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We study the thermal Casimir effect between two thick slabs composed of plane-parallel layers of random
dielectric materials interacting across an intervening homogeneous dielectric. It is found that the effective
interaction at long distances is self-averaging and is given by a description in terms of effective dielectric
functions. The behavior at short distances becomes random �sample dependent� and is dominated by the local
values of the dielectric function proximal to each other across the dielectrically homogeneous slab.
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Systems with spatially varying dielectric functions exhibit
effective van der Waals interactions arising from the interac-
tion between fluctuating dipoles in the system �1,2�. These
fluctuation interactions have two distinct components: �i� a
classical or thermal component due to the zero-frequency
response of the dipoles and �ii� a quantum component due to
the nonzero-frequency or quantum response of the dipoles.
Despite the clear physical differences in these contributions,
the mathematical computation of the corresponding interac-
tion is almost identical and boils down to the computation of
an appropriate functional determinant. The full theory taking
into account both of these component interactions is the cel-
ebrated Lifshitz theory of van der Waals interactions �3�,
based on boundary conditions imposed on the electromag-
netic field at the bounding surfaces and the fluctuation-
dissipation theorem for the electromagnetic potential opera-
tors. From the Lifshitz theory one can derive the original
Casimir interaction �4� by taking the limit of zero tempera-
ture and ideally polarizable bounding surfaces. In this respect
the Lifshitz theory is nothing but a proper finite temperature
and realistic boundary conditions generalization of the Ca-
simir interaction and thus van der Waals interactions are in-
deed nothing else but the thermal Casimir effect. The major
mathematical problems in the computation of Casimir-type
interactions �setting aside the experimental and theoretical
challenges to determine the correct dielectric behavior� are
�i� the application of the Lifshitz approach to nontrivial ge-
ometries and �ii� taking into account local inhomogeneities
in the dielectric properties of the media, always present in
realistic systems. In this paper we will address the latter.

We consider thermal Casimir interaction for the case
where the local dielectric function is a random variable in the
transverse direction. Specifically we will consider the inter-
action between two thick parallel dielectric slabs, separated
by a homogenous dielectric medium; see Fig. 1. The thick-
ness of both disordered dielectric slabs are L1 and L2, respec-
tively, and their separation is denoted by �. In what follows
we will study the limit of infinite slabs, i.e., L1 ,L2→�. The
dielectric response within the two slabs is constant in the
planes perpendicular to the slab normal, but varies in the

direction of the surface normal. It is well known that this
problem can be solved in the case where the dielectric con-
stants of the slabs do not vary �2� and the result can be
tentatively applied to the case of fluctuating dielectric func-
tions via an effective-medium theory which consists of re-
placing the fluctuating dielectric functions by an effective
�spatially constant within each of the slabs� dielectric tensor.
The most commonly used approximation is that, where the
local dielectric tensor is replaced by the effective dielectric
tensor �1,2�, i.e.,

�ij�x� → �ij
�e�, �1�

where the bulk dielectric tensor is defined via �ij
�e��Ej�

= ��ijEj�. The use of the effective dielectric function is not
easily justifiable mathematically as an approximation, al-
though physically the effective dielectric function clearly
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FIG. 1. �Color online� A schematic presentation of the model.
Two finite slabs, �1� and �2�, with disordered plane-parallel dielec-
tric layers interacting across a dielectrically homogeneous slab of
thickness �. z axis is perpendicular to the plane of the slabs.
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does capture the bulk response to constant electric fields. We
shall see that, for the random layered dielectric model stud-
ied here, the effective dielectric constant approximation of
Eq. �1� does in fact give the correct value of the thermal
Casimir interaction when the two slabs are widely separated.
This can be expected on physical grounds as the fluctuating
electromagnetic field modes with smallest wave vectors �cor-
responding to variations on large scales� dominate the Ca-
simir interaction for large interslab separation. The dielectric
response of the material to a constant electric field is given
by the effective dielectric constant and if the wave-vector
dependent response is suitably analytic near k=0 we expect
that �ij

�e��k���ij
�e��0�=�ij

�e� for �k��1.
In this paper we introduce a path-integral formalism to

compute the thermal Casimir free energy between two semi-
infinite dielectric slabs which are composed of layers with
varying dielectric function. Our formulation allows us to
show rigorously that for large interslab separations the
leading-order contribution to the interaction is self-averaging
and is equivalent to that obtained by replacing each slab with
a homogeneous �though nonisotropic medium� with a dielec-
tric tensor equal to the effective �bulk� dielectric tensor of the
disordered medium. The short-distance behavior of the inter-
action is random and we show, as would be expected on
physical grounds, that it is dominated by the precise value of
the dielectric constants at the two opposing slab faces.

The Hamiltonian for the zero-frequency fluctuations of
the electrostatic field in a dielectric medium is given by the
classical electromagnetic field energy

H��� =
1

2
	 dx��x�����x��2, �2�

and the corresponding partition function is given by the func-
tional integral Z=
d���exp�−�H����. Differences in dielec-
tric functions lead to the thermal Casimir effect. Here we
will consider layered systems where the dielectric function �
depends only on the z direction ��x�=��z�. If we express the
field � in terms of its Fourier modes in the plane perpendicu-
lar to z, and we take the area perpendicular to z as A, with
wave vector k= �kx ,ky�, then the Hamiltonian can be written
as H=�kHk with

Hk =
1

2
	 dz��z�� d�̃�z,k�

dz
2

+ k2��̃�z,k��2� . �3�

Therefore the partition function can be expressed as a sum
over the partition functions of individual modes Zk as ln�Z�
=�kln�Zk� where

Zk =	 d�X�exp�−
1

2
	 dz��z���dX

dz
�2

+ k2X2�� . �4�

Here k= �k� and we have taken into account that the field � is
real.

The problem of computing the interaction between slabs
composed of layers of finite thickness can be studied using a
transfer-matrix-like method �5�. However we will use a
method based on the Feynman path integral instead, which is
particularly well suited to the study of systems where the
dielectric function can vary continuously �6�. If we specify

the starting and finishing points of the above path integral,
we see that it has to be of a harmonic-oscillator form defined
by

K�x,y ;z�,z� = 	
X�z��=x

X�z�=y

d�X�exp�−
1

2
	 dzM�z���dX

dz
�2

+ �2X2�� , �5�

which can be computed using the generalized Pauli–van
Vleck formula �6,7� telling us that K must have the general
form

K�x,y ;z�,z� = �b�z�,z�
2	

�1/2

exp�−
1

2
ai�z�,z�x2 −

1

2
af�z�,z�y2

+ b�z�,z�xy� . �6�

We may now write down an evolution equation for the coef-
ficients ai, af, and b using the Markovian property of the
path integral �in fact this is how one can prove the general-
ized Pauli–van Vleck formula: K�x ,y ;z� ,z+
�
=
dwK�x ,w ;z� ,z�K�w ,y ;z ,z+
� �6,7�� to find the following
evolution equations for ai, af, and b:

�ai�z�,z�
�z

= −
b2�z�,z�

M�z�
,

�b�z�,z�
�z

= −
b�z�,z�af�z�,z�

M�z�
,

�af�z�,z�
�z

= M�z��2�z� −
af

2�z�,z�
M�z�

. �7�

We thus find that the �-dependent part of the free energy of
the mode k �up to a bulk term which can be subtracted off to
get the effective interaction� is given by

Fk =
kBT

2
ln�1 −

�af
�1��k� − �0k��af

�2��k� − �0k�
�af

�1��k� + �0k��af
�2��k� + �0k�

e−2k�� , �8�

and the total � dependent free energy is F=�kFk. Here
af

�1,2��k� are the solutions to Eq. �7� evaluated at the opposing
faces of each slab ��1� and �2�.

In order to evaluate the integrals of af
�1,2��k�, one first has

to solve equations of motion Eq. �7� to get the z dependence
of af�k ,z� and then proceed to the integrals that enter Eq. �8�.
The evolution equation for af�k� for either slab can be read
off from Eq. �7� and is given by

daf�k,z�
dz

= ��z�k2 −
af

2

��z�
, �9�

where we have dropped the explicit dependence on z�=−L1.
An appropriate Hopf-Cole transformation �7� shows this for-
malism to be equivalent to the transfer-matrix method �5� or
to the density-functional method �8� for evaluating the van
der Waals forces. This nonlinear formulation of an essen-
tially linear problem in fact simplifies the analysis of the
effect of disorder in a similar way as it does in quantum
problems �9�. If we now write af

�i��k ,z�=k��i��k ,z� and if the
distributions of the ��i��k .z�=y are given by pi�k ,y� then we
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find that, in three dimensions the average of the � dependent
free energy is given by

�F� =
kBTA

4	
	 dkk	 dy1	 dy2p1�k,y1�p2�k,y2�

�ln�1 −
�y1 − �0��y2 − �0�
�y1 + �0��y2 + �0�

e−2k�� , �10�

where the angled bracket on the lhs indicates the disorder
average over the dielectric function within the slabs and we
have assumed that the realizations of the disorder in the two
slabs are independent.

Let us first investigate the form of van der Waals interac-
tion free energy in the limit of large separations between the
two slabs. The equation obeyed by � can be written as

d��k,
�
d


= ��
/k� −
�2

��
/k�
, �11�

with 
=zk. When k is small ��
 /k� varies very rapidly and
thus becomes decorrelated from the value of �. The Laplace
transform for the probability density function of � is defined
by p̃�k ,s ,
�=
0

�dy exp�−sy�p�k ,y ,
�= �exp�−s��k ,
���, and,
from the equation of motion Eq. �11�, obeys

−
1

s

dp̃�k,s,
�
d


= ���
/k�exp�− s��k,
��

−
�2

��
/k�
exp�− s��k,
��� . �12�

Assuming that k is small and thus ��k ,
� and ��
 /k� are
decorrelated we can write

−
1

s

dp̃�k,s,
�
d


= ���p̃�k,s,
� − �1/��
d2

ds2 p̃�k,s,
� . �13�

As we are interested in the limit of thick slabs it suffices to
know the equilibrium distribution of this equation which is
given by lim
→� p̃�k ,s ,
�=exp�−��s� with

�� =� ���
�1/��

. �14�

Inverting the Laplace transform then gives the equilibrium
distribution p�y ,k�=�y−��� at small k. When � is large the
integral in Eq. �10� is dominated by the small k behavior, and
we may use the analysis presented above to give the follow-
ing asymptotic form for the interaction free energy,

�F��� → �� �
kBTA

16	�2	 udu ln�1 − �1
��2

�e−u� = −
H�A

�2 ,

�15�

with �i
�= ��i

�−�0� / ��i
�+�0� and where �i

� are defined via Eq.
�14�. The subscript i on the angled brackets signifies that we
are averaging the dielectric function in the slab i. The term
H� defines an effective disorder-dependent Hamaker coeffi-
cient. This therefore justifies physical arguments replacing
the random layered material by an effective anisotropic me-
dium where the dielectric tensor is has the form �zz

�e�=�� and
�xx

�e�=�yy
�e�=��, all other terms being zero by symmetry. The

term �� is the effective dielectric function in the z direction
��

�e�=1 / �1 /�� and the perpendicular components are given by
��

�e�= ���. The expressions for ��
�e� and ��

�e� follow simply from
the fact that in the perpendicular direction the dielectric func-
tion is obtained by analogy to capacitors in series and in the
parallel direction by analogy to capacitors in parallel ar-
rangement �10�. The effective value of �� for this system
coincides with that of Eq. �14� above �7�. This result shows
that for large separations �where � is much larger than the
correlation length of the dielectric disorder� the thermal Ca-
simir interaction free energy is self-averaging and agrees
with that given by physical reasoning.

One would imagine that as the distance between the slabs
is reduced, the result will be increasingly dominated by the
slab composition at the two opposite faces �2�. Indeed in the
small � limit Eq. �10� is dominated by the large k behavior.
The asymptotic behavior can be extracted if one assumes the
ansatz,

��z,k� = �
n=0

�
�n�z�

kn . �16�

Substituting this into Eq. �11� gives the following chain of
equations for �n�z�:

1

k
�
n=0

�
1

kn

d�n�z�
dz

= ��z� −
1

��z� �
n,m=0

�
�n�z��m�z�

km+n . �17�

From here it is easy to see that to order O�1� the leading
asymptotic result of Eq. �22� is given by

�0�z� = ��z� . �18�

The equation for the corrections �n�1� to this asymptotic
limit is

d�n−1�z�
dz

= −
1

��z� �
m=0

n

�m�z��n−m�z� , �19�

and the next two terms from this expansion yield

�1�z� = −
1

2

d��z�
dz

, �20�

�2�z� =
1

4

d2��z�
dz2 −

1

8��z�
�d��z�

dz
�2

. �21�

It is straightforward to realize that these terms generate
O�1 /�� corrections to the asymptotic result which are sub-
dominant when � is large. Thus to the leading order,

��z,k� � �0�z� = ��z� �22�

and from here it follows straightforwardly that

lim
k→�

pi�y,k� = �i��� , �23�

where �i is the probability density function of ��z� in me-
dium i. This result is easily understood from the physical
discussion above. The average of the thermal Casimir inter-
action free energy Eq. �10� in the small separation limit is
thus given by
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�F��� → 0� �
kBTA

16	�2	 udu	 �1��1��2��2�d�1d�2

�ln�1 − �1�2e−u� , �24�

with �i= ��i−�0� / ��i+�0�. The forms of the thermal Casimir
interaction free energy are thus given by Eqs. �15� and �24�
in the small and large interslab separation limits, respec-
tively.

We have thus obtained the limiting behavior of the ther-
mal Casimir effect in the limit of large separation between
the slabs, where the free energy is given by self-averaging
and thus the distributions of ��k ,z� are strongly peaked. It
can be shown �7� that the large separation attraction between
two �statistically identical� homogeneous media �with �
= ���� is stronger than that between the two fluctuating media
if �1 /��−1��0. However it is always weaker if �����0. We
thus see that, depending on the details of the distribution of
the fluctuating dielectric response in the two slabs and the
dielectric response of the medium in between, the effective
interaction at large interslab separations can be stronger or
weaker than that for a uniform medium with a dielectric
constant equal to the mean dielectric function of the fluctu-
ating media.

For small separations the interaction free energy is a ran-
dom variable and its mean value is obtained by averaging
over the probability density functions of the dielectric func-
tions of the media composing the opposing surfaces of the
interacting slabs. The intermediate length scales can be ana-
lyzed via perturbation theory �7� and possibly there exist
models of disorder that can be treated exactly. The nonlinear
formulation of the problem presented here should be equally
useful to treat the case of deterministically varying dielectric
functions and could open up a useful computational frame-
work for designing materials where the effective interaction
can be tuned, to induce attractive or repulsive forces depend-
ing on the separation, for practical applications �11�.
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