usually do not share structural
features with DNA can nevertheless also posses hydrophobic
inner cores with a local dielectric response that differs from
the one of the solvent. Hydrophobic apolar core of the mac-
romolecular backbone would then have a static dielectric
constant &’ =2 (hydrocarbon), while the surrounding con-
tinuum dielectric medium which is usually water, a polar
associated liquid, would be characterized by £ =80. One can
thus introduce the dielectric discontinuity parameter

e—¢g'

A (6)

- )
e+’

which measures the relative dielectric mismatch at the inter-
face of the two materials. In a dielectrically homogeneous
system, we have A=0 and no image charge effects are
present, while, for instance, in water-hydrocarbon systems,
one has A=0.95, which suggests strong dielectric polariza-
tion effects (note that |A|=1 and the largest value for A is
obtained when one medium is ideally polarizable, i.e., is an
ideal metal). Therefore, a single cylinder can be described by
three different dimensionless parameters, namely, the elec-
trostatic coupling parameter =, the Manning parameter ¢ and
the dielectric discontinuity parameter A as defined in Egs.
(3), (4), and (6), respectively.

The presence of a dielectric inhomogeneity across the
boundary of the cylinder, see Fig. 1, influences the electro-
static potential that can be thus described by the Green’s
function connecting two points r,r’ outside the cylinder as
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FIG. 1. Schematic top view of a single charged dielectric cylinder of radius
a and dielectric constant &', along with mobile neutralizing counterions of
charge valency +¢ dispersed in a continuum solvent of dielectric constant &.
The system is confined coaxially in a cylindrical box of radius a,, (not
shown).

u(r,r’) = up(r,r’) + uj(r,r’), (7)

where u, is the direct standard Coulomb kernel in the ab-
sence of dielectric inhomogeneities,

1

dmegglr—r1'|’

(8)

up(r,r') =

and u;,, will be referred to as the “image correction” due to
the dielectric jump just as in the case of a planar discontinu-
ity. It turns out that for planar dielectric surfaces there is an
elegant analytical solution for the electric field, where the
electric potential of a charge near the surface can be obtained
with the help of Kelvin “image chalrges.”6 Unfortunately, in
cylindrical geometry the concept of Kelvin image charges is
a bit diluted since the image correction cannot be in general
formulated in a way that would entail a summation of prop-
erly positioned point image charges. We nevertheless consis-
tently refer to the effects of dielectric inhomogeneities in this
system as dielectric image charge effects. If explicitly stated,
we believe this inconsistency in nomenclature cannot be a
source of confusion.

In general, instead of using the concept of point image
charges one must in fact explicitly solve the Poisson equa-
tion in cylindrical geometry specified by cylindrical coordi-
nates (p,@,z) with appropriate boundary conditions at the
surface of the cylinder, which requires the normal component
of the electric field to fulfill the following relation:

SSOEn|p:a+ - 8,80En|p=a‘ =0y, (9)
where
o,=NQ2ma), (10)

is the cylinder surface charge density. Solving the Poisson
equation with the proper eigenfunction expansion70 one can
express the image part of the Green’s function as’!

Ui (1, 1) =

] . - !
> ﬂlse()mEZO JO dké, (ka)K,,(kp")K,,(kp)

X cos(kAz)cos(mAg), (11)

with the following definition:
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2(2 = 8,0)AL,(x)
(1 +A)/[xl,,,(x) + mI,(x)]-2AK,,(x)’

Enlx) = (12)

where A and Az are the angle and height differences be-
tween the position vectors r and r’, respectively. I,,(x) and
K,,(x) are the modified Bessel functions of the first and the
second kind that enter the eigenfunction expansion.70

Having derived the appropriate Green’s function for the
cylindrical geometry, we now investigate the behavior of
counterions in proximity to a charged dielectric cylinder in
the two limits specified by the weak and strong coupling
approximations that can be treated analytically. The behavior
at intermediate coupling strengths will be analyzed by using
extensive MC simulations.

A. Weak coupling limit: Mean-field theory

As noted before, the WC regime is characterized by a
small coupling parameter E << 1, which is adequate for low
valency counterions, small surface charge, high temperature,
or high solvent dielectric constant. In the strict limit of
—0, ignoring the usually small fluctuations around the
mean-field configuration, the system is described exactly by
the mean-field PB theory.16 Formally the PB equation corre-
sponds to the saddle-point condition imposed on the action
field-functional in this limit.”* For the present system, the PB
equation governing the mean electrostatic potential takes the
form

5 Ce‘ﬁeOQ¢(r) p >aq
Vo= (13)
eoq 0 p<a,

€&

where the right-hand side is obviously the number density of
the counterions, i.e.,

n(r) = CePeotd™ > g, (14)

Note that due to axial symmetry and translational invariance
in the z direction, the problem is reduced to a one-
dimensional formulation with V>=V pz and the solution of the
PB equation depends only on the radial coordinate p. The
analytical solution of the PB equation in this case is well
known and was first discussed in Refs. 38—40 within the
so-called cell model where the cylindrical macroion is con-
fined (coaxially) in an outer cylindrical boundary of radius
aqy- The cell model guarantees a finite solution for the coun-
terion density despite the extremely slowly varying (logarith-
mic) electrostatic potential in two dimensions.

The solution of the PB equation for the counterion den-
sity takes different forms depending on whether the Manning
parameter is larger or smaller than a threshold value given by
A=In(ay,/a)/[1+In(ay,/a)].** Here we are interested
mainly in the situations with sufficiently large Manning pa-
rameters £> A, where the normalized counterion density can
be written as

2 -
ﬁ(P)=#§p2sin‘2[aln<E> +cot‘1§al], (15)

a

with « determined from the transcendental equation
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1+ a?

& (16)

“l-a cot[— a In(a,,/a)]
Note that the density profile is renormalized such that we
have

Aout
27TJ n(p)pdp=1. (17)
a

The above density distribution is a monotonically decaying
function with very slowly convergent asymptotics.49 It is also
independent of the dielectric jump parameter, A, due to the
axial symmetry which implies that the electrostatic field van-
ishes inside the cylinder. The absence of dielectric disconti-
nuity effects is specific to the mean-field limit where no fluc-
tuations are taken into account and can be derived also in the
case of planar slabs.”

When the Manning parameter is decreased, the system
exhibits a continuous counterion condensation transition™ at
a critical Manning parameter £=1. The nature of this transi-
tion has been analyzed thoroughly by means of analytical
and numerical methods.” It was shown in particular that the
behavior close to the transition point is described by the
mean-field theory and fluctuation and correlation effects (that
will be important eventually at sufficiently large Manning
parameters) play no role at the transition point. Here we shall
not consider the behavior of counterions close to the transi-
tion point but do note that since the image-charge effects are
absent in the mean-field limit, such effects are expected to
have no influence on the counterion condensation transition
itself.

In what follows, we shall also take into account the hard-
core repulsion between counterions and the cylinder by as-
suming that the counterions have a finite radius R.. Within
the PB theory, this cannot be done explicitly unless full cor-
rections due to excluded-volume repulsions between counte-
rions are taken into account.”*’”®> Here we shall consider a
simplified version of the ion size effects by taking an effec-
tive hard-core radius for the cylinder, i.e., by setting a—a
+R.. Though approximate on the WC level, this procedure
turns out to be exact in the SC limit.*

B. Strong coupling limit

In the regime when = > 1, the mean-field approximation
breaks down, and a different kind of approach is needed. We
shall focus on the limit of = — o0, where the system can be
treated via a systematic strong coupling virial expansion
leading to an exact analytical theory in the leading order in
/8147 By construction the SC theory is a single-particle
theory in the sense that it contains contributions only from
single-particle interactions. We do not elaborate on the deri-
vation of the SC theory here as further details can be found
in previous publications.M’m‘17

In this section, we shall be interested in the counterion
density profile around the cylinder in the SC limit. The gen-
eral form of the counterion distribution within the SC theory
turns out to be given in terms of a Boltzmann factor contain-
ing the interaction energy of an individual counterion with
fixed (macroion) charges in the system.14 In a dielectrically
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inhomogeneous system, such as a charged cylindrical core

considered here, the SC counterion density may be written
73

as

ﬁ(l’) o GXP[— BWself(r) - IBWOC(r)]v (18)
where
1
BWeee(r) = 53(309)2141111(1',1'), (19)

is the dielectric image self-energy of a single counterion, i.e.,
the electrostatic energy of a charged point particle in the
vicinity of a neutral dielectric cylinder. This energy of course
represents the contribution from the interaction of a counter-
ion with its image charge and thus depends crucially on the
value of the dielectric discontinuity at the macroion surface.
Furthermore,

BW(r) = Beoq f u(e,r")o(r')dr’ = vo(r) + vip(r), (20)

where

0y(r) = Begg f uo(r,r)o(r)dr’ = 2¢ In p, 21

is the bare electrostatic interaction energy of a single coun-
terion located at a given position r=(p, ¢,z) with the cylin-
der charge (up to an irrelevant additive constant). It goes to
zero when the charge density on the macroion surface goes
to zero. The image-dependent part of the interaction energy
between a point charge and the surface charge distribution on
the dielectric cylinder, v;y,(r), can be shown to be nil due to
the axial symmetry, i.e.,

Vim(r) = Beoq f Uiy (1,17 ) o (r")dr" = 0. (22)

If the surface charge distribution on the macroion is nonuni-
form, such as in the case of charged helical stlripes,59 the
image dependent part of the interaction energy is nonzero
and should be considered explicitly.

Note that physically the dielectric image-dependent part
of the interaction energy corresponds to the interaction be-
tween the dielectrically induced image charge of the surface
charge on the cylinder with the counterion as well as the
image charge of the counterion with the surface charge on
the cylinder, as follows from the general definition of the
Green’s function (7).

Using the above equations, we obtain the SC counterion
number density profile (p>a) as

l(p) = Cp~ exp{— il(p/a)} , (23)
mé
where we have introduced the dimensionless integral
10=2 | &OK,)dr, (24)
m=0 v 0

and the numerical prefactor C is determined from the nor-
malization condition, Eq. (17). We can extract two limiting
behaviors for the function I(x), viz.,
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A
4(x-1)
A4 +3A)
32(1 + A)x®

x— 17

I(x) = (25)

The limiting form of I(x) for x— 1* implies that at very
small separations between a single counterion and the cylin-
drical surface, the dielectric self-energy has the same form as
in the case of a counterion next to a planar wall, where the
polarization effects can be described by an image charge
inside the wall.”®

The SC density for A=0 reduces to the well-known form
for a homogeneous system n(p) = p~2¢.3" If the dielectric core
has a smaller dielectric constant than the medium (A >0), as
one typically encounters in the case of biological macromol-
ecules, the image charges have the same sign as counterions
and thus lead to a depletion of counterions in the vicinity of
the cylinder. This behavior can be seen from the SC density
profiles plotted in Fig. 2(a) as the dielectric mismatch param-
eter A or the coupling parameter E is increased. They show
a reduced density close to the cylinder (depletion zone) and a
peak some distance away from the cylinder surface. One can
estimate the location of the density peak by setting the den-
sity (23) derivative to zero, dii(p)/dp=0. Using the approxi-
mation (25) for p=a+h, where h is the peak distance from
the cylinder surface, we obtain to the leading order for small

h
h\2 AR

a

which shows good agreement with the peak location values
of the SC density profile as seen in Fig. 2(a).

As noted before, effects of a finite counterion radius R,
within the SC approximation can be taken into account ex-
actly (due to the single particle nature of the theory) by in-
creasing the hard-core radius of the cylinder to a —a+R..
The counterion-counterion excluded-volume repulsion ef-
fects are absent within the leading-order SC theory and enter
only in the subleading terms.

C. Comparison with MC simulations

We have performed extensive MC simulations in order
to verify the validities of the weak- and strong-coupling ap-
proaches. The detailed description of MC simulation is given
in Appendix B.

In Fig. 2(b), we show the radial density profile of coun-
terions around the cylinder without dielectric image effects,
A=0. As seen the simulation data in this case are always
bracketed by the two analytical results obtained from the WC
and SC theories, Egs. (15) and (23), respectively. The WC
theory is found to be valid at sufficiently small coupling
parameter or sufficiently large radial distances from the cyl-
inder. The SC theory is valid in the opposite regime, i.e., for
sufficiently large coupling parameters or sufficiently small
radial distances. In fact, in agreement with the general trend
obtained for planar surfaces, *'%!7 the validity regime of the
SC (WCQC) theory expands to larger (smaller) separations as
the coupling becomes larger (smaller). In the case of a planar
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FIG. 2. (a) Radial counterion number density profile around a single charged cylinder as predicted by the SC theory, Eq. (23), for various values of the
coupling parameter. Vertical dashed line represents the hard-core exclusion distance a+ R, from the cylinder axis, where counterions radius in all the figures
is taken as R,=0.2a. (b) Log-linear plot of the counterion density as obtained from the WC theory [Eq. (15), red line], the SC theory [Eq. (23), blue line] and
MC simulations (symbols) in the absence of image-charge effects (A=0). (c) Same as (b) but in the presence of a dielectric discontinuity at the cylinder
surface with A=0.95. The system is considered in a cylindrical confining cell of radius a,,/a=100.

charged wall, the validity regime of the SC theory can be
estimated systematically as z/u<VE, where z is the dis-
tance from the charged plane.14 In the case of a charged
cylinder, a similar criterion is yet to be obtained.

In Fig. 2(c), we show the results for the case where the
dielectric constant of the cylinder is different from that of the
medium such that A=0.95. As already discussed the dielec-
tric discontinuities have no effects in the WC limit as con-
firmed also by the agreement obtained between the simula-
tion data and the WC (mean-field) results for small E. By
contrast, the image effects become quite significant at large
coupling parameters as the density profile deviates qualita-
tively from those obtained with A=0 [Fig. 2(b)]. The simu-
lation data again show good agreement with the SC approxi-
mation at high enough couplings and small enough radial
distances and in particular exhibit a depletion zone and a
peak at small distances from the cylinder surface as predicted
within the SC theory. Note that in a dielectrically inhomoge-
neous system (A>0), the SC theory has an explicit depen-
dence on the coupling parameter E because of the self-
interaction of counterions with their image charges.

lll. TWO LIKE-CHARGED CYLINDERS

We now turn our attention to the problem of the interac-
tion between two like-charged cylinders, which is commonly

€
P 2
(2
J R \
. -
(a)

used as a model for the interaction between rigid polyelec-
trolyte chains.”” We consider two identical parallel cylinders
of radius a oriented along the z axis at an interaxial separa-
tion of R (see Fig. 3). The electric charge is assumed to be
uniformly distributed on the surface for both cylinders with
equal (absolute) linear charge density N. The cylinders are
assumed to be infinitely long of length L —cc and are stan-
dardly confined within a confining square box of lateral size
L, (we shall assume L, /a=60 in Sec. Il A and L,/a
=100 in Secs. III B-III D), but we should emphasize that in
the regime of Manning parameters considered here, the lat-
eral box size plays no significant role.*!

We follow the same approach as in the case of a single
cylinder and thus first analyze the problem in the weak-
coupling limit and then in the strong-coupling limit. We then
compare the results from these two analytical theories with
the MC simulations.

A. Weak coupling limit: Mean-field theory

The WC regime (E<1) is again characterized by the
mean-field PB equation. In this case however, no closed-
form solution is available for the nonlinear PB theory. We
thus take full recourse to the numerical methods appropriate
to the problem. In the two-cylinder geometry, the axial sym-

(b)

FIG. 3. (a) Schematic top view of two identical charged dielectric cylinders oriented parallel in the z direction. The system is confined in a square box of
lateral size L, containing the two cylinders and their neutralizing counterions (not shown). (b) The potential generated by two charged dielectric cylinders can
be reproduced equivalently by four linear (image) charges as explained in the text.
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20

FIG. 4. Rescaled force between two like-charged dielectric cylinders as a
function of their interaxial separation. The WC prediction obtained by solv-
ing the corresponding PB equation (solid lines for A=0 and 0.95) are com-
pared with the simulation data (symbols).

metry is broken but the translational symmetry along the z
axis remains intact; hence one has to deal with a two-
dimensional PB equation in a finite bounding square L
X L, , which is then solved numerically.76 We shall focus on
the interaction force between the cylinders, which can be
evaluated via the electrostatic stress tensor in a standard
manner.”’ Note that the WC scheme used here based on the
numerical solution of the PB equation allows for a full analy-
sis of the dielectric discontinuity effects. (Later on in our SC
analysis, which will be based on analytical methods, we shall
restrict our discussion to only the first-order image approxi-
mation, as a full analysis of dielectric discontinuity effects in
the SC limit is not yet available.) Here again the counterion
size effect will be taken into account approximately by set-
ting the distance of closest approach to each cylinder as a
— a+R,. Fluctuation contribution around the mean-field so-
lution in cylindrical geometry is nontrivial to calculate™® but
is by construction small and we thus skip its detailed analy-
sis. It does however depend crucially on the dielectric dis-
continuity at the cylinder surface.

In general, the WC force obtained between two like-
charged cylinders is repulsive and decays monotonically
with their interaxial separation R. The mean-field prediction
for the rescaled force per unit length defined via

IEE 2880)5 7
L (Ofu L &0

is shown in Fig. 4 as a function of the interaxial separation R
and for different values of the dielectric discontinuity param-
eter A [see Eq. (6)]. Note that in contrast to the case of a
single cylinder studied in Sec. II, the dielectric discontinuity
is expected to matter in the two-cylinder geometry even
within the mean-field approximation. This is due to the axial
symmetry breaking which leads to electric field penetrating
into the cylindrical cores. As seen in the figure, the WC
mean-field results compare very well with the MC data (to
be discussed later) at sufficiently large interaxial separations.
The dielectric discontinuity has a relatively small effect on
the interaction force. It leads to an increased repulsion (and
also larger deviations from the mean-field prediction) at
small interaxial separations but its effects diminish at larger
separations.

J. Chem. Phys. 132, 224703 (2010)

B. Strong coupling limit

As noted before, the SC theory follows systematically
from the leading order contribution to the partition function
in the limit of infinite coupling parameter Z —." The cor-
responding SC free energy involves only interactions be-
tween single counterions and the charged cylinders as well as
the direct electrostatic interaction between the cylinders
themselves (see Refs. 14 and 45). In the presence of the
dielectric discontinuity effects, the SC free energy per coun-
terion can be written as

BF _ BWx

N N - lnf exp[— IBWself(r) - IBW0c(r)]dr~ (28)

Here N is the total number of counterions and Wy is the
electrostatic energy due to the interaction between the two
cylinders in the absence of any counterions, which contains
both the direct Coulomb interaction between their surface
charges as well as the contribution due to their images that
results from the polarization of their dielectric cores. Further-
more, W, is the energy due to the interaction between a
single counterion and the surface charges on both cylinders
and includes contributions from the corresponding image
charges as well. Finally, W is the image self-energy of
counterions, i.e., the contribution from the interaction of an
individual counterion with its own image charges in both
cylindrical cores. Note that the volume integration should be
again taken over the space available to counterions, i.e., in-
side the confining square box of lateral size L, excluding the
two cylindrical cores. Note also that on the SC level, the
counterion excluded-volume repulsions are absent (as im-
plied by the fact that strongly coupled counterions are highly
isolated within large correlation holes in the SC limit) and
only the excluded-volume interaction between the counteri-
ons and the cylinders will be present. In fact, the counterion
size effects can be accounted for exactly within the SC
theory via a hard-core repulsion which simply amounts to
setting the effective (hard core) cylinder radius as a+RC.59

As in the single cylinder case all charges are coupled
with the interaction kernel, composed of direct and image
part, but with the difference that now the image part of the
kernel ui(i)(r,r’) corresponds to two dielectric cylinders
separated by the distance R. This kernel should satisfy the
electrostatic boundary conditions on both cylindrical sur-
faces (9), which leads to very complicated numerical expres-
sions and is unfortunately not available in a closed analytical
form. Our aim is nevertheless to give a simple approximate
analytical expression for the final results, so we need to make
an approximation at this step. In what follows we focus on
the first-order-image approximation, where we neglect
higher orders of intercylindrical image interaction. This ap-
proximation implies that the image Green’s functions of the
two cylinders can be written as the sum of the Green’s func-
tions of the isolated cylinders, Eq. (11),

2
u2(r,r") =y (ry, ) + win(r5,15), (29)
where u;,(r,r’) is the one-cylinder image kernel, Eq. (11).
Here, r|, r{ are distances centered at the first and r,, ré at the
second cylinder, for instance,
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rio=r¥ (R2)e, (30)

with e, a unit vector pointing in the x direction, i.e., horizon-
tally on Fig. 3. Recall that the surface charge is uniformly
distributed on both cylinders so that the fixed charge distri-
bution is composed of two single cylinder distributions

a?(r) = a(ry) + o(ry), 31)

where o(r) is the charge distribution of a single cylinder, Eq.
(5). With these assumptions one can then evaluate all inter-
action terms in Eq. (28) analytically as follows.

The cylinder-cylinder interaction energy per counterion
can be obtained as

'BWOO ff D(r)u?(r,r )P (r")drdr’,

az
:—§lnR—A§ln<l—P>. (32)

Furthermore the image self-energy of a single counterion in-
teracting with the dielectric cores of both cylinders can be
derived in the form

1 1
BWei(r) = EB(EOQ)zuim(rlvrl) + Eﬂ(eOQ)zuim(r%rZ)

=~ = [l(py/a) + I(pya)]. (33)
é

where I(x) is defined in Eq. (24). Finally, the single particle
cylinder-counterion contribution can be written as the sum of
the interaction with each cylinder separately and assumes the
form

BWo.(r) = Beoq f u®(r,r)o?(r")dr’,

=v(ry) +v(ry). (34)

The cylinder-counterion energy contribution from the uth
cylinder (with u=1,2) is itself composed of three parts,

U(r,u) = v()(r,u) + Usame(r,u) + UCTOSS(rM)’ (35)

which correspond, respectively, to three parts of the Green’s
function, i.e., u®(r,r")=uy(r,r’)+up(r;,r))+up(r,,rh),
within the approximation implied by Eq. (29) and will be
evaluated as follows.

The first contribution in Eq. (35), vy(r,), is the direct
interaction of the bare surface charge of each cylinder with a
single counterion, i.e., for the uth cylinder,

UO(rp,) = ,BeOCIj u()(r/ur,;)o.(r,;)dr’ s

=2¢1Inp,,, (36)

where p, is the radial distance from the center of the uth
cylinder to the counterion, and ¢ is the Manning parameter as
defined in Eq. (4). The second contribution,

J. Chem. Phys. 132, 224703 (2010)

Usame(r#) = ,360‘]f uim(r,wr,;)o-(r,;)dr’ = 07 (37)

corresponds to the interaction of a counterion image charge
with the surface charge on the same cylinder, which is thus
zero by symmetry reasons as already discussed in the one-
cylinder case, Eq. (22). This contribution can be also consid-
ered as the interaction between the image of the surface
charge on the same cylinder with the counterion.

Finally, we have the cross contributions due to the inter-
action of a counterion image in one cylinder with the surface
charge on the other cylinder. Formally, it follows for each
cylinder as (see Appendix A)

Veross(F) = Beoq f Ui (r o1, )o(r)dr’,

=2A§1n<%), (38)
)23

for u# v, where p; is the radial distance from an axis shifted
by a?/R from the center of the uth cylinder toward the axis
of the other cylinder, see Fig. 3(b), i.e.,

o 2 a2 \2
Py =pP,—2 R )Pucoseut{ L) (39)
or in Cartesian coordinates,
R & 2
*2_ o el 2
p“_<2_Rix) +y°. (40)

The SC free energy thus follows by inserting the above
expressions into Eq. (28) in the form

BF :
W:-gmze-Agm(u}%)

—1nfexp{ :{I<pl>+l<p2>]
mé a a
- &(1-A)n pip; - €A In p}°p *2}dr (41)

The corresponding SC force between the two cylinders is
obtained simply by differentiating the free energy with re-
spect to R

IF

F=——, 42
R (42)

which may be expressed in dimensionless units according to
Eq. (27).

The SC density profile follows from the general expres-
sion (18), which is the same as the integrand in Eq. (41), viz.,

i(r)=C exp{ :S[I@;) +I<%>}

— &1 - A)In pip; - €A In p*?pzz} : (43)

where the normalization prefactor is determined from the
electroneutrality condition.
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FIG. 5. Rescaled SC force between two like-charged cylinders in the ab-
sence of a dielectric discontinuity (A=0) as a function of the rescaled inter-
axial separation for various Manning parameters as indicated on the graph.

Note that the forms of the SC free energy, Eq. (41), and
the SC counterion density profile, Eq. (43), reflect the fact
that, within the first-order image approximation (and using
the appropriate volume constraints for counterions), the two
charged dielectric cylindrical cores can be equivalently re-
placed by four parallel lines of charges, two of which are
located along the central axis for each of the cylinders with
(renormalized) linear charge density (1-A)N and the two
other lines of charges with linear charge density +AN are
placed along two axes shifted by a?/R from the central axis
for each of the cylinders, see Fig. 3. Note that the image
charge language is applicable for two charged dielectric cyl-
inders in the absence of pointlike charges (counterions),70
and can be exactly solved by applying higher orders of im-
ages. However, in order to be consistent with the first-order
image counterion-cylinder approximation, we have used the
same image kernel (29), which accounts for the first-order
image approximation between the two cylinders as well [Eq.

(28)].

C. SC interaction in a dielectrically homogeneous
system (A=0)

In order to proceed, let us first consider the case where
there is no dielectric mismatch between the cylinders and the
surrounding medium, i.e., A=0; the image charges will thus
be absent. The SC interaction in this case has been consid-
ered also in previous works.**>%® We shall reproduce some
of these previous results for the sake of completeness, but
will also provide several new results, including a direct com-
parison with MC simulations for the force dependence as a
function of separation at different values of the coupling pa-
rameter as well as a global interaction phase diagram, which
have not been considered previously.

In the absence of image charges, the SC free energy (41)
reduces to a simple form as

BF

N EInR- lnj exp(—2& In p;p,)dr, (44)
where the first term is again the bare repulsion between the
two cylinders and the second term contains energetic and
entropic contributions from counterions. The results for the
SC force that follow from Eq. (44) are shown in Fig. 5 for a
few different Manning parameters, where we have accounted
for the finite counterion radius by choosing R.=0.2a. The SC

J. Chem. Phys. 132, 224703 (2010)

v

l 10"

FIG. 6. Counterion density around two parallel like-charged cylinders with
Manning parameter £=10 at interaxial separation R=3a and in the absence
of image charges (A=0). The density is shown across an arbitrary plane
perpendicular to the two cylinders in a color-coded fashion as indicated on
the graph. The small depletion zone around each cylinder is due to the
counterion volume exclusion as counterions are assumed to have a finite
radius of R,=0.2a.

force is repulsive at small separations and becomes attractive
beyond the equilibrium interaxial distance R* where the force
vanishes. The SC attraction is mediated by counterions that
are strongly coupled to both cylinders in this limit and are
thus accumulated mainly in the region between the two cyl-
inders as can be seen from the counterion distribution (43) in
Fig. 6. This is a direct consequence of the energy contribu-
tions included in the second term in Eq. (44).30’45

By decreasing the separation between the cylinders, the
entropic osmotic pressure from counterions sandwiched be-
tween the two cylinders becomes increasingly important and
the effective interaction becomes repulsive. This repulsion is
reduced as the surface-surface separation, R—2a, becomes
smaller than the counterion diameter, 2R, as the counterions
are depleted from the intervening region due to excluded-
volume effects. This behavior due to the presence of the
counterion depletion interaction has been investigated thor-
oughly in the case of cylinders with helical charge pattern
and we shall not delve on it any further here.”

As seen in Fig. 5, the entropic repulsion effects at small
separations decrease when the Manning parameter £ is in-
creased. For very large Manning parameters, the free energy
is dominated by purely energetic contributions and does not
contain any temperature effects. In fact the limit &— < for-
mally corresponds to the zero temperature limit as we have
already taken the limit 5 — o0 appropriate within the SC ap-
proximation. The connection between the SC limit and the
zero temperature limit has been analyzed in detail in Refs. 16
and 46. The asymptotic form of the SC force in the limit of
large ¢ can be obtained as

47
dmé R<2(a+R,)
-~ R/a
F/IL= (45)
47é 2R
-—|——-1| R>2(a+R,),
Rla\R—-a-R,

which is shown as a black solid line in Fig. 5. The equilib-
rium hard-core surface-surface separation
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FIG. 7. Rescaled interaction force between two like-charged cylinders in the absence of image charges (A=0) as a function of the rescaled interaxial
separation for Manning parameters ¢=2 (a), 10 (b), and 100 (c) and different values of the coupling parameters as indicated on the graphs. The symbols
represent the simulation data, the red lines are the prediction of the SC theory [Eq. (44)] and the blue lines are those of the WC theory (Sec. III A).

SR*=R*-2(a+R,), (46)

tends to zero as SR*/a=2/(3&€) as £é—.* Note that even
for moderate values of the Manning parameters, £~ 5, the
SC theory predicts a closely packed bound state with a rela-
tively small surface-surface separation 6R*/a~0.1.

Let us now consider the situation where the coupling
parameter has a finite value. In this case we shall study the
system using MC simulations as detailed in Appendixes B
and C. The MC results for the interaction force between
like-charged cylinders (with no dielectric mismatch) are
shown in Fig. 7 along with the WC and SC predictions. As
seen in Fig. 7(a), the WC results agree with the simulation
data for a sufficiently small coupling parameters E=<1 as
expected. Furthermore, by increasing the coupling parameter,
the MC results start deviating strongly from the WC predic-
tion and tend to the SC prediction, where a reasonable agree-
ment is obtained already at coupling parameters of the order
E ~100. Note that the WC and SC predictions bracket the
simulation data and thus establish upper and lower bounds
for the interaction force at any realistic value of the coupling
parameter.

In Figs. 7(b) and 7(c), we show the results for larger
Manning parameters of £=10 and 100, respectively. As Man-
ning parameter becomes larger, a larger E is required in
order to achieve the same level of agreement with the SC
prediction at a given separation and thus the convergence to
the SC limit becomes weaker. This effect is more pro-
nounced at larger interaxial separations. In fact, as is gener-
ally known,"* the SC effects become more dominant and the
SC theory becomes increasingly more accurate at smaller
surface-surface separations. In general, the applicability re-
gime of the SC theory (obtained in the limit of & — ) to the
situations where the coupling parameter = is finite can be
specified via simple validity criteria as applied successfully
in several previous studies, ' #1617:28.294546 11, \what follows,

we shall derive the particular form of the SC validity crite-
rion for the case of two like-charged cylinders.

It should be noted first that the SC theory (obtained as an
exact asymptotic theory in the limit of = — %) contains only
contributions stemming from the interaction of individual
counterions with charged objects and thus the counterion-
counterion repulsions and other higher order many-body ef-
fects are absent. These effects however become increasingly
more important as the coupling parameter is decreased, de-
pending crucially on the precise value of all the system pa-
rameters. In the case of two cylinders, as noted before, coun-
terions are mostly accumulated in the intervening region
between the two cylinders (Fig. 6) where the typical coun-
terion spacing can be estimated by stipulating the local elec-
troneutrality condition as d=ge,/(2\) or in rescaled units as
d/ u=E/2&. It is thus evident that as the Manning parameter
becomes larger at a fixed coupling parameter the spacing
between counterions tends to become small. Hence, a larger
effect due to counterion-counterion repulsions and thus
larger deviations from the SC theory would be expected to be
observed at larger & In other words, the SC theory is ex-
pected to overestimate the counterion density in the interven-
ing region at any finite value of the coupling parameter,
which is consistent with the general result that the SC theory
gives the upper bound for the density profile of the
counterions.'*'®'7* One can thus identify the validity re-
gime of the SC theory by estimating the counterion-
counterion contributions and comparing them with the
single-particle counterion-cylinder contribution at a given in-
teraxial separation. This can be done by noting that the
ground state configuration (obtained for é— o and E — ) is
predicted within the SC theory to be the configuration where
all counterions are localized between the two cylinders and
are lined-up along the z axis as obviously favored by the
electrostatic interaction energy.

When the coupling parameter is reduced to a finite value,
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FIG. 8. (a) Schematic representation of the validity criterion for the SC theory at large ¢ The ground state configuration is predicted within the SC theory to
be the configuration where all counterions are localized between the two cylinders and along the z axis. When the coupling parameter is reduced to a finite
value, repulsions between counterions become more important and some counterions escape from the intervening region to the external side of the cylinders.
(b) Bound-state interaxial separation as a function of the Manning parameter. The solid line shows the SC prediction and the symbols represent the simulation
data. The horizontal dashed line represent the closest approach distance between the two cylinders, 2a, and the vertical dashed lines represents the minimum
value of the Manning parameter £*=2/3 where the SC force may be attractive. (c) Phase diagram indicating the repulsion and attraction regimes between two
like-cylinders in terms of = and £ in the absence (blue squares) and in the presence of image charges (red triangles with A=0.95). Symbols show the boundary
lines obtained from MC simulations. Filled circles show the points appropriate for DNA with counterions of valencies in the range g=1,...,6. The dashed

lines in (b) and (c) are guides to the eyes.

repulsions between counterions become more important and
some counterions tend to escape from the intervening region
to the external side of the cylinders [shown by an arrow in
Fig. 8(a)]. In order to prevent this from happening, the cou-
pling parameter = has to be large enough. By comparing the
energy of the ground state with the energy of a single defect
obtained by allowing one counterion to move to the external
side of one of the cylinders, it follows analytically that for a
large ¢ and in the absence of image charges, one should have

E>428 R~ 2a,
(47)
e D R
2>298 -] R>2a.
a

These criteria indeed capture the trends observed in Fig. 7
when viewed in terms of the three main parameters describ-
ing the system, i.e., 2, & and R. They automatically cover
the criterion proposed before based on the surface-surface
separation between the cylinders, where one requires that the
surface-surface separation between the cylinders must be
smaller than the spacing between counterions, R <d, or in
rescaled units®**

SRIu < E/(28). (48)

This latter criterion is inspired by the observations in the
case of charged planar walls where it can indeed be derived
from systematic analysis of higher-order corrections to the
SC theory.14 It can describe the validity regime of the SC
predictions for the equilibrium separation between strongly
coupled cylinders that form a closely packed bound state, "
but when the applicability of the SC theory for the interac-
tion force is considered, the criteria (47) should be used in-
stead. The difference between the new criteria (47) and the

one in Eq. (48) is in fact related to the fundamental differ-
ence between the topology of the space available to counte-
rions in the case of two cylinders as compared to two planar
walls: in the latter case, counterions cannot “escape” from
the intersurface gap and the ground state of the system has a
universal two-dimensional conﬁguration,14’16‘17 while in the
former the ground state corresponds to a one-dimensional
arrangement of counterions and the whole space is available
for thermal excitations from the ground state.

The criteria (47) are more stringent and cover also the
situation where the cylinders are placed at large interaxial
separations. The ground state of neutralizing counterions be-
tween two charged cylinders (without the effects of the di-
electric mismatch) has been investigated extensively by Ar-
nold and Holm in Ref. 46, where a validity criterion for the
SC theory has been proposed as = >3.458(R/a) (when ex-
pressed in rescaled units) based on computer simulations.
This agrees with our estimate in Eq. (47) within 16% of the
numerical prefactor.

Let us now turn our attention to the behavior of the
equilibrium interaxial separation or the so-called bound-state
separation, R*, where the interaction force between the two
cylinders vanishes. As noted before, the SC theory is gener-
ally more accurate at smaller separations. A closer inspection
of Fig. 7 shows that the SC prediction for the bound-state
separation agrees with the MC data even outside the regime
set by the SC criteria (47), which reiterates the point dis-
cussed above that a less stringent criterion such as Eq. (48)
would be sufficient to describe the validity of the SC predic-
tion for the bound-state separation. In Fig. 8(b), the bound-
state interaxial separation is plotted as a function of the Man-
ning parameter, which shows that a reasonable agreement
between MC data and the SC theory for this quantity can be
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achieved for a coupling parameter as small as ==50, in
agreement with previous results in Ref. 30. As seen in the
figure, the bound-state separation diverges (i.e., the cylinders
unbind) for Manning parameter approaching a minimum
value of &=2/3 (Ref. 45) below which the two cylinders
merely repel each other. Figure 8(b) can be also thought of as
a phase diagram identifying the attraction (the region above
the lines) and repulsion (the region below the lines) regimes
between two like-charged cylinders in terms of the param-
eters R* and £ for a given coupling parameter =.

In Fig. 8(c), we show a global phase diagram in terms of
the parameters = and & The boundary lines are determined
from MC simulations (open symbols) and separate the region
(above the lines) where the interaction force becomes attrac-
tive at some finite interaxial separation between the cylinders
and the region (under the lines) where the force never be-
comes attractive at any interaxial separation. In other words,
the boundary lines themselves correspond to the parameter
values where the force-distance diagrams exhibit a global
minimum at F=0, i.e., the force curve only touches the ab-
scissa. They were determined by bisection procedure for a
series of MC runs. If the cylinder parameter values are cho-
sen to describe DNA, we have é=4.1¢ and E=2.8¢> for ¢
valency counterions, which are shown as solid circles in Fig.
8(c). This suggests that DNA-DNA interaction in the case of
monovalent counterions falls well within the repulsive re-
gion, while with divalent counterions and beyond one can
expect to observe an attractive force, in qualitative agree-
ment with recent e:xpe:rime:nts.7_9

D. Image-charge effects (A>0) in the SC limit

We now consider the case of two charged cylinders with
a dielectric core whose dielectric constant may be in general
different from that of the surrounding medium. In this case,
the induced image charges (due to the polarization of the
dielectric cores) can play an important role as well. However,
as we discussed before (Fig. 4), the image-charge effects turn
out to be small in the WC regime where the coupling param-
eter is small (e.g., when counterions are monovalent). This
may be the reason why such dielectric effects have not yet
been thoroughly investigated in the particular case of two
charged cylinders. The situation turns out to be quite differ-
ent in the opposite limit of strong coupling as we will see in
this section. This is tied in with a fundamental difference
between counterion distributions in the SC limit as opposed
to the WC limit: While in the former limit one deals with
highly isolated single counterion close to a charged surface,
in the latter limit, the individual nature of counterions fades
in the wake of dominant collective many-body effects (as
counterions form a diffuse and uncorrelated ionic cloud
around the cylinders) and thus the polarization effects are
highly reduced.

If the dielectric cores have a smaller dielectric constant
than the medium (A>0), as relevant to most macromol-
ecules in water, the induced image charges will have the
same sign as the counterions and thus tend to cause depletion
of counterions from the vicinity of the dielectric cores. This
behavior is shown in Fig. 9, where the SC density is plotted
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FIG. 9. Counterion density around two parallel like-charged cylinders with
Manning parameter £=10 and the dielectric discontinuity parameter A
=0.95 at interaxial separation R=3a. The density is shown across an arbi-
trary plane perpendicular to the two cylinders in a color-coded fashion as in
Fig. 6. The small depletion zone around each cylinder is due to the coun-
terion volume exclusion as counterions are assumed to have a finite radius
of R.=0.2a. The depletion zone expands due to the influence of image
charges as the coupling parameter increases from Z =100 to 5000 [(a)—(d)].

across an arbitrary plane perpendicular to the two cylinders
in a color-coded fashion. As can be seen, the depletion effect
is enhanced as the coupling parameter, =, is increased such
that a large “depletion zone” develops that eventually en-
closes both cylinders. Note that the SC free energy in the
presence of a dielectric discontinuity, Eq. (41), has an ex-
plicit dependence on the coupling parameter = as already
known from the case of planar charged dielectric slabs.”

In fact, the image depletion at larger couplings turns out
to have a similar effect qualitatively as the counterion vol-
ume exclusion, i.e., as if the counterion radius R, is renor-
malized to a large effective value. Note that the region with
highest concentration (shown in red color) is “squeezed” and
eventually splits in two regions shifted away from the com-
mon x-z plane that passes through the axes of the two cylin-
ders. The splitting appears when the second derivative of the
density (43) with respect to the y coordinate becomes posi-
tive at the midpoint, &#(r)/dy*|,.o>0. Using the small-
distance approximation p—a* from Eq. (25), we can esti-
mate the distance R at which the density splitting happens as

(R—2a>2~ AE
2(1+30)&°

(49)
a

Thus for the Manning parameter =10 and at separation R
=3a, the splitting is estimated to occur at =~ 800 as is the
case in Fig. 9.

In Figs. 10(a) and 10(b), we show the SC force per unit
length (solid lines) as obtained from Eqs. (41) and (42) along
with the MC simulation results (symbols) for two different
Manning parameters and several different values of the cou-
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FIG. 10. [(a) and (b)] show the interaction force between two dielectric charged cylinders with A=0.95 for various coupling parameters =. The MC results
(symbols) are compared with the corresponding (same color) SC results obtained from Eq. (41) and shown here as solid lines. In (a) the MC results for E
=1 are compared with the WC prediction (solid green line) as discussed in Sec. IIl A. The dashed lines show the bare electrostatic interaction between the two
cylinders in the absence of counterions, Eq. (C3) in Appendix C. (c) Bound-state distance for two cylinders with A=0.95 as a function of the Manning
parameter. Here MC results (symbols) are compared with the SC predictions (solid lines of the same color).

pling parameter. As seen upon increasing the coupling pa-
rameter, the repulsive peak at small separations shifts toward
larger values of the interaxial separation R, which reflects the
emergence of a depletion zone due to repulsions between
counterions and their image charges as discussed before. As
a result, the main contribution to the intercylinder interaction
at small separations comes from the bare interaction between
the two cylinders and the force is approximately given by the
bare repulsion force Fy as given by Eq. (C3) in Appendix C
[dashed line, Fig. 10(b)]. At larger separations, we still find
strong SC-type attraction even in the presence of image
charges. One should thus note that in general the repulsive
forces are enhanced in the effective interaction in the SC
limit especially at small separations as compared to a homo-
geneous system with no image charges. Therefore, unlike in
the WC limit (see Fig. 4), the introduction of image charges
may lead to qualitative changes in the behavior for a strongly
coupled system.

In general, the SC results for the interaction force show
better agreement with the simulations for larger Z and
smaller separation distances R. Especially, the results for the
bound-state interaxial separation show very good agreement
between the SC results (solid lines) and the MC data (sym-
bols), as shown in Fig. 10(c) [compared with Fig. 8(b)].

In plane-parallel geometry, the repulsive self-image in-
teraction compresses counterions toward the midplane and
hence expands the range of the SC regime.28 In the cylindri-
cal geometry, however, such mechanism cannot work, since
counterions can escape from intercylindrical region. There-
fore it seems that dielectric image effects do not have a no-
ticeable influence on the range of validity of the SC approxi-
mation.

Note that just as in the case with A=0 [blue line in Fig.
8(c)], the simulation results show no attraction between the
cylinders at too low electrostatic coupling parameters. The

attraction can only appear once the coupling parameter ex-
ceeds a threshold value. This threshold value is shown as a
red line in the global phase diagram in Fig. 8(c) for the
dielectric discontinuity parameter A=0.95. Note that bare
cylinder-cylinder repulsion is enhanced in the case of images
(A>0) [Eq. (28)]. Therefore, larger coupling parameter = is
needed to get attraction at smaller Manning parameters com-
pared to no-image case [red line stays above blue for £<3
and A=0.95 in Fig. 8(c)]. For larger Manning parameters,
the attractive interaction between the counterion image and
the cylindrical charges [represented by the term v s EQ-.
(38)] becomes more important and, hence, attraction can ap-
pear even at lower coupling parameters [red line is below the
blue line for £>3 on Fig. 8(c)].

IV. CONCLUSIONS

We have analyzed the electrostatic interaction between
two like-charged cylindrical macromolecules surrounded by
counterions. We have in particular examined the role of im-
age charges when the cylinders have a dielectric constant
which is different from that of the surrounding medium
within the weak- and strong-coupling frameworks elaborated
first by Netz and co-workers."*'®!” The two limits are de-
fined in terms of a single coupling parameter =.

The WC limit, or equivalently the mean-field theory, is
relevant when the valency of counterions and/or the macro-
molecule surface charge density is small and/or when the
dielectric constant of the medium is large enough. It is based
on the PB equation which turns out to give purely repulsive
interactions between two like-charged cylinders. The image-
charge effects in this case turn out to be small even at small
separations and quickly diminish as the intercylinder separa-
tion is increased.
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On the contrary, the strong coupling limit is relevant
when the valency of counterions is large and/or the macro-
molecule surface charge density is large and/or when the
dielectric constant of the medium is small enough. The SC
approach is based on a single-particle description which is
obtained as an exact limiting result for large coupling param-
eters E— 0.7 While some aspects of the SC theory for
cylindrical macromolecules were studied in previous
w0r1<s,30’31’45’46 other aspects have remained unaddressed.
Our work is aimed specifically at considerations regarding
image charge effects, which indeed turn out to be quite sig-
nificant in the SC limit. Using a generalized SC theory and
extensive MC simulations we have shown that the counteri-
ons are strongly depleted away from the cylindrical cores
due to repulsion from image charges leading to stronger ef-
fective repulsions between the two cylinders at smaller sepa-
rations. The counterion-mediated attraction will be present at
intermediate to large separation when the coupling parameter
is sufficiently large. These features are in marked contrast
with those obtained within the WC theory. We have mapped
a global phase diagram where attractive and repulsive inter-
actions emerge between two like-charged cylinders with or
without the image-charge effects.

In our analysis we have employed a first-order image
approximation to deal with the image-charge effects within
the SC theory (note, however, that the numerical scheme
used within the WC limit allows to account for the full effect
of the dielectric discontinuity). Generally, the treatment of
the image charges in nontrivial geometries becomes very
complicated and the two-cylinder model is no exception. The
first-order image approximation (29) has the obvious advan-
tage that it allows for an analytical treatment of the system.
The study of the full effect due to the dielectric discontinuity
in the two-cylinder model requires more advanced numerical
and analytical developments that might become available in
the future.

Another interesting effect which can be investigated in
the present context is that of the additional salt that may be
present besides the neutralizing counterions. Under typical
physiological conditions the salt concentration is about 100
mM, corresponding to the Debye screening length of 1 nm,
which is comparable to our scales of interest, and therefore it
should have an important effect on the interactions. Recent
generalizations36 should allow for a systematic study of salt
screening effects within the WC-SC framework, which we
shall consider in a future publication.
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APPENDIX A: CROSS INTERACTION TERM v,,qes(F)

In this section, we explain how the cross energy term
(38) may be evaluated in the case of two charged cylinders

J. Chem. Phys. 132, 224703 (2010)

(Sec. IMI B). This requires employing some mathematical
identities as we shall explain below. Note that here the posi-
tion vectors centered at two different cylinders appear simul-
taneously, u# v,

Ucross(rp,) = IBquf uim(r,wr,;) a-(rl,))dr, . (Al)

Inserting the image kernel u;,(r,r’), Eq. (11), and the cylin-
der charge density o(r), Eq. (5), we first transform the coor-

dinates p, and ¢, centered at the uth cylinder to those cen-
tered at the vth cylinder using Graf’s addition theorems,”’

o]

K, (kp,)sin me, = S,,(kp,)sin ne,, (A2)
n=0
Km(kpM)COS m(P,u = E Cmn(ka)COS ne,, (A3)
n=0
with m and n being integers and
Smn(kpv) = [Km+n(kR) - Km—n(kR)]In(kpv) (A4)
Conkp) = [K s kR) + K, (kR) 1L, (kp,) (1 = 5.8,0).
(AS)

We can then carry out the integration in Eq. (A1) over p;L,
(P;,,L’ and z’. Integration over z’ produces a (2 sin kz.,)/k term,
where z,,— % is the upper limit and thus we obtain

Y S
vcmss(r,)=—§2 f dk¢, (ka)K,,(kp,,)
0

T =0

sin k7.,

. (A6)

C,olka)cos me,,.

In the next step, we integrate over the wave-vector k, where
the integrand contains the rapidly oscillating factor sin kz..,
which suppresses contributions of the integrand in whole the
range, except at k— 0. Formally, we use the following math-
ematical identity:

lim f f(t)sin wytdt = 7ETRes(f,O), (A7)
0

wOHOO

where Res(f,0) is the residue of function f(z) at t=0. This
integral is finite only if f(r) behaves as 1/¢ for t— 0 and goes
to zero for t— . This statement can be proven by consider-
ing the split of function f(¢) into a 1/¢ term and a remainder,

ie., f()=r" Res(f,0)+/(z). The first part can be integrated
straightforwardly, whereas the remainder yields zero accord-
ing to the Riemann—Lebesgue lemma.”® This finally leads us
to

@

o1
vcross(rM) = 2A§mE=1 Z(R (A8)

m
cos me,,,
"

which may be simplified further using the identity
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“ 1 2 \m
22 _(a_) cos me,,

m=1 M Rp,u

1 |:1 2( az ) ( az )2:|
=—In|1-2\ —Jcos @, +| — ] |,
Rp, " Rp,

and yields the result given in Eq. (38).

(A9)

APPENDIX B: MC SIMULATIONS

We performed MC simulations in order to study the sys-
tem of one and two charged dielectric cylinders at arbitrary
coupling parameters, which thus go beyond the weak and
strong coupling theories. All simulations were performed in
the canonical ensemble (NVT) using standard Metropolis
alg01rithm.79’80 In the case of one charged cylinder the system
(including the neutralizing counterions) is enclosed in a cy-
lindrical simulation box of outer radius a,,=50a, whereas in
the case of two cylinders the system is enclosed in a square
box of lateral size L, /a=60 (WC) and 100 (SC) (note that in
this work we focus on the regime of large Manning param-
eters where the lateral size and shape of the confining box
becomes unimportant3 14%) The simulation box height is as-
sumed to have a finite value L, which can be written in
terms of other physical parameters by invoking the global
electroneutrality condition: in the case of a single cylinder,
we have L .=Ngey/\, and in the case of two cylinders L,
=Ngey/(2\). We use periodic boundary conditions in the z
direction by replicating the main simulation box infinitely
many times in that direction.

The energy of the system for a given configuration of the
cylinder(s) is composed of two main parts

BW EBWOL(r)+2B r;, ]) (Bl)

i=1

The first term is the counterion-cylinder interaction energy as
given by Egs. (20) and (34) in the text. The second term in
Eq. (B1) is the counterion-counterion interaction energy
which includes also the contribution from interactions with
counterion image charges. Due to the periodic boundary con-
ditions used in the simulations, this latter term involves infi-
nite summation series.®' This is because the counterions and
image charges in the main simulation box interact also with
their periodic “copies” as obtained by the replication of the
main simulation box to an infinite number of simulation box
copies. These summations can be evaluated as explained in
the forthcoming Secs. B 1 and B 2.

The interaction energy between two given counterions i
and j can be written as

% Ir;—r]=2R,,

1
BWoc(ri, l‘j) = EWim(ri, I‘,-) l :j’
wo(r;, 1)) + win(r;,r;) otherwise.
(B2)

The first equation corresponds to the hard-core repulsion be-
tween two counterions overlapping counterions. The second
equation gives the image self-energy of the ith counterion,
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i.e., it takes into account the interaction of a given counterion
with its dielectrically induced images in the polarizable di-
electric core(s). The third equation in (B2) gives the interac-
tion between two different counterions 7 and j. It is written as
the sum of two different contributions which will be calcu-
lated below: (i) the Coulomb interaction, w,, between the ith
(located at r;) and the jth counterions and all its periodic

copies (located at r;+kL.e, for integer k=—, ... ,%, where
e, is a unit vector pointing in +z direction)
> 2
g {s
wo(r,r) = 2 : (B3)
k=—00 |ri - rj + kLzez|

and (ii) the contribution involving interactions with the di-
electrically induced image charges w;, that will be defined
later in this appendix.

1. Calculation of w,

The first contribution w, can be written as
Ap/L, < Apg
Ap/L.> Apy,

wp(r,r)),

B4
wy(r;, l'j) > (B4)

wo(r;,r)) =
where we have introduced two different summation schemes
depending on the radial distance Ap=vAx?>+Ay? between
the two position vectors r; and r; in order to increase the
convergence of the sum over the long -range electrostatic in-
teractions. If radial distance Ap is smaller than a threshold
Apy, we first sum up k, terms directly and then use an ap-
proximation to estimate the remaining part of the series
(from ky+1 to infinity). We refer to this as the “direct” sum-
mation scheme. This method is different from the so-called
Sperb82 summation scheme which involves calculating vari-
ous special functions. The direct scheme can be made in
principle as accurate as necessary and we found it to be more
efficient than the Sperb scheme (given a relative cutoff error
smaller than 10‘5). It follows as

wp(r,r;) 202 - Ap? <
D—eL E = 2 =, (BS)
qts k=—ky 2 k=kq+1 k

where the last sum over 1/k% is equal to —%gb”(k0+ 1), where

¢ is digamma function, and needs to be calculated only once

in the course of the simulations. The term s(k) is defined as
1

s = VAP? + (Az + kL )2' (B6)

This scheme gives an error of the order O(1/k, 0)-

For larger radial separations (Ap>Ap,), we use the so-
called Lekner summation scheme™ as it converges more rap-
idly. It is given by

——=——In—+— 2, Ky(k,A k,,A
T Lszl ok p)eos(l, A2)
+ AWoffset’ (B7)

where Aw .. accounts for the offset generated at the thresh-
old, i.e.,
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AW,teer = wp(Ap = Apg) —w (Ap=Apy). (B8)

We choose the threshold value as Apy=0.4L, and use a cut
off of ky=6 in the direct scheme and sum up to 2
+[1.5/Ap] terms in the Lekner scheme, which give a relative
error smaller than 1075

2. Calculation of w;,

Let us now consider the second contribution that enters
Eq. (B2), i.e., win(r;,r;), which is the interaction energy ob-
tained by summing up all contributions that involve dielec-
trically induced image charges throughout different periodic
copies of the main simulation box along the z axis. It can be
written in the case of one cylinder as

Win(T, 1)) = Bleoq)* E Ui (T, T; + 1L €). (B9)

P

Inserting the image kernel (11) into the above equation, one
ends up with an infinite summation of terms including
cos k(Az+nL,), which can be expressed in terms of & func-
tions, i.e.,

> cos k(Az + nL,) =1 cos kAz > S(kL,—27mn).

(B10)

This enables us to simply integrate over the wave-vector
variable k and thus obtain

Win(r,r) 2 B
L = 2N Y Elk,a)K,(k,p)K, (k)
q €B Lzm:() n=—00

X cos k,Az cos mAg, (B11)

where k,=2mn/L,. The n=0 term needs to be handled care-
fully by taking the limit k,— 0 as

) A aZ m
lim gm(kna)Km(knpi)Km(knpj) = ( _> . (B 12)
k—0 m\p

iPj
Using the summation identity as used in Eq. (A9), we find
the final expression

(ror A 2 2 \2
Mz__m[l_Z(a_)m A¢+<“—) }

‘12€B L, PiP; PiP;
4 oo oo
+ Zz E gm(kna)Km(knpi)Km(knpj)
zm=0 n=1

X cos k,Az cos mAg. (B13)

This expression is the most computationally expensive part
of the simulations, and its efficiency decreases for p;/L, <1,
i.e., for counterions near the cylindrical core. In the simula-
tions we truncate these summations in such a way that the
relative cutoff error is less than 107,

In the case of two cylinders, we use the first-order image
approximation in the simulations as well, and thus the
image-charge contributions are simply the sum of the contri-
butions for each cylinder separately, i.e.,
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Wgrzn)(rhr )= Win(X 1T 1) + Win(r 2,1 0), (B14)

where indices 1 and 2 represent coordinates centered at the
first and the second cylinder, respectively.

APPENDIX C: CALCULATION OF THE
INTERCYLINDER FORCE IN THE SIMULATIONS

In this section, we explain the method used to directly
evaluate the force between two charged cylinders within MC
simulations. The force acting on a given cylinder (say cylin-
der 1) is composed of three contributions,

N N
F=Foo+ 2 Fouli) + 2 Fogn(i), (C1)
i=1 i=1

where Fy is the bare electrostatic force due to the interaction
with the other cylinder, F,.(i) is the electrostatic force due to
the interaction of the cylinder with the ith counterion
(summed over all counterions i=1,...,N), and Fq,(i) is the
force due to the osmotic pressure from the ith counterion.

The first contribution follows from the interaction energy
Woo» Eq. (32), as

Foo==—"2"" (C2)
which gives
F 28 2Aa?
BLOO - qzj R(l R? az)' (©3)
5 _

The second contribution, i.e., the counterion acting on the
cylinder 1, follows by differentiating W, Eq. (34), with re-
spect to R by assuming that the cylinder 2 and the ith coun-
terion are fixed, i.e.,

IWo,

IR ’ (€4)

£ 3
p2,i’p2,[’<’p2,i’ ‘PZJ-:COHSt

FOC(i) = -

which after some algebra gives

BFo.(i) __ 2_§{(1 _A)COS Pi.1 +A(1 + 0_2)005 ‘P:'k,l

L L, Pi1 P},]
2 #
a- cos @;
P " L :| (C5)
Pin

Here p;; and ¢, are the radial distance and the azimuthal
angle of the ith counterion position with respect to cylinder
1, and p;, and ¢;, are the corresponding coordinates with
respect to the axis which is shifted by a/R from the axis of
cylinder 1 toward the axis of the cylinder 2 (see Fig. 3).
Similar definitions apply to p; 5, ¢; 5, p;,, and ¢;,.

The osmotic (third) term in Eq. (C1) results from the
collisions of counterions with the cylinder. This contribution
amounts to a pressure of counterions exerted on the cylinder
surface, which is proportional to the contact density of coun-
terions at the cylinder surface ny. Thus the infinitesimal force
acting on the cylinder is given by BdF.,
=ny(@)adeL cos ¢. Note that the contact counterion density
no(¢) is given by the number of counterions inside a small
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box of dimensions adg X 8p X L next to the cylindrical sur-
face. The total osmotic force of all ions in the simulation box
is then

Foom .. 1 cos @;
Blom _ jim 13 S 8lg0 4 0p-p,).  (CO)
L so—oL, 7 dp ’

where 0 is the Heaviside step function which is 1 only if the
ith counterion falls inside a shell thickness dp from the cyl-
inder surface. The above procedure in principle gives the
exact value of the osmotic force when dp— 0. It also gives a
convenient method to calculate the osmotic contribution
within MC simulations by evaluating the force for different
values of the shell thickness and estimating the limiting
value by extrapolation.
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